SDS Writing Up Week 1

Our topic is about Sequential Dynamical System. However, before we begin the talk, let us
play a game first. This game is called the game of life, sometimes it will just be referred as
Life. The rule is following(The following rules are cited from Wikipedia):

We have a world of an infinite two-dimensional orthogonal grid of square cells. The cells
can be in two states—either be dead or alive. We will use black color to represent the alive
cells and white color to represent the dead cells. The lives of the cells are determined by
its eight neighbors, with the following rules

1. Any live cell with fewer than two live neighbors dies, as if caused by under-population.

2. Any live cell with two or three live neighbors will still be alive.

3. Any live cell with more than three live neighbors will die, as if caused by over-
population.

4. Any dead cell with three live neighbors will be alive. We can consider that as repro-
duction.

This game will show gorgeous patterns later. However, before we go further into the game,
we find ourselves very confused because we have not yet formally encounter such problems
associating changing patterns with time. We need to introduce the concept of Dynami-
cal System to go further into the game of life. There are two types of dynamical system:
Synchronous Dynamical System and Sequential Dynamical System. There are four ba-
sic components for a Sequential Dynamical System as following(The following rules and
examples are made and cited from Henning S. Mortveit and Christian M. Reidys’ ” An
Introduction to Sequential Dynamical Systems”):

1. a finite graph Y

2. a state for each vertex v

3. a function F,,, for each vertex v
4. an update order of the vertices

The components for a Synchronous Dynamical System are almost the same as a Sequential
Dynamical System except it does not have an update order since based on its name, we
probably already guessed that a Synchronous Dynamical System means the changes happen
at the same time. In order to demonstrate the concepts of the two different systems and
the difference between the two systems, let us make two examples. First, let us look at the
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following graph, which we denoted Circy, with vertices 0,1,2,3.
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~ 'We assign each vertex a state from the set {0, 1}. We write z = {x1, 2,23, z4} as the
system states, and we will define the following function K 3 5 K:

nors(z,y,z) = (z+1)(y+1)(z +1). nor function is basically an easy way to say not or. In
our first quarter intro to higher math class, we already learned about the truth table. We
know that for or, the only case when it is false is that when all the things are false. Since it
is not or here, basically if we have one true thing this will become a false statement. Here
1 represents true and O represents false. If we have either x,y,z equals to 1, the entire thing
will become 0. If all of them equal to 0, the entire thing will become true, which is 1. Let
us defined the new function Nor as following:

Nor;: K* — k*, for 0 < i <3, by

Noro(zo, x1, T2, T3) = (nors(x3, To, T1), T1, T2, T3)

Nory(zo, z1, T2, T3) = (zo, nor3(zo, 1, T2), T2, £3)

Nory(xo, 71, T2, x3) = (%o, T1, n0r3(z1, 2, T3), T3)

Nors(zo, 21, T2, T3) = (o, T1, T2, nor3(T2, T3, To)

We also assign the ordering = = (0,1,2,3). These rules are not as complicated as they look
like. These rules are basically saying that if we have four states for the four vertices, we look
at the state of the first vertex and its neighbors, and we can determined the first vertex’s
state after update. Then, we look at the second vertex and its neighbors, and then we can
determined the second vertex’s state after the update. The update rule is that unless the
vertex and its neighbors are all Os, the vertex will turn into 0. Let us assign a initial state
for the graph. If we have the state for our above graph as z(zo, z1, Z2, z3) = (1,1,0,0), then
applying our rules, we will have:

(1,1,0,0) Y2, (0,1,0,0) X% (0,0,0,0) X2 (0,0,1,0) 7= (0,0,1,0)

We can a.lsc: use| the following gra%hs to represent the changes:
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By now we can recognize that this is a Sequential Dynamical System. We usually write the

above map as [(Nory, cires)i, (0,1,2,3)] or [Norcire,, (0,1,2,3)]. The above result then can

be written as [Noreire,, (0,1,2,3)](1,1,0,0) = (0,0, 1,0). Let me also defined the following

two terms for Sequential Dynamical System, which later I will refer as SDS. The orbit is

that if we applied a map repeatedly on a initial state, all the results until it repeats will

be called an obit. For example, on the above SDS, if we apply the map repeatedly, we will get
(1,1,0,0),(0,0,1,0),(1,0,0,0),(0,1,0,1), (0,0,0,0),(1,0,1,0),(0,0,0,1),(0,1,0, 0), and (0,0,1,0),
which then repeats. We call it an orbit. The phase space for a SDS with map [Fy, W] is a
directed graph I defined by:




v[l[] = {z € k"}
e[l] = {=, [Fy, W](z)|z € v[['}
We already heard about graph many times in class. A phase space is a graph with all the
possible states in the SDS as vertices, and its edges are connect based on the mapping of
the SDS. In other words, a phase space is a visual representation of our SDS. The phase
space for our above example is the following raph:
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In the nextf%(xample we“sﬂﬂ~ use the same nor function. However, this time we will ap-
ply all the changes at the same time. We have initial state z(xo,z1,z2,73) = (1,1,0,0).
The zg position will become 0 because it is 1. Same reason, x; will also become 0. Since
1z has z; as neighbor, z; will remain 0. Since xg is z3’s neighbor, and zg equals 1, thus z3
will remain 0. Thus, our output will become (0,0,0,0) if we use a Synchronous Dynamical
System. Last time when we used SDS the answer turned out to be (0,0,1,0). Comparing
these two examples, people have an idea about how different a SDS is from a Synchronous
Dynamical System. Now let us get back to Life. Traditionally this game is a Synchronous
Dynamical System. Just reminding the audience, I will list out the rules again here. The
rules for the game of life is that 1. Any live cell with fewer than two live neighbors dies.
2.Any live cell with two or three live neighbors will still be alive. 3.Any live cell with more
than three live neighbors will dig. 4.Any dead cell with three live neighbors will be alive.
As the beginning says, we will set black color as alive and white color as dead. Let us have
a 9 x 9 grid with the following initial state:

Apply the game of life rules, we will have:

Now we have a good undérstanding ‘Of the rules of the game of life. Next we want to
introduce many interesting patterns in the game of life. Some of the patterns are still not
fully understood by mathematicians. Also, we will talk about a concept that is closely
related to the game of life — cellular automaton.



