
Counting the Number of Fixed Points in the Phase
Space of Circn

Adam Reevesman

February 24, 2015

This paper will discuss a method for counting the number of fixed points in the phase
space of the Circn graph that was described in James M. W. Duvall’s article “Characteriza-
tion of Fixed Points in Sequential Dynamical Systems.”

Counting Fixed Points By Drawing Phase the Space

Let us begin by defining Circn. The Circn Graph is a graph on n vertices (v0, v1, v2 . . . vn−1)
such that each vi is connected by an edge only to the vertices vi−1, vi+1. The following is a
diagram of Circn.

So, we have a graph, Circn. In order to make this an SDS we need a few more things.
Let the initial states for each vertex be 0,1, and let the update order for the vertices be
(v0, v1, v2 . . . vn−1). The final element we need is a function to update the vertices. Let us
use the majority function, abbreviated maj.

majk : {0, 1}k → {0, 1} is a function such that the input is a k-element string of 0’s and 1’s
and the output is either a 0 or a 1. The output is 0 if there are more 0’s than 1’s, and 1
if more 1’s than 0’s. We will only use this function when k is odd in order to avoid cases
where the number of each element is the same.

To provide a few examples, maj5(00101) = 0 and maj3(110) = 1.
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If we have a Circn graph, we can use the maj3 function to update its vertices. For ex-
ample, take the Circ4 graph with the configuration 0101.

First update v1 by taking maj3(v4, v1, v2). This is the same as maj3(101), which equals
1, so v1 is updated to 1. Next, update v2. maj3(110) = 1, so v2 is updated to 1. In a similar
fashion, we update v3 and v4 to result in one system update where 0101 becomes 1111.

The phase space of Circ4 with the maj3 function is shown below.

As we can see from this phase space, there are 6 fixed points: 1100, 0011, 0000, 1111, 1001,
and 0110. In order to figure out how many fixed points there are, we first had to generate
the phase space. This requires a large amount of work, that increases by a power of 2 for a
step from Circn to Circn+1. If we want to know how many fixed points a Circn graph has
without having to draw the phase space, we need some other method.

Counting Fixed Points With the Fixed Points Graph

By the title of this section, it is safe to assume that we will be creating something called a
fixed points graph. So, what is this graph?

Before we can make the Fixed Points Graph, we need to define another term. A local
fixed point a neighborhood that does not change the state of the vertex being updated
when the function is applied to it. For example, if vi is being updated and we have that the
states of vi−1, vi, vi+1 are all 0, then the state of vi remains 0 after being updated because
maj3(000) = 0. So, 000 is a local fixed point.

In every neighborhood on the graph Circn, there are 2 possible states for each vertex, and 3
vertices. So there are 23 = 8 possible neighborhoods. We can check too see which of those
are local fixed points, and display the results in the following table.
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vi−1vivi+1 maj3 local fixed point?
000 0 yes
001 0 yes
010 0 no
011 1 yes
100 0 yes
101 1 no
110 1 yes
111 1 yes

Using this information, we can construct a directed graph G, the Fixed Point Graph. The
vertices of G are the neighborhoods that are the local fixed points.

To draw G, first choose one of the vertices. Look at the last two digits of this vertex.
Then, look for other vertices that begin with those two digits, and draw a directed edge
from the original vertex to the new ones. For example, look at 000 as a vertex of G. The
last two digits are 00. The vertices that begin with 00 are 000 and 001, so one directed edge
is from 000 to itself, and another from 000 to 001. Repeat this process for all of the vertices.
After completing this process, we get the following graph.

From this graph, we can construct an adjacency matrix.

An adjacency matrix of G is a matrix created by listing out all of the vertices in the
rows and columns. If the ith element in the row connects to the jth element in the column,
then put a 1 in entry i, j of the matrix. This concept is best illustrated with an example.The
following is an adjacency matrix A for the graph G.
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000 001 011 111 110 100
000 1 1 0 0 0 0
001 0 0 1 0 0 0
011 0 0 0 1 1 0
111 0 0 0 1 1 0
110 0 0 0 0 0 1
100 1 1 0 0 0 0

We have a graph G and its adjacency matrix A. Now we need some way to relate them.

Claim: If a graph λ has an adjacency matrix M , then the number of paths from vertex
va to vertex vb in λ that have length r is (M r)ab, meaning the entry in the ath row and bth

column of M r.

Proof. By Induction on r.

Base Case: r = 1.

M1 = M . By definition, M is the matrix that that displays the number of paths from
va to vb in the entry in the ath row and bth column.

Inductive Step: Assume that there is some t for 1 ≤ t ≤ r such that (M t)ab displays
the number of paths from va to vb of length t in λ.

Then, we can show that (M t+1)ab must display the number of paths from va to vb that
have length t + 1. Let P t+1

ab denote the total number of such paths. Assume that there is a
possible intermediate vertex vc on the certain paths from va to vb.

P t+1
ab =

∑
vc∈V (λ)

P t
ac · P 1

bc

This is because if there is a vertex that is length t away from va, there are P t
ac ways to get

from va to vc. If vc is distance 1 from vb, there are P 1
bc ways to get from vb to vc. Mul-

tiplying these together gives the number of paths from va to vb that go through vc. This
happens for every intermediate vertex that vc can be, so we add all of these products together.

By our inductive step, we can make the following substitution to get

P t+1
ab =

∑
vc∈V (λ)

(M r)ac · (M1)bc

By matrix multiplication, is above expression is equal to

(M r+1)ab

So, the number of paths from va to vb that have length r is (M r)ab for r ≥ 1.
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The reasoning for creating the local fixed point graph is because a cycle of length in G
corresponds to a fixed point in Circ4. So, we want to count the number of paths from va to
va that have length 4 in G. We can use the result of our proof to count the number of fixed
points in the phase space of Circ4 with the maj3 function.

If we have the adjacency matrix of G,

A =


1 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 1 0
0 0 0 1 1 0
0 0 0 0 0 1
1 1 0 0 0 0


then by matrix multiplication,

A4 =


1 1 1 2 2 1
1 1 0 1 1 1
2 2 1 1 1 1
2 2 1 1 1 1
1 1 1 1 1 0
1 1 1 2 2 1


The entries (A4)aa, (the diagonal entries) in this matrix are the ones that mean that there is
a path from vertex va to itself, because fixed points begin and end at the same point. The
sum of all of the diagonal entries is 1+1+1+1+1+1 = 6, which means there are 6 fixed points.

This is exactly what the phase space showed, but we did not have to draw it out. For
large values of n, this method is much more convenient because phase spaces become very
large, but the size of the neighborhood is always 3 in Circn.

5


