
CCS Problem-Solving II Professor: Padraic Bartlett

Project 4: NP-Completeness

Weeks 1-10 UCSB 2015

An algorithm is a precise and unambiguous set of instructions.
Typically, people think of algorithms as a set of instructions for solving some problem;

when they do so, they typically have some restrictions in mind (namely, “simple” and “easy
to perform”) for the kinds of instructions they consider to be valid. For example, most
people think that the following process for proving the Riemann hypothesis is not really an
algorithm:

1. Prove the Riemann hypothesis.

2. Rejoice!

Conversely, people do regard the following algorithm for multiplying two numbers using
only addition as a valid algorithm:

Algorithm. Take as input any two positive integers x < y. Consider the following algo-
rithm:

0. Define a new number prod, and initialize it (i.e. set it equal) to 0.

1. If x = 0, stop, and return the number prod.

2. Otherwise, set prod = prod + y and x = x− 1.

3. Go to step 1.

Another way to multiply numbers with only “basic” operations (i.e. addition, division by
two round down) is the process of “peasant multiplication:”

Algorithm. Take as input any two positive integers x < y. Consider the following algo-
rithm:

1. Define a new number prod, and initialize it (i.e. set it equal) to 0.

2. If x = 0, stop, and return the number prod.

3. Otherwise, if x is odd, set prod = prod + y.

4. Regardless of what x was in the step above, set x = bx/2c, and y = y + y.

5. Go to step 2.

Roughly speaking, this algorithm succeeds because we can write

x · y =


0, x = 0,

bx/2c · (y + y), x even,
bx/2c · (y + y) + y, x odd,

1



and this algorithm is a repeated application of this fact.
One interesting thing about peasant multiplication is how much faster it is as compared

to our first multiplication algorithm! For example, peasant multiplication takes just 7 runs
to take the product of 123, 231 (try this!) Conversely, our first algorithm for multiplying
would have taken us 231 runs.

This above distinction motivates us to think about the idea of runtime. In general,
given inputs x, y, you can see that it will take x loops to multiply two numbers with our
first algorithm (because x decreases by 1 at each step), and that it will take at most log2(x)
loops for our peasant multiplication algorithm to complete (because x is replaced by bx/2c
at each step.)

Based on this, we say that peasant multiplication has runtime1 O(log2(min(m,n))),
on inputs n,m based on this analysis: roughly speaking, the worst peasant multiplication
can do is take log2(min(m,n)) runs to complete, and therefore needs at most some constant
times log2(min(m,n)) many second to multiply its numbers, if each of the operations we’re
using is “easy” (i.e. can be performed in some constant amount of time.)

Notice that this compares favorably to the normal multiplication algorithm we gave
before, which needs at least min(m,n) loops to multiply two numbers, and is thus something
that we think has runtime O(min(m,n)).

So: we have two algorithms to solve the same problem, one of which has a demonstra-
bly shorter runtime than the other! This raises a natural question: suppose we have an
algorithm that purports to solve a problem. When can you find a faster algorithm? When
should you try to find a faster algorithm?

The following table might help illustrate things some. Below, we plot five functions with
runtimes n, n2, n3, n5, 2n versus input sizes for n ranging from 10 to 50, with the assumption
that we can perform one step every 10−6 seconds.

Runtime v. Input 10 20 30 40 50

n 1 · 10−5 sec. 2 · 10−5 sec. 3 · 10−5 sec. 4 · 10−5 sec. 5 · 10−5 sec.
n2 1 · 10−4 sec. 4 · 10−4 sec. 9 · 10−4 sec. 1.6 · 10−3 sec. 2.5 · 10−3 sec.
n3 1 · 10−3 sec. 8 · 10−3 sec. .027 sec. .064 sec. .125 sec.
n5 .1 sec. 3.2 sec. 24.3 sec. 1.7 min. 5.2 min.
2n 1 · 10−3 sec. 1 sec. 17.9 min. 12.7 days. 35.7 years

In this table, the functions n, n2, n3, n5 all grow at roughly not-awful rates. For 2n,
though . . .

The issue with an algorithm that runs in exponential time, like 2n, is that very small
changes in the size of the input lists can create massive increases in the time needed to
run the program. For example, in the list above, an increase in the number of elements

1Formally: we say that some positive function f(n) is O(log2(min(m,n)) if there is some constant M

such that f(n)

n2 ≤ M . Roughly speaking, this says that f(n) grows “like” log2(min(m,n), up to some fixed
constant multiplier. This idea extends to O(n), O(n2), and really O(anything).

2



examined by 40 (a potentially very paltry increase, if you’re like sorting lists with thousands
of elements) increased our runtime from .001 seconds to 35.7 years.

So: polynomials good, exponentials bad. To make this rigorous, here are a few defini-
tions:

Definition. A problem is said to be of class P if there is an integer k and algorithm A that
solves instances of length n of this problem with runtime O(nk).

Definition. A problem R is said to be of class NP if it has “efficiently verifiable proofs.”
Specifically, we ask for the following two things:

• Given any instance I for which our problem is “true,” there is a proof of this claim.

• There is an algorithm A that, given any proof that claims an instance I of our problem
is true, can verify whether this proof actually corresponds to I being true in polynomial
time.

Roughly speaking, P is the set of problems we can quickly “solve,” while NP is the set
of problems that we can “quickly check solutions for.” Notice that any problem in P is in
NP, because to quickly check any solution we could just solve the problem (as it’s in P!)

A very strange thing that happens with NP is the following: we say that a problem Q is
NP-complete if it is in NP, and also that any algorithm that solves Q can be used to solve
any other problem in NP with an at most polynomial increase in its runtime. Roughly
speaking, a NP-complete problem is a sort of “universal” problem for NP — if you can
solve a NP-complete problem quickly (i.e. in polynomial time,) then you can solve every
problem in NP quickly!

The surprising thing with NP is the following:

• There are NP-complete problems.

• Almost every problem2 in NP that is not known to be in P seems to be NP-complete.

This leads to a particularly fun and silly branch of open problems:

1. Take any popular sort of puzzle (like Sudoku, or Minesweeper.)

2. Find a way to generalize that puzzle to inputs of size n, instead of whatever form the
puzzle traditionally comes in.

3. Show that this puzzle is a NP-complete task. (See here for the “Minesweeper is NP-
complete” proof, and here for some notes on NP-completeness and Latin squares,
which you can extend with a little work to Sudoku grids.)

In this project, students will study and learn about P versus NP, pick out a class of puzzles
of their choosing, and attempt to determine which are NP-complete!

2It is open whether P = NP, and also whether every problem in NP not in P is NP-complete. You will
probably not solve these problems in this project.

3

http://web.mat.bham.ac.uk/R.W.Kaye/minesw/ordmsw.htm
http://math.ucsb.edu/~padraic/mathcamp_2014/mathcamp_2014.html

