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First, let’s preview what mutually orthogonal Latin squares are. Two Latin squares
L1 = [a;5] and Lo = [b;;] on symbols {1,2,...n}, are said to be orthogonal if every ordered
pair of symbols occurs exactly once among the n? pairs (@ij,bij), 1 <i<mn,1<j<n.

Now, let me introduce a related concept which is called transversal. A transversal of
a Latin square is a set of n distinct entries such that no two entries share the same row,
column or symbol.

This is an example of mutually orthogonal latin squares.

L=
2 3 1
123
31 2

Ly=
2 1 3
13 2
321

We have (2,2), (3,1), (1,3), (1,1), (2,3), (3,2), (3,3), (1,2), (2,1)

Theorem 1. A Latin square has an orthogonal mate if and only if it can be decomposed
into n disjoint transversal.

If we consider the exactly n cells of the Latin square Lo all of which contain the same
fixed entry h say(1 < h < n), then the entries in the corresponding cells of the Latin square
L1 must all be different, otherwise the squares would not be orthogonal. Since the symbol
h occurs exactly once in each row and column of the latin square Lo, we see that the n
entries of Ly corresponding to the entry h in Lo is a transversal.

Orthogonal latin squares exist for all orders n ¢ {2,6}. For n=6, there is no pair
of orthogonal squares, but we get close. We have an example which contain 4 disjoint
transversals.
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Partial Latin Square

Partial latin square of order n is a matrix of order n in which each cell is either blank or
contains one of {1,2,...,n}, and which has the property that no symbol occurs twice within
any row or column. A cell which is not blank is said to be filled. A partial latin square with



every cell filled is call latin square. The set of partial latin squares of order n is denotes by
PLS(n), and the set of latin squares of order n by LS(n). We say P; € PLS(n) is said to
be completable if there is some L € LS(n) such that L contains P. On the other hand, P is
said to be maximal if the only partial latin square which contains P is P itself.

We coin the name k-plex of order n for a K € PLS(n) in which each row and column of
K contains exactly k filled cells and each symbol occurs exactly k times in K. The entries
on a transversal of a latin square form a 1-plex.

We say that two plexes in the same square is parallel if they have no filled cells in
common. The union of an a-plex and a parallel b-plex of a latin square L is an (a+b)-plex
of L. However it is not in general possible to split an (a + b)-plex into an a-plex and a
parallel b-plex.

Next, let me present a few theorems about the k-plex:

Theorem 1. If n > 2 then there exists L € LS(n) which contains a k-plex for each k
satisfying 0 < k < n.

Proof: If n > 2 and n # 6, a celebrated result says that there are two orthogonal latin
squares of order n. So there will be transversal in the latin square, then there will at least
be 1-plex in the latin square. For n = 6 there is no pair of orthogonal squares, however
we found a latin square order 6 which contains 4 parallel transversals that I talked about
before. What we just proved is that if 0 k n and n ; 2 then there is a completable k-plex
of order n. However, our next result shows that not all k-plexes are completable.

Theorem 2. If 1 <k <n and k > 7 there exists an uncompletable k-plex of order n.

Theorem 3. For k < % every k-plex of order n is contained in a (k + 1) — plex of order
4n.

Author:Yianhuang

1 Introduction

In this presentation, I'm going to introduce the concept of Latin Rectangle and the counting
of 2 x n latin rectangle.

2 latin rectangle L = [;;

For 1 < k <n, k x n latin rectangle is the k x n array L = [;; with entries from {1,2,...,n}
such that the entries in each row and each column are distinct.

For k=2, a 2 x n latin rectangle is the 2 x n array L = [;; with entries from {1, 2, ...,n} such
that the entries in each row and each column are distinct.

We can also say a k x n latin rectangle part of n x n latin square.

3 reduced latin rectangle R;j

We say R;j is reduced latin rectangle if The first row is (1,2, ....n) and the first column is
1121314
(1,2,...n)T. For instance, this is considered a reduced latin rectangle. | 2[4 |1 |3
3|1]4]|2




For Reduced Latin Rectangle, we have some very interesting things to talk about. But

today I'm going to discuss a reduced Latin Rectangle in a 2 x n form, which is like:
11234
2141113

The cool thing of a reduced latin rectangle is once we find all possible latin rectangle
to a reduced latin rectangle, we can us Permutation to find all possible latin rectangles!
For instance, for a 2x3 latin rectangle we can easily know there are basically 2 types of
reduced latin rectangles which are:

11213 11213

5131113712

And if written as tuples, there are six permutations of the set {1,2,3}, namely: (1,2,3),
(1,3,2), (2,1,3), (2,3,1), (3,1,2), and (3,2,1), which means we can substitute with any of its
6 permutations all permutations have 2 types of reduced latin rectangles. In this case, if we
substitute {1, 2,3} with {1, 3,2} we get new latin rectangles!

1132 1132

s (1™ 3T

And since we have 6 of such permutations, we can say we have 6 x 2 = 12 3 x 2 Latin
Rectangles in total. In general, for a 2 x n Latin Rectangle, since we have n! permutations,
the possible Latin rectangle L;j is n!R;j

4 number of 2 X n reduced latin rectangles

For 2 x n latin rectangles, since we’ve already know once we find the total number of R;j,
we can find the total number of latin rectangle L;j.

To count R;j, our easy way is by using bijection:

In below 2 x 3 case, we can easily "draw” all the possibilities and we can eventually find 2
graphs.

In below 2 x 4 case, after we randomly link 2 vertexes together, we find a pattern in which
is very similar to the 2 x 3 case but for each bijection due to the 1 number difference, we
can draw 3 kind of graphs, so the whole number of latin rectangle after we link 2 vertexes
together is 3 and since we can randomly like give 3 kinds of first random vertexes link, all
the possibilities and we can eventually find is 3 X 3 = 9 graphs.

when we come to 2 X 5 case, after we randomly link 2 vertexes together, like what we
just did to 4, we find a pattern in which is very similar to the 2 x 4 case but for each bijec-
tion due to the 1 number difference, we can draw 4 this kind of of graphs, and in each of the



graph, when we continue to randomly link 2 vertexes together, we find 2 kinds of graphs,
one kind is a 2 x 3 latin rectangle and the other kind is 3 latin rectangle that appears in
the 2 x 4 case. Then we notice a interesting pattern: which is the number of 2 x 5 latin
rectangle is (n-1) times number of 2 x 3 and 2 x 4 latin rectangle. This is all what this
class is going to talk about. The next class I’ m going to discuss how to solve this equation:
Np=(n—1)(Np—1 4+ Np—2)









