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First, let’s preview what mutually orthogonal Latin squares are. Two Latin squares

L1 = [aij ] and L2 = [bij ] on symbols {1, 2, ...n}, are said to be orthogonal if every ordered
pair of symbols occurs exactly once among the n2 pairs (aij , bij), 1 ≤ i ≤ n, 1 ≤ j ≤ n.

Now, let me introduce a related concept which is called transversal. A transversal of
a Latin square is a set of n distinct entries such that no two entries share the same row,
column or symbol.

This is an example of mutually orthogonal latin squares.
L1= 2 3 1

1 2 3
3 1 2


L2= 2 1 3

1 3 2
3 2 1


We have (2,2), (3,1), (1,3), (1,1), (2,3), (3,2), (3,3), (1,2), (2,1)

Theorem 1. A Latin square has an orthogonal mate if and only if it can be decomposed
into n disjoint transversal.

If we consider the exactly n cells of the Latin square L2 all of which contain the same
fixed entry h say(1 ≤ h ≤ n), then the entries in the corresponding cells of the Latin square
L1 must all be different, otherwise the squares would not be orthogonal. Since the symbol
h occurs exactly once in each row and column of the latin square L2, we see that the n
entries of L1 corresponding to the entry h in L2 is a transversal.

Orthogonal latin squares exist for all orders n /∈ {2, 6}. For n=6, there is no pair
of orthogonal squares, but we get close. We have an example which contain 4 disjoint
transversals. 

1a 2 3b 4c 5 6d
2c 1d 6 5b 4a 3
3 4b 1 2d 6c 5a
4 6a 5c 1 3d 2b
5d 3c 2a 6 1b 4
6b 5 4d 3a 2 1c


Partial Latin Square
Partial latin square of order n is a matrix of order n in which each cell is either blank or

contains one of {1, 2, ..., n}, and which has the property that no symbol occurs twice within
any row or column. A cell which is not blank is said to be filled. A partial latin square with



every cell filled is call latin square. The set of partial latin squares of order n is denotes by
PLS(n), and the set of latin squares of order n by LS(n). We say P1 ∈ PLS(n) is said to
be completable if there is some L ∈ LS(n) such that L contains P. On the other hand, P is
said to be maximal if the only partial latin square which contains P is P itself.

We coin the name k-plex of order n for a K ∈ PLS(n) in which each row and column of
K contains exactly k filled cells and each symbol occurs exactly k times in K. The entries
on a transversal of a latin square form a 1-plex.

We say that two plexes in the same square is parallel if they have no filled cells in
common. The union of an a-plex and a parallel b-plex of a latin square L is an (a+b)-plex
of L. However it is not in general possible to split an (a + b)-plex into an a-plex and a
parallel b-plex.

Next, let me present a few theorems about the k-plex:
Theorem 1. If n > 2 then there exists L ∈ LS(n) which contains a k-plex for each k

satisfying 0 ≤ k ≤ n.
Proof: If n > 2 and n 6= 6, a celebrated result says that there are two orthogonal latin

squares of order n. So there will be transversal in the latin square, then there will at least
be 1-plex in the latin square. For n = 6 there is no pair of orthogonal squares, however
we found a latin square order 6 which contains 4 parallel transversals that I talked about
before. What we just proved is that if 0 k n and n ¿ 2 then there is a completable k-plex
of order n. However, our next result shows that not all k-plexes are completable.

Theorem 2. If 1 < k < n and k > n
4 there exists an uncompletable k-plex of order n.

Theorem 3. For k ≤ n
4 every k-plex of order n is contained in a (k + 1)− plex of order

4n.
Author:Yianhuang

1 Introduction

In this presentation, I’m going to introduce the concept of Latin Rectangle and the counting
of 2× n latin rectangle.

2 latin rectangle L = lij

For 1 ≤ k ≤ n, k x n latin rectangle is the k× n array L = lij with entries from {1, 2, ..., n}
such that the entries in each row and each column are distinct.
For k=2, a 2 x n latin rectangle is the 2×n array L = lij with entries from {1, 2, ..., n} such
that the entries in each row and each column are distinct.
We can also say a k × n latin rectangle part of n× n latin square.

3 reduced latin rectangle Rij

We say Rij is reduced latin rectangle if The first row is (1, 2, ....n) and the first column is

(1, 2, ....n)T . For instance, this is considered a reduced latin rectangle.

1 2 3 4

2 4 1 3

3 1 4 2



For Reduced Latin Rectangle, we have some very interesting things to talk about. But
today I’m going to discuss a reduced Latin Rectangle in a 2× n form, which is like:
1 2 3 4

2 4 1 3

The cool thing of a reduced latin rectangle is once we find all possible latin rectangle
to a reduced latin rectangle, we can us Permutation to find all possible latin rectangles!
For instance, for a 2x3 latin rectangle we can easily know there are basically 2 types of
reduced latin rectangles which are:
1 2 3

2 3 1
and

1 2 3

3 1 2

And if written as tuples, there are six permutations of the set {1, 2, 3}, namely: (1,2,3),
(1,3,2), (2,1,3), (2,3,1), (3,1,2), and (3,2,1), which means we can substitute with any of its
6 permutations all permutations have 2 types of reduced latin rectangles. In this case, if we
substitute {1, 2, 3} with {1, 3, 2} we get new latin rectangles!
1 3 2

3 2 1
and

1 3 2

3 1 2

And since we have 6 of such permutations, we can say we have 6 × 2 = 12 3 × 2 Latin
Rectangles in total. In general, for a 2×n Latin Rectangle, since we have n! permutations,
the possible Latin rectangle Lij is n!Rij

4 number of 2× n reduced latin rectangles

For 2× n latin rectangles, since we’ve already know once we find the total number of Rij,
we can find the total number of latin rectangle Lij.

To count Rij, our easy way is by using bijection:

In below 2× 3 case, we can easily ”draw” all the possibilities and we can eventually find 2
graphs.

In below 2× 4 case, after we randomly link 2 vertexes together, we find a pattern in which
is very similar to the 2 × 3 case but for each bijection due to the 1 number difference, we
can draw 3 kind of graphs, so the whole number of latin rectangle after we link 2 vertexes
together is 3 and since we can randomly like give 3 kinds of first random vertexes link, all
the possibilities and we can eventually find is 3× 3 = 9 graphs.

when we come to 2 × 5 case, after we randomly link 2 vertexes together, like what we
just did to 4, we find a pattern in which is very similar to the 2× 4 case but for each bijec-
tion due to the 1 number difference, we can draw 4 this kind of of graphs, and in each of the
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graph, when we continue to randomly link 2 vertexes together, we find 2 kinds of graphs,
one kind is a 2 × 3 latin rectangle and the other kind is 3 latin rectangle that appears in
the 2 × 4 case. Then we notice a interesting pattern: which is the number of 2 × 5 latin
rectangle is (n-1) times number of 2 × 3 and 2 × 4 latin rectangle. This is all what this
class is going to talk about. The next class I’ m going to discuss how to solve this equation:
Nn = (n− 1)(Nn−1 + Nn−2)
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