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1 Strategies for Specific Knots

The following are a couple of crossing game boards for which we have found which player has a
winning strategy.

1.1 Strategy for 52

The game board for the crossing game played on the 52 looks like the following:

We will first break this game into two regions, R1 and R2
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We will break the game into two cases:

• Player K goes first

Player K can move in one of:

a. R1

If Player K moves in R1, then Player U can make the same move as Player K in this region,
thereby making two consecutive overs in R1. If this happens, we have the following:

Which we can see will be the unknot regardless of the moves made. Therefore, if Player
K moves in R1, Player U will win.

b. R2

If Player K moves in R2, then Player U can make the same move as Player K in this
region, thereby making two consecutive overs in R2. We can see that this reduces in the
following way:
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Which is simply another projection of the trefoil. Recall that Player U wins on the trefoil
regardless of who goes first. Therefore, if Player K moves in R2, Player U wins.

Therefore, if Player K goes first, Player U has a winning strategy.

• Player U goes first

To play optimally, Player U should make the first move in R2 (this allows Player U to counter
all moves that Player K makes, or rather it allows Player U to make consecutive overs with
any move that Player K makes later).

Player K makes the second move. Player K can move in one of:

a. R1

If Player K moves in R1, then Player U can make the same move as Player K in this region,
thereby making two consecutive overs in R1. If this happens, we have the following:

except one of the moves in r2 will be filled in, which means that in the decomposed version,
one of the three moves will be filled in.

We can see that this will be the unknot regardless of the moves made. Therefore, if Player
K moves in R1, Player U will win.

b. R2

If Player K moves in R2, then Player U can make the same move as Player K in this
region, thereby making two consecutive overs in R2. We can see that this reduces in the
following way:
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Which is simply another projection of the trefoil with one of the moves filled in. Recall
that Player U wins on the trefoil regardless of who goes first. Therefore, if Player K moves
in R2, Player U wins.

Therefore, if Player U goes first, Player U has a winning strategy.

Therefore, regardless of who goes first, Player U has a winning strategy.

1.2 Strategy for Knot 74

In mathematical Knot Theory, 74 is the name of a 7-crossing knot which can be visually depicted in
a highly-symmetric form, and so appears in the symbolism and/or artistic ornamentation of various
cultures.

Now, consider the following diagram below. If we play the Crossing Game on it, which player has
a winning strategy?

We can consider the strategies case by case.
Divide the knot diagram into three regions. Call them S1, S2, S3. It is obvious S1 and S3 are
symmetric.
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• Player U goes first

Proposition 1. If Player U goes first in S2, then Player U can win.

Proof. If Player U takes the following step (it is actually the same case as making the opposite
choice), then we notice that the unspecified crossing c1 is symmetric with c4, c2 is symmetric
with c5, and c3 is symmetric with c6.

Notice that if we can make either pair of {c1, c2}, {c3, c2}, {c4, c5}, or {c5, c6} be both under-
crossing or both over-crossing, this diagram can be changed into a 52.
For example, when {c1, c2} are both over-crossing or under-crossing, we have the graph below.

We’ve proved that for knot 52, no matters who goes first, player U can always win. Therefore,
we can consider this diagram as the case in which K has made his first step and its U’s turn.
Then U can win in the end.

Thus Player U has a winning strategy if Player U goes first. Now, let us consider the other
case.
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• Player K goes first

Proposition 2. If Player K goes first, then Player K can win.
Lemma 1. If Player K makes the first move in S1 or S3, then Player U can win.

Proof. Similar to our first proof, if we can make either pair of {c1, c2}, {c3, c2}, {c4, c5}, or
{c5, c6} be both under-crossing or both over-crossing, this diagram can be changed into a 52,
which guarantees that Player U can win.

Therefore, if Player K wants to win, Player K can make the first move in neither S1 nor S3.
What about if Player K makes its first move in S2? We can consider the region R1 and
R2 respectively.

We call Region R1 ”unlocked” if it is in the following figuration.

The case that R2 being ”unlocked” is equivalent to the case of R1. This is easily seen by rotating
the graph 180 degrees. Thus if the diagram reaches either of the above states, we can split two

ends of the knot apart. When simplified, we get the diagram
The region R1 is locked if it is in the following figuration.
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We can observe that if both R1 and R2 are locked, then Player K wins. Notice that if
Player U makes the second move optimally and Player K makes the third move in the same
region where Player U makes the second move, then Player U can win.
So we consider the case in which Player K makes the third move in a different region from the
second move.
By observation, we find that to play optimally, U makes the second move in R1 optimally, and
after that, K makes the third move in R2 and specifically in c5, then K can win by ”locking”
both R1 and R2 .

Now look at the last four unspecified crossings. It is Player U ’s turn. No matter what move
Player U makes, Player K cab always counter the move that Player U made and lock both
regions.

7



Therefore, the crossing game on 74 is a P-Position game, which means the first player can win.

2 Strategy for Generalized Odd Tri-Braid Knot

Definition 1. An Odd Tri-Braid Knot is a knot that is constructed in the following way:
We have 3 possible braid-like ”pieces” that we can connect to make a knot of this type:

To construct an Odd Tri-Braid Knot, we connect the pieces according to the following rules:
(note that connections are made without adding any new crossings)
From top to bottom, we can have:

• A piece of Type 1, then a piece of Type 2.

• A piece of Type 1 then a piece of Type 3.

• A piece of Type 1, then a piece of Type 2, then a piece of Type 3.
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2.1 Examples

The following are examples of Odd Tri-Braid Knots:

2.2 Crossing Game on Odd Tri-Braid Knots

I claim that Player U has a winning strategy for the crossing game played on an Odd Tri-Braid Knot

Note: We label the regions containing pieces of each separate type from top to bottom R1, R2,
and R3, respectively. If there are only two pieces, we label the regions containing pieces of each
separate type from top to bottom R1 and R2, respectively.

Let us first talk about reductions on pieces of each type.
If two consecutive overs are made in a piece of Type 1 with n crossings, where n is odd, we can

see that this reduces to a piece of Type 1 with n− 2 crossings.

If two consecutive overs are made in a piece of Type 2 with n crossings, where n is even, we can
see that this reduces to a piece of Type 2 with n− 2 crossings.

If two consecutive overs are made in a piece of Type 3 with n crossings, where n is even, we can
see that this reduces to a piece of Type 1 with n− 2 crossings.
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We will break the game into two cases:

• Player U makes the first move.

To play optimally, Player U should make the first move in R1 (this allows Player U to counter
all moves that Player K makes, or rather it allows Player U to make consecutive overs with
any move that Player K makes later).

• Player K makes the first move, or any other time that Player K moves during the game.

Player K can move in one of:

a. If Player K moves in R1, then Player U can make a move that gives us two consecutive
overs in R1. If this happens, we have a reduction in R1, which is of Type 1.

Therefore, if Player K moves in R1, Player U is able to make a reduction.

b. R2 or R3

If Player K moves in R2 or R3, then Player U can make the same move as Player K in
this region, thereby making two consecutive overs in R2 or R3. If this happens, we have a
reduction in either R2 or R3. Therefore, we have a reduction of a piece of either Type 2
or Type 3.

Therefore, if Player K moves in R2 or R3, Player U is able to make a reduction.

We notice that no matter the region in which Player K moves, Player U is able to make a
reduction. So what happens if reductions continue to be made?

Note: Pieces of Type 1 cannot reduce completely as it contains an odd number of crossings,
however, pieces of Type 2 or 3 can be reduced completely.
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There are an odd number of pairs. We notice that reduction of our knot occurs on every pair of
moves, with the exception of the first move if Player U goes first or with the exception of the last
move if Player K goes first.

Therefore, we can look at the games after all possible reductions have occurred.
We first examine what pieces of each type will look like when reduced completely. We can see

that applying all possible reductions takes pieces of Type 1, 2, or 3 to the following:

Therefore, we can examine the possibilities for our game after all possible reductions are made.
Let an open circle in this case denote the one move that does not have a pair for reduction. Note
that this move can be the first move if Player U goes first. Recall that we have 3 cases for our
Odd Tri-Braid Knot. We can connect the reduced pieces of each type according to how we first
constructed the knot. We have the following:

• A piece of Type 1 (R1), then a piece of Type 2 (R2) reduces to:

• A piece of Type 1 (R1) then a piece of Type 3 (R2).

• A piece of Type 1 (R1), then a piece of Type 2 (R2), then a piece of Type 3 (R3).
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We notice that regardless of the move that is made in these reduced diagrams, they will all be
the unknot. Therefore, we know that regardless of who goes first on an Odd Tri-Braid Knot, Player
U has a winning strategy.

3 Crossing Game on Even Tri-Braid Knot

We have been trying to prove a strategy for knots with even number of crossings that are analogous
to the Odd Tri-Braid Knot.

3.1 Structure of Even Tri-Braid Knot

Definition 2. An Even Tri-Braid Knot is a knot that is constructed in the following way:
We have 2 possible braid-like ”pieces” that we can connect to make a knot of this type:
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To construct an Even Tri-Braid Knot, we connect the pieces according to the following rules:
(note that connections are made without adding any new crossings)
From top to bottom, we can have:

• A piece of Type 3, then a piece of Type 2.

• A piece of Type 3, then a piece of Type 2, then a piece of Type 3.

3.2 Problems With Even Tri-Braid Knot

For the Odd Tri-Braid Knot, we showed that no matter what Player K did, Player U could counter
the move and make a reduction. This is also the case for the crossing game played on an Even
Tri-Braid Knot when Player K goes first. Player U was able to do this when Player U goes first as
well by making the extra move in the piece containing an odd number of crossings. However, this
cannot happen in the Even Tri-Braid Knot. This allows Player K to counter moves that Player U
makes.

We are trying to come up with a technique for dealing with this. We might consider thinking
about each piece as a separate game and looking at what happens when separate crossing games are
”summed”. This leads us to study the game Nim, which we introduce below.

4 Nim

4.1 Impartial Combinatorial Games

General combinatorial are games that satisfy the following properties:

• There are two players.

• There is a finite set of positions available in the game (only on rare occasions will we mention
games with infinite sets of positions).

• Rules specify which game positions each player can move to.

• Players alternate moving.

• The game ends when a player can’t make a move.

• The game eventually ends in a finite amount of moves.

In this lecture we’ll talk specifically about impartial games.
An Impartial Combinatorial Game is a combinatorial game in which the allowable moves

depend only on the position and not on which of the two players is currently moving, and where the
payoffs are symmetric (players are working towards the same objective). In other words, the only
difference between player 1 and player 2 is that player 1 goes first.

Examples of impartial combinatorial games are Nim, sprouts, and green hackenbush while some
other familiar games such as GO and chess are not considered impartial because the players do not
access the same set of moves (they are called partisan).
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4.2 Introduction to Nim

We will now look at the simple game of Nim, one of the most famous impartial combinatorial games
which has led to some of the biggest advances in the field of combinatorial game theory. There are
many versions of this game, but we will look at one of the most common.
Our motivation for studying the game of nim is because of the fact that all impartial combinatorial
games may be reduced to games of Nim!
The game of Nim is played as follows. There are three piles of chips containing x1, x2, and x3 chips
respectively. (It is trivial to see that x1, x2, x3 ∈ N. We denote a specific initial setup of a game
as x1, x2, x3). Two players take turns moving. Each move consists of selecting one of the piles and
removing chips from it. You may not remove chips from more than one pile in a single turn, but
from the pile you selected you may remove as many chips as desired, from one chip to the whole pile.
It is important to not that you may not skip your turn. The winner is the player who removes the
last chip.

4.3 Basic Nim Analysis

In the game of Nim, there is exactly one terminal position (a position to where if someone arrives to
it, they win), namely (0, 0, 0), which is therefore a P -position. The solution to a one-pile game of Nim
is trivial: the first player simply removes the whole pile. Any position with exactly one non-empty
pile, say (0, 0, x) with x > 0 is therefore an N -position. Consider a two-pile game of Nim. It is easy
to see that the P -positions are those for which the two piles have an equal number of chips ((0, 1, 1),
(0, 2, 2), etc). This is because if it is the opponent’s turn to move from such a position, he must change
to a position in which the two piles have an unequal number of chips, and then you can immediately
return to a position with an equal number of chips (perhaps the terminal position). If all three piles
are non-empty, the situation is more complicated. Clearly, (1, 1, 1), (1, 1, 2), (1, 1, 3) and (1, 2, 2)
are all N-positions because they can be moved to (1, 1, 0) or (0, 2, 2). The next simplest position is
(1, 2, 3) and it must be a P -position because it can only be moved to one of the previously discovered
N -positions. We may go on and discover that the next most simple P -positions are (1, 4, 5), and
(2, 4, 6), but it is difficult to see how to generalize this. In order to further analyze the game strategies
and positions in the game of Nim, we will have to utilize a concept known as the Nim sum.

4.4 Nim Sums

A vital concept to in the analysis of the game of Nim is called Nim Sum.

The Nim Sum (⊕) of two non-negative integers is their sum without ”carrying” in base 2. Let
us make this notion precise. Every non-negative integer x has a unique base 2 representation of
the form x = xm2m + xm12

m1 + + x12 + x0 for some m ∈ N, where each xi is either 0 or 1. We
use the notation (xmxm1 · · ·x1x0)2 to denote this representation of x to the base two. For example,
22 = 1 · 16 + 0 · 8 + 1 · 4 + 1 · 2 + 0 · 1 = (10110)2. The nim-sum of two integers is found by expressing
the integers to base two and using addition modulo 2 on the corresponding individual components:

Definition 3. The nim sum of (xm · · ·x0)2 and (ym · · · y0)2 is (zm · · · z0)2, and we write (xm · · ·x0)2⊕
(ym · · · y0)2 = (zm · · · z0)2, where for all k, zk = xk + yk mod 2, that is, zk = 1 if xk + yk = 1 and
zk = 0 otherwise.

For example, (10110)2 ⊕ (110011)2 = (100101)2 . This says that 22 ⊕ 51 = 37. This is easier to
see if the numbers are written vertically (we also omit the parentheses for clarity):
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22 = 101102

⊕ 51 = 1100112

nim sum = 1001012 = 37

Nim sum is associative (i.e. x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z) and commutative (i.e. x ⊕ y = y ⊕ x),
because of inheritence from addition in modulo 2. Thus, we may write x⊕ y ⊕ z without specifying
the order of addition. Furthermore, 0 is an identity for addition (0⊕ x = x), and every number is its
own negative (x⊕ x = 0), so that the cancellation law holds: x⊕ x⊕ y = x⊕ x⊕ z =⇒ y = z. (If
x⊕ y = x⊕ z, then x⊕ x⊕ y = x⊕ x⊕ z, and so y = z.)

One of the reasons that the Nim Sum is using for analyzing nim is because of the following
theorem.

Theorem 1. A position, (x1, x2, x3, · · · , xn), in n-piled Nim (a more general variation) is a P -
position if and only if the nim-sum of its components is zero, which means x1⊕x2⊕x3⊕· · ·⊕xn = 0.

A proof for this theorem will be omitted for the conservation of space.

4.5 Relating to the Crossing Game

Recall that we needed a strategy for finding out who wins on the crossing game (for Even Tri-Braid
Knots specifically). We were considering breaking our knots into separate games, thereby giving us
sums of games. A game where separate games sum nicely is Nim. We are hoping to gain some insight
into how to sum Crossing games by looking at Nim. In the game of Nim, we may ”add up” multiple
games together by taking the Nim sum of all the piles. This tells us whether the resulting game is a
P or an N position game. In a similar manner, we find what position a certain knot is by breaking
it into regions and analyzing the individual regions. This relation comes with a variation however,
due to the fact that the game of Nim is impartial with each player having the same objective. In the
crossing game, on the other hand, each player is working toward a different objective by manipulating
the knot with each move in attempt for it to become it respective ”type” (unknot or knot).
Using this tool, we will hopefully be able to further analyze the Even Tri-Braid Knots (and others)
in an attempt to determine their position.
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