Latin Squares: Transversals and counting of Latin squares
 Jenny Zhang, Yian Huang
 February 22, 2015

Author: Jenny Zhang
First, let's preview what mutually orthogonal Latin squares are. Two Latin squares $L_{1}=\left[a_{i j}\right]$ and $L_{2}=\left[b_{i j}\right]$ on symbols $\{1,2, \ldots n\}$, are said to be orthogonal if every ordered pair of symbols occurs exactly once among the n^{2} pairs ($a_{i j}, b_{i j}$), $1 \leq i \leq n, 1 \leq j \leq n$.

Now, let me introduce a related concept which is called transversal. A transversal of a Latin square is a set of n distinct entries such that no two entries share the same row, column or symbol.

This is an example of mutually orthogonal latin squares.
$L_{1}=$

$$
\left[\begin{array}{lll}
2 & 3 & 1 \\
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right]
$$

$L_{2}=$

$$
\left[\begin{array}{lll}
2 & 1 & 3 \\
1 & 3 & 2 \\
3 & 2 & 1
\end{array}\right]
$$

We have $(2,2),(3,1),(1,3),(1,1),(2,3),(3,2),(3,3),(1,2),(2,1)$
Theorem 1. A Latin square has an orthogonal mate if and only if it can be decomposed into n disjoint transversal.

If we consider the exactly n cells of the Latin square L_{2} all of which contain the same fixed entry $\mathrm{h} \operatorname{say}(1 \leq h \leq n)$, then the entries in the corresponding cells of the Latin square L_{1} must all be different, otherwise the squares would not be orthogonal. Since the symbol h occurs exactly once in each row and column of the latin square L_{2}, we see that the n entries of L_{1} corresponding to the entry h in L_{2} is a transversal.

Orthogonal latin squares exist for all orders $n \notin\{2,6\}$. For $\mathrm{n}=6$, there is no pair of orthogonal squares, but we get close. We have an example which contain 4 disjoint transversals.

$$
\left[\begin{array}{cccccc}
1_{a} & 2 & 3_{b} & 4_{c} & 5 & 6_{d} \\
2_{c} & 1_{d} & 6 & 5_{b} & 4_{a} & 3 \\
3 & 4_{b} & 1 & 2_{d} & 6_{c} & 5_{a} \\
4 & 6_{a} & 5_{c} & 1 & 3_{d} & 2_{b} \\
5_{d} & 3_{c} & 2_{a} & 6 & 1_{b} & 4 \\
6_{b} & 5 & 4_{d} & 3_{a} & 2 & 1_{c}
\end{array}\right]
$$

Partial Latin Square
Partial latin square of order n is a matrix of order n in which each cell is either blank or contains one of $\{1,2, \ldots, n\}$, and which has the property that no symbol occurs twice within any row or column. A cell which is not blank is said to be filled. A partial latin square with
every cell filled is call latin square. The set of partial latin squares of order n is denotes by $P L S(n)$, and the set of latin squares of order n by $L S(n)$. We say $P_{1} \in P L S(n)$ is said to be completable if there is some $L \in L S(n)$ such that L contains P . On the other hand, P is said to be maximal if the only partial latin square which contains P is P itself.

We coin the name k-plex of order n for a $K \in P L S(n)$ in which each row and column of K contains exactly k filled cells and each symbol occurs exactly k times in K. The entries on a transversal of a latin square form a 1-plex.

We say that two plexes in the same square is parallel if they have no filled cells in common. The union of an a-plex and a parallel b-plex of a latin square L is an ($a+b$)-plex of L. However it is not in general possible to split an $(a+b)$-plex into an a-plex and a parallel b-plex.

Next, let me present a few theorems about the k-plex:
Theorem 1. If $n>2$ then there exists $L \in L S(n)$ which contains a k -plex for each k satisfying $0 \leq k \leq n$.

Proof: If $n>2$ and $n \neq 6$, a celebrated result says that there are two orthogonal latin squares of order n. So there will be transversal in the latin square, then there will at least be 1-plex in the latin square. For $\mathrm{n}=6$ there is no pair of orthogonal squares, however we found a latin square order 6 which contains 4 parallel transversals that I talked about before. What we just proved is that if 0 k n and n , 2 then there is a completable k -plex of order n . However, our next result shows that not all k-plexes are completable.

Theorem 2. If $1<k<n$ and $k>\frac{n}{4}$ there exists an uncompletable k -plex of order n .
Theorem 3. For $k \leq \frac{n}{4}$ every k-plex of order n is contained in a $(k+1)-$ plex of order $4 n$.

Author:Yianhuang

1 Introduction

In this presentation, I'm going to introduce the concept of Latin Rectangle and the counting of $2 \times n$ latin rectangle.

2 latin rectangle $L=l_{i j}$

For $1 \leq k \leq n, \mathrm{k} \mathrm{x} \mathrm{n}$ latin rectangle is the $k \times n$ array $L=l_{i j}$ with entries from $\{1,2, \ldots, n\}$ such that the entries in each row and each column are distinct.
For $\mathrm{k}=2$, a 2 x n latin rectangle is the $2 \times n$ array $L=l_{i j}$ with entries from $\{1,2, \ldots, n\}$ such that the entries in each row and each column are distinct.
We can also say a $k \times n$ latin rectangle part of $n \times n$ latin square.

3 reduced latin rectangle $R_{i} j$

We say $R_{i} j$ is reduced latin rectangle if The first row is $(1,2, \ldots . n)$ and the first column is

$(1,2, \ldots . n)^{T}$. For instance, this is considered a reduced latin rectangle. | 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- |
| 2 | 4 | 1 | 3 |
| 3 | 1 | 4 | 2 |

For Reduced Latin Rectangle, we have some very interesting things to talk about. But today I'm going to discuss a reduced Latin Rectangle in a $2 \times n$ form, which is like:

1	2	3	4
2	4	1	3

The cool thing of a reduced latin rectangle is once we find all possible latin rectangle to a reduced latin rectangle, we can us Permutation to find all possible latin rectangles! For instance, for a 2 x 3 latin rectangle we can easily know there are basically 2 types of reduced latin rectangles which are:

1	2	3				
2	3	1	and	1	2	3
:---	:---	:---				
3	1	2				

And if written as tuples, there are six permutations of the set $\{1,2,3\}$, namely: $(1,2,3)$, $(1,3,2),(2,1,3),(2,3,1),(3,1,2)$, and $(3,2,1)$, which means we can substitute with any of its 6 permutations all permutations have 2 types of reduced latin rectangles. In this case, if we substitute $\{1,2,3\}$ with $\{1,3,2\}$ we get new latin rectangles!

1	3	2				
3	2	1	and	1	3	2
:---	:---	:---				
3	1	2				

And since we have 6 of such permutations, we can say we have $6 \times 2=123 \times 2$ Latin Rectangles in total. In general, for a $2 \times n$ Latin Rectangle, since we have $n!$ permutations, the possible Latin rectangle $L_{i} j$ is $n!R_{i} j$

4 number of $2 \times n$ reduced latin rectangles

For $2 \times n$ latin rectangles, since we've already know once we find the total number of $R_{i} j$, we can find the total number of latin rectangle $L_{i} j$.

To count $R_{i} j$, our easy way is by using bijection:
In below 2×3 case, we can easily "draw" all the possibilities and we can eventually find 2 graphs.

In below 2×4 case, after we randomly link 2 vertexes together, we find a pattern in which is very similar to the 2×3 case but for each bijection due to the 1 number difference, we can draw 3 kind of graphs, so the whole number of latin rectangle after we link 2 vertexes together is 3 and since we can randomly like give 3 kinds of first random vertexes link, all the possibilities and we can eventually find is $3 \times 3=9$ graphs.
when we come to 2×5 case, after we randomly link 2 vertexes together, like what we just did to 4 , we find a pattern in which is very similar to the 2×4 case but for each bijection due to the 1 number difference, we can draw 4 this kind of of graphs, and in each of the

graph, when we continue to randomly link 2 vertexes together, we find 2 kinds of graphs, one kind is a 2×3 latin rectangle and the other kind is 3 latin rectangle that appears in the 2×4 case. Then we notice a interesting pattern: which is the number of 2×5 latin rectangle is ($\mathrm{n}-1$) times number of 2×3 and 2×4 latin rectangle. This is all what this class is going to talk about. The next class I' m going to discuss how to solve this equation: $N_{n}=(n-1)\left(N_{n-1}+N_{n-2}\right)$

