CCS Problem-Solving II		Professor: Padraic Bartlett
	Project 1: Latin Squares	
Weeks 1-10		UCSB 2015

An order-*n* Latin square is a $n \times n$ array filled with the symbols $\{1, 2, ..., n\}$, such that no symbol is repeated in any row or column. Here are a few Latin squares of small orders:

A partial Latin square is a $n \times n$ array in which cells can either be blank or contain a symbol $\{1, \ldots, n\}$, such that no symbol occurs twice in any row or column. A Latin square L is called a **completion** of a partial Latin square P if L and P agree on all of P's nonblank entries.

Some partial Latin squares have completions:

$$P = \boxed{\begin{array}{c|c} 2 \\ 3 & 1 & 2 \\ \hline \end{array}} \longmapsto L = \boxed{\begin{array}{c|c} 1 & 2 & 3 \\ 3 & 1 & 2 \\ \hline 2 & 3 & 1 \\ \hline \end{array}}$$

Others do not:

Determining what kinds of partial Latin squares have completions is an open question in many situations! Here are some known results:

- (Hall, 1949:) A Latin rectangle is a partial Latin square P where the first k rows of P are filled and the rest are blank. All Latin rectangles can be completed.
- (Smetaniuk, 1981:) If P is a partial latin square with $\leq n-1$ filled cells, P can be completed.
- (Buchanan, 2007:) If P is a $n \times n$ partial Latin square where precisely 2 rows and columns of P are filled, P can be completed.

A question I spent part of my dissertation studying is the following: Call a $n \times n$ partial Latin square ϵ -sparse if at most ϵn of the entries in any row, column, or symbol are not blank. It is conjectured that all 1/4-sparse partial Latin squares are completable; in my dissertation I proved that all 10^{-4} -dense partial Latin squares are completable.

This result is improvable, in many different ways. Students on this project will attempt to find such improvements!