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In the last presentation, we introduced the following concepts:

• N -position, P -position, K-position, and L-position link shadows

• Using a link diagram’s corresponding black and white graphs to simplify the link smoothing
game into the contraction and deletion of edges

• n-edge blowouts

• We listed a few graph properties that indicate an L-position graph

Next, we will introduce more properties of the link smoothing game being played on one of
link diagram’s respective planar graphs.

1 Lemma 1

Suppose a game is played on link shadow diagram D corresponding to connected planar graph G.
L’s final move results in an L win iff L is allowed to play on a cut edge or a loop.

Proof. By definition, a connected link diagram may only be disconnected by a smoothing at a
crossing if a nugatory crossing is present. A nugatory crossing corresponds to a loop in one graph
associated to the link diagram and a cut edge in the dual graph.

2 Lemma 2

Any independent pair of moves in a link smoothing game commutes. To be more precise, suppose
we are playing a game on embedded planar graph G corresponding to link shadow D and let e and
e’ be distinct edges in G. Then if play P (i.e. edge deletion or contraction) is performed on edge
e followed by play P ′ on edge e′, the resulting game is indistinguishable from the game produced
by performing play P ′ on edge e′ followed by playing P on e.

Proof. It is clear that the graph resulting from a sequence of edge deletions and contractions is
not dependent upon the order in which edges were deleted or contracted. (i.e. the end result is
invariant of order of contractions/deletions).

Next, we will describes classes of diagrams with the properties of being N and P position
games.

3 Theorem 1

Suppose shadow diagram D corresponds to a graph G. Let G be a graph that can be constructed
from a single vertex by a sequence of 2-edge blowouts. Then K has a winning strategy in a game
on D iff K plays second. Thus, D is a P -position game.
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Proof. We observe that if we have a 2-edge blowout from a vertex, we can undo this by deleting
an edge, and then contract the other one, or vice versa.

With this in mind, we claim that if we have a graph constructed from a single vertex, by a
sequence of 2-edge blowouts, then K has a winning strategy if K goes first.

As a reminder, K wins if we end up with any knot including the unknot, which in the graph
representation, is just a single vertex.

We proceed with the backward direction of this proof by induction.
Base Case: We start with a graph constructed from one 2-edge blowout from a vertex. We

see that if player L deletes an edge, then player K can just contract the other one, in which case,
the graph becomes a single vertex, and player K wins. If player L contracts an edge, then player
K can just delete the other one, in which case, we end up with a single vertex, which means player
K wins.

Inductive Step: We assume that if we have a graph constructed from n 2-edge blowouts
from a vertex, K has a winning strategy if K goes second.

We need to show that K has a winning strategy if we have a graph constructed from n + 1
2-edge blowouts from a vertex. We can see this is indeed the case, in that if L starts by contracting
an edge, then K can just delete the corresponding edge. If L starts by deleting an edge, then K
can just contract the other one. In both cases, we get back to the configuration of a n 2-blowouts
graph from a vertex, in which L goes first. By assumption, this is a configuration that K has a
winning strategy for if K goes first. Thus, we have shown that K has a winning strategy on a
graph constructed from 2-edge blowouts from a vertex.

To show the forward direction, it is enough to show that if K goes first, then K does not
have a winning strategy. If K starts off by deleting an edge, the L can delete the corresponding
edge, which results in the disconnection of the graph, which in the shadow diagram, translates to
the configuration being separated. If K starts by contracting an edge, then L can contract the
corresponding edge, which translates to disconnecting the shadow diagram.

Thus, we see that if K goes first, then K does not have a winning strategy, which is equivalent
to saying if K has a winning strategy, then K cannot go first.

4 Corollary 1

Suppose link shadow diagram D corresponds to graph G. Let G be a graph that can be constructed
from a single vertex by a sequence of 2-edge blowouts followed by a single 1-edge blowout. Then
K has a winning strategy iff K plays first. Thus, D is an N -position game.

Proof. If K goes first, K can contract the 1-edge blowout. In doing so, K reduces the graph into
the P -position game that was mentioned previously.

To prove the other direction, it is enough to show that if L goes first, L has a winning strategy.
In this case, if L goes first, L can delete the 1-edge blowout, which translates to the graph being
disconnected in the link shadow diagram.

There are examples where K has a winning strategy, despite the fact that the associated graphs
are not of the 2- blowout form discussed in Theorem 1 or Corollary 1. Several such examples are
pictured in Figure 1.
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Figure 1

5 Proposition 1

1. If a graph G can be constructed from a single vertex by a sequence of 2-edge blowouts, then
the following relationship between the number of vertices (v) and the number of edges (e)
in G holds.

e = 2(v − 1)

2. If a graph G can be constructed from a single vertex by a sequence of 2-edge blowouts along
with a single 1-edge blowout, then the following relationship holds.

e− 1 = 2(v − 2)

Proof. Observe that performing an n-edge blowout on a graph adds a single vertex as well as n
edges. Suppose we obtain a graph G by a sequence of 2-edge blowouts on a single vertex. Then
the graph must have n + 1 vertices and 2n edges. If we were to perform a 1-edge blowout on
the result, we would add one vertex and one edge, resulting in n + 2 vertices and 2n + 1 edges.
Together, these relationships yield the desired result.

It is a natural question to ask if graphs not satisfying these equalities must be L-position. We
answer this question with the following theorem.

6 Theorem 2

Let G be a connected, planar graph associated to a link shadow D. Let v and e denote the number
of vertices and edges, respectively, in G. If e is even and 2(v−1) 6= 6 = e, then D is an L-position
diagram.

Proof. Since e is even, we may assume L moves first on D, else L has the last move and wins.

Next, the proof will be separated into two different cases.

1.
e > 2(v − 1)

Suppose it is the case that e > 2(v−1). We prove L has a winning strategy on D by induction
on v. The assumptions above applied to the base case v = 1 gives rise to a graph G that
is a bouquet of e ≥ 2 loops. In L’s first move, she can contract a loop, thus disconnecting
the dual graph and winning. Let G be a connected planar graph with v > 1 vertices and an
even number of edges, e, such that e > 2(v − 1). Suppose L has a winning strategy on all
such graphs with fewer than v vertices. In L’s first move she can contract any edge of G,
thus resulting in a connected planar graph with v − 1 vertices and e− 1 edges. In K’s next

3



move she can either contract or delete an edge resulting in e − 2 edges and either v − 2 or
v − 1 vertices respectively. Presumably, K’s move will not disconnect the diagram, thus it
suffices to prove e− 2 > 2(v − 2− 1) and e− 2 > 2(v − 1− 1). The result, then, follows by
induction since these two inequalities follow readily from the assumption that e > 2(v − 1).

2.
e < 2(v − 1)

Next suppose e < 2(v − 1). We will prove that the dual of G, denoted G∗ with v∗ vertices
and e∗ edges, satisfies e∗ > 2(v∗ − 1). Proving this inequality holds will imply L has a
winning strategy on the shadow associated to G∗ by the argument given above, and thus, by
duality, L has a winning strategy on D. (Recall that if one of G or G∗ can be disconnected, L
wins.) The planar graph G, embedded on the sphere gives rise to a polygonal decomposition
satisfying v − e + f = 2, where f is the number of polygon faces. By definition of the dual
graph e∗ = e, v∗ = f = 2 + e− v. Thus, e < 2(v − 1) implies e∗ < 2(2 + e∗ − v∗ − 1), which
implies e∗ > 2(v∗ − 1).

From this theorem, we derive an immediate corollary for graphs with an odd number of edges.

7 Corollary 2

Let G be a connected, planar graph associated to a link shadow D. Let v and e denote the number
of vertices and edges, respectively, in G. If e is odd and e > 2v − 1 or e < 2(v − 1)− 1, then D is
an L-position shadow.

Proof. First, we note that if L moves first, L wins, so we assume that K moves first. It is easy to
verify that no move performed by K will result in a diagram such that e = 2(v − 1). Thus, after
K’s move, we must be in the situation of Theorem 2.

Figure 2 includes some examples of L-position graphs that satisfy 2(v − 1) = e.

Figure 2
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8 Figure 3

The game class of a link shadow with connected graph G having v vertices and e edges is
determined by the color of the lattice point (v,e). Red indicates an L-position graph, blue indi-
cates the existence of both N -position and L-position graphs but no P -position graphs, and yellow
indicates the existence of both P -position and L-position graphs but no N -position graphs. The
pairs (2, 1) and (1, 1) are N - position.
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