Project 1: Latin Squares

Weeks 1-10

An order- n Latin square is a $n \times n$ array filled with the symbols $\{1,2, \ldots n\}$, such that no symbol is repeated in any row or column. Here are a few Latin squares of small orders:

$$
\begin{array}{|l|l}
\hline 2 & 1 \\
\hline 1 & 2 \\
\hline
\end{array}, \quad \begin{array}{|l|l|l|}
\hline 1 & 2 & 3 \\
\hline 2 & 3 & 1 \\
\hline 3 & 1 & 2 \\
\hline
\end{array}, \quad \begin{array}{|l|l|l|l|}
\hline 1 & 4 & 3 & 2 \\
\hline 2 & 3 & 1 & 4 \\
\hline 4 & 1 & 2 & 3 \\
\hline 3 & 2 & 4 & 1 \\
\hline
\end{array} .
$$

A partial Latin square is a $n \times n$ array in which cells can either be blank or contain a symbol $\{1, \ldots, n\}$, such that no symbol occurs twice in any row or column. A Latin square L is called a completion of a partial Latin square P if L and P agree on all of P 's nonblank entries.

Some partial Latin squares have completions:

$$
P= \longmapsto L=\begin{array}{|l|l|l|}
\hline 1 & 2 & 3 \\
\hline 3 & 1 & 2 \\
\hline 2 & 3 & 1 \\
\hline
\end{array}
$$

Others do not:

$$
P=\begin{array}{|l|l|l}
\hline 1 & & \\
\hline & 1 & \\
\hline & & 2 \\
\hline
\end{array} \text { has no completion. }
$$

Determining what kinds of partial Latin squares have completions is an open question in many situations! Here are some known results:

- (Hall, 1949:) A Latin rectangle is a partial Latin square P where the first k rows of P are filled and the rest are blank. All Latin rectangles can be completed.
- (Smetaniuk, 1981:) If P is a partial latin square with $\leq n-1$ filled cells, P can be completed.
- (Buchanan, 2007:) If P is a $n \times n$ partial Latin square where precisely 2 rows and columns of P are filled, P can be completed.

A question I spent part of my dissertation studying is the following: Call a $n \times n$ partial Latin square ϵ-sparse if at most ϵn of the entries in any row, column, or symbol are not blank. It is conjectured that all $1 / 4$-sparse partial Latin squares are completable; in my dissertation I proved that all 10^{-4}-dense partial Latin squares are completable.

This result is improvable, in many different ways. Students on this project will attempt to find such improvements!

