
Math 94 Professor: Padraic Bartlett

Lecture 10: Everything Else

Week 10 UCSB 2015

This is the tenth week of the Mathematics Subject Test GRE prep course; here, we
quickly review a handful of useful concepts from the fields of probability, combinatorics,
and set theory!

As always, each of these fields are things you could spend years studying; we present
here a few very small slices of each topic that are particularly key to each.

1 A Crash Course in Set Theory

Sets are, in a sense, what mathematics are founded on. For the GRE, much of the intricate
parts of set theory (the axioms of set theory, the axiom of choice, etc.) aren’t particularly
relevant; instead, most of what we need to review is simply the language and notation
for set theory.

Definition. A set S is simply any collection of elements. We denote a set S by its elements,
which we enclose in a set of parentheses. For example, the set of female characters in
Measure for Measure is

{Isabella, Mariana, Juliet, Francisca}.

Another way to describe a set is not by listing its elements, but by listing its properties.
For example, the even integers greater than π can be described as follows:

{x | π < x, x ∈ Z, 2 divides x}.

Definition. If we have two sets A,B, we write A ⊆ B if every element of A is an element
of B. For example, Z ⊆ R.

Definition. A specific set that we often care about is the empty set, ∅ i.e. the set con-
taining no elements. One particular quirk of the empty set is that any statement of the
form ∀x ∈ ∅ . . . will always be vacuously true, as it is impossible to disprove (as we disprove
∀ claims by using ∃ quantifiers!) For example, the statement “every element of the empty
set is delicious” is true. Dumb, but true!

Some other frequently-occurring sets are the open intervals (a, b) = {x | x ∈ R, a < x <
b} and closed intervals [a, b] = {x | x ∈ R, a ≤ x ≤ b}.

Definition. Given two sets A,B, we can form several other particularly useful sets:

• The difference of A and B, denoted A−B or A\B. This is the set {x | x ∈ A, x /∈ B}.

• The intersection of A and B, denoted A ∩B, is the set {x | x ∈ A and x ∈ B}.

• The union ofA andB, denotedA∪B, is the set {x | x ∈ A or x ∈ B, or possibly both.}.

1



• The cartesian product of A and B, denoted A × B, is the set of all ordered pairs
of the form (a, b); that is, {(a, b) | a ∈ A, b ∈ B}.

• Sometimes, we will have some larger set B (like R) out of which we will be picking
some subset A (like [0, 1].) In this case, we can form the complement of A with
respect to B, namely Ac = {b ∈ B | b /∈ A}.

With the concept of a set defined, we can define functions as well:

Definition. A function f with domain A and codomain B, formally speaking, is a collec-
tion of pairs (a, b), with a ∈ A and b ∈ B, such that there is exactly one pair (a, b) for every
a ∈ A. More informally, a function f : A→ B is just a map which takes each element in A
to some element of B.

Examples.

• f : Z→ N given by f(n) = 2|n|+ 1 is a function.

• g : N→ N given by f(n) = 2|n|+ 1 is also a function. It is in fact a different function
than f , because it has a different domain!

• The function h depicted below by the three arrows is a function, with domain {1, λ, ϕ}
and codomain {24, γ, Batman} :

1

##

24

λ

;;

γ

ϕ

??

Batman

This may seem like a silly example, but it’s illustrative of one key concept: functions are
just maps between sets! Often, people fall into the trap of assuming that functions
have to have some nice “closed form” like x3 − sin(x) or something, but that’s not true!
Often, functions are either defined piecewise, or have special cases, or are generally fairly
ugly/awful things; in these cases, the best way to think of them is just as a collection of
arrows from one set to another, like we just did above.

Functions have several convenient properties:

Definition. We call a function f injective if it never hits the same point twice – i.e. for
every b ∈ B, there is at most one a ∈ A such that f(a) = b.

Example. The function h from before is not injective, as it sends both λ and ϕ to 24:
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1

##

24

λ

;;

γ

ϕ

??

Batman

However, if we add a new element π to our codomain, and make ϕ map to π, our function
is now injective, as no two elements in the domain are sent to the same place:

1

##

24

λ

;;

γ

ϕ

**

Batman

π

Definition. We call a function f surjective if it hits every single point in its codomain –
i.e. if for every b ∈ B, there is at least one a ∈ A such that f(a) = b.

Alternately: define the image of a function as the collection of all points that it maps
to. That is, for a function f : A → B, define the image of f , denoted f(A), as the set
{b ∈ B | ∃a ∈ A such that f(a) = b}.

Then a surjective function is any map whose image is equal to its codomain: i.e. f :
A→ B is surjective if and only if f(A) = B.

Example. The function h from before is not injective, as it doesn’t send anything to
Batman:

1

##

24

λ

;;

γ

ϕ

??

Batman

However, if we add a new element ρ to our domain, and make ρ map to Batman, our
function is now surjective, as it hits all of the elements in its codomain:
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1

##

24

λ

;;

γ

ϕ

??

Batman

ρ

CC

Definition. A function is called bijective if it is injective and surjective.

Definition. We say that two sets A,B are the same size (formally, we say that they are of
the same cardinality,) and write |A| = |B|, if and only if there is a bijection f : A→ B.

Not all sets are the same size:

Observation. If A,B are a pair of finite sets that contain different numbers of elements,
then |A| 6= |B|.

If A is a finite set and B is infinite, then |A| 6= |B|.
If A is an infinite set such that there is a bijection A → N, call A countable. If A is

countable and B is a set that has a bijection to R, then |A| 6= |B|.

We can use this notion of size to make some more definitions:

Definition. We say that |A| ≤ |B| if and only if there is an injection f : A→ B. Similarly,
we say that |A| ≥ |B| if and only if there is a surjection f : A→ B.

This motivates the following theorem:

Theorem. (Cantor-Schröder-Bernstein): Suppose that A,B are two sets such that there
are injective functions f : A → B, g : B → A. Then |A| = |B|; i.e. there is some bijection
h : A→ B.

2 A Crash Course in Combinatorics

Combinatorics, very loosely speaking, is the art of how to count things. For the GRE, a
handful of fairly simple techniques will come in handy:

• (Multiplication principle.) Suppose that you have a set A, each element ~a of which
can be broken up into n ordered pieces (a1, . . . an). Suppose furthermore that the i-th
piece has ki total possible states for each i, and that our choices for the i-th stage do
not interact with our choices for any other stage. Then there are

k1 · k2 · . . . · kn =
n∏
i=1

ki

total elements in A.

To give an example, consider the following problem:
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Problem. Suppose that we have n friends and k different kinds of postcards (with
arbitrarily many postcards of each kind.) In how many ways can we mail out all of
our postcards to our friends?

A valid “way” to mail postcards to friends is some way to assign each friend to a
postcard, so that each friend is assigned to at least at least one postcard (because
we’re mailing each of our friends a postcard) and no friend is assigned to two different
postcards at the same time. In other words, a “way” to mail postcards is just a
function from the set1 [n] = {1, 2, 3, . . . n} of postcards to our set [k] = {1, 2, 3, . . . k}
of friends!

In other words, we want to find the size of the following set:

A =
{

all of the functions that map [n] to [k]
}
.

We can do this! Think about how any function f : [n]→ [k] is constructed. For each
value in [n] = {1, 2, . . . n}, we have to pick exactly one value from [k]. Doing this for
each value in [n] completely determines our function; furthermore, any two functions
f, g are different if and only if there is some value m ∈ [n] at which we made a different
choice (i.e. where f(m) 6= g(m).)

k choices · k choices · . . . · k choices︸ ︷︷ ︸
n total slots

Consequently, we have

k · k · . . . · k︸ ︷︷ ︸
n

= kn

total ways in which we can construct distinct functions. This gives us this answer kn

to our problem!

• (Summation principle.) Suppose that you have a set A that you can write as the
union2of several smaller disjoint3 sets A1, . . . An.

Then the number of elements in A is just the summed number of elements in the Ai
sets. If we let |S| denote the number of elements in a set S, then we can express this
in a formula:

|A| = |A1|+ |A2|+ . . .+ |An|.

We work one simple example:

1Some useful notation: [n] denotes the collection of all integers from 1 to n, i.e. {1, 2, . . . n}.
2Given two sets A,B, we denote their union, A ∪ B, as the set containing all of the elements in either

A or B, or both. For example, {2} ∪ {lemur} = {2, lemur}, while {1, α} ∪ {α,lemur} = {1, α, lemur}.
3Sets are called disjointif they haven no elements in common. For example, {2} and {lemur} are disjoint,

while {1, α} and {α,lemur} are not disjoint.
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Question 1. Pizzas! Specifically, suppose Pizza My Heart (a local chain/ great pizza
place) has the following deal on pizzas: for 7$, you can get a pizza with any two
different vegetable toppings, or any one meat topping. There are m meat choices and
v vegetable choices. As well, with any pizza you can pick one of c cheese choices.

How many different kinds of pizza are covered by this sale?

Using the summation principle, we can break our pizzas into two types: pizzas with
one meat topping, or pizzas with two vegetable toppings.

For the meat pizzas, we have m · c possible pizzas, by the multiplication principle (we
pick one of m meats and one of c cheeses.)

For the vegetable pizzas, we have
(
v
2

)
·c possible pizzas (we pick two different vegetables

out of v vegetable choices, and the order doesn’t matter in which we choose them; we
also choose one of c cheeses.)

Therefore, in total, we have c ·
(
m+

(
v
2

))
possible pizzas!

• (Double-counting principle.) Suppose that you have a set A, and two different
expressions that count the number of elements in A. Then those two expressions are
equal.

Again, we work a simple example:

Question 2. Without using induction, prove the following equality:

n∑
i=1

i =
n(n+ 1)

2

First, make a (n+ 1)× (n+ 1) grid of dots:

n+1

n+1

How many dots are in this grid? On one hand, the answer is easy to calculate: it’s
(n+ 1) · (n+ 1) = n2 + 2n+ 1.

On the other hand, suppose that we group dots by the following diagonal lines:
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n+1

n+1

The number of dots in the top-left line is just one; the number in the line directly
beneath that line is two, the number directly beneath that line is three, and so on/so
forth until we get to the line containing the bottom-left and top-right corners, which
contains n+ 1 dots. From there, as we keep moving right, our lines go down by one in
size each time until we get to the line containing only the bottom-right corner, which
again has just one point.

So, if we use the summation principle, we have that there are

1 + 2 + 3 + . . .+ (n− 1) + n+ (n+ 1) + n+ (n− 1) + . . .+ 3 + 2 + 1

points in total.

Therefore, by our double-counting principle, we have just shown that

n2 + 2n+ 1 = 1 + 2 + 3 + . . .+ (n− 1) + n+ (n+ 1) + n+ (n− 1) + . . .+ 3 + 2 + 1.

Rearranging the right-hand side using summation notation lets us express this as

n2 + 2n+ 1 = (n+ 1) + 2
n∑
i=1

i;

subtracting n+ 1 from both sides and dividing by 2 gives us finally

n2 + n

2
=

n∑
i=1

i,

which is our claim!

• (Pigeonhole principle, simple version): Suppose that kn + 1 pigeons are placed into
n pigeonholes. Then some hole has at least k + 1 pigeons in it. (In general, replace
“pigeons” and “pigeonholes” with any collection of objects that you’re placing in
various buckets.)

We look at an example:

Question 3. Suppose that “friendship” is4 a symmetric relation: i.e. that whenever
a person A is friends with a person B, B is also friends with A. Also, suppose that
you are never friends with yourself5 (i.e. that friendship is antireflexive.)

4Magic!
5Just for this problem. Be friends with yourself in real life.
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Then, in any set S of greater than two people, there are at least two people with the
same number of friends in S.

Let |S| = n. Then every person in S has between 0 and n−1 friends in S. Also notice
that we can never simultaneously have one person with 0 friends and one person with
n− 1 friends at the same time, because if someone has n− 1 friends in S, they must
be friends with everyone besides themselves.

Therefore, each person has at most n− 1 possible numbers of friends, and there are n
people total: by the pigeonhole principle, if we think of people as the “pigeons” and
group them by their numbers of friends (i.e. the “pigeonholes” are this grouping by
numbers of friends,) there must be some pair of people whose friendship numbers are
equal.

Some sorts of sets are very frequently counted:

• If we have a set of n objects, there are n! = n · (n − 1) · . . . · 1 many ways to order
this set. For example, the set {a, b, c} has 3! = 6 orderings:

abc, acb, bac, bca, cab, cba.

• Suppose that we have a set of n objects, and we want to pick k of them without
repetition in order. Then there are n · (n− 1) · . . . · (n− (k + 1) many ways to choose
them: we have n choices for the first, n−1 for the second, and so on/so forth until our
k-th choice (for which we have n− (k+1) choices.) We can alternately express this as
n!

(n−k)! ; you can see this algebraically by dividing n! by k!, or conceptually by thinking

our our choice process as actually ordering all n elements (the n! in our fraction) and
then forgetting about the ordering on all of the elements after the first k, as we didn’t
pick them (this divides by (n− k)!.)

• Suppose that we have a set of n objects, and we want to pick k of them without
repetition and without caring about the order in which we pick these k elements.
Then there are n!

k!(n−k)! many ways for this to happen. We denote this number as the

binomial coefficient
(
n
k

)
.

• Finally, suppose that we have a set of n objects, and we want to pick k of them, where
we can pick an element multiple times (i.e. with repetition.) Then there are nk many
ways to do this, by our multiplication principle from before.

3 A Crash Course in Probability

We give the basics of probability here.

Definition. A finite probability space consists of two things:

• A finite set Ω.
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• A measure Pr on Ω, such that Pr(Ω) = 1. In case you haven’t seen this before,
saying that Pr is a measure is a way of saying that Pr is a function P(Ω)→ R+, such
that the following properties are satisfied:

– Pr(∅) = 0.

– For any collection {Xi}∞i=1 of subsets of Ω, Pr

( ∞⋃
i=1

Xi

)
≤

n∑
i=1

Pr(Xi).

– For any collection {Xi}∞i=1 of disjoint subsets of Ω, Pr

( ∞⋃
i=1

Xi

)
=

n∑
i=1

Pr(Xi).

For a general probability space, i.e. one that may not be finite, the definition is almost
completely the same: the only difference is that Ω is not restricted to be finite, while Pr
becomes a function defined only on the “measurable” subsets of Ω. (For the GRE, you can
probably assume that any set you run into is “measurable.” There are some pathological
constructions in set theory that can be nonmeasurable; talk to me to learn more about
these!)

For example, one probability distribution on Ω = {1, 2, 3, 4, 5, 6} could be the distri-
bution that believes that Pr({i}) = 1/6 for each individual i, and more generally that
Pr(S) = |S|/6 for any subset S of Ω. In this sense, this probability distribution is captur-
ing the idea of rolling a fair six-sided die, and seeing what comes up.

This sort of “fair” distribution has a name: namely, the uniform distribution!

Definition. The uniform distribution on a finite space Ω is the probability space that
assigns the measure |S|/|Ω| to every subset S of Ω. In a sense, this measure thinks that
any two elements in Ω are “equally likely;” think about why this is true!

We have some useful notation and language for working with probability spaces:

Definition. An event S is just any subset of a probability space. For example, in the
six-sided die probability distribution discussed earlier, the set {2, 4, 6} is an event; you can
think of this as the event where our die comes up as an even number. The probability of
an event S occurring is just Pr(S); i.e. the probability that our die when rolled is even is
just Pr({2, 4, 6}) = 3/6 = 1/2, as expected.

Notice that by definition, as Pr is a measure, for any two events A,B, we always have
Pr(A ∪ B) ≤ Pr(A) + Pr(B). In other words, given two events A,B, the probability of
either A or B happening (or both!) is at most the probability that A happens, plus the
probability that B happens.

Definition. A real-valued random variable X on a probability space Ω is simply any
function Ω→ R.

Given any random variable X¡ we can talk about the expected value of X; that is,
the “average value” of X on Ω, where we use Pr to give ourselves a good notion of what
“average” should mean. Formally, we define this as the following sum:∑

ωinΩ

Pr(ω) ·X(ω).
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For example, consider our six-sided die probability space again, and the random variable X
defined by X(i) = i (in other words, X is the random variable that outputs the top face of
the die when we roll it.)

The expected value of X would be∑
ωinΩ

Pr(ω) ·X(ω) =
1

6
· 1 +

1

6
· 2 +

1

6
· 3 +

1

6
· 4 +

1

6
· 5 +

1

6
· 6 =

21

6
=

7

2
.

In other words, rolling a fair six-sided die once yields an average face value of 3.5.

Definition. Given a random variable X, if µ = E(X), the variance σ2(X) of X is just
E((X − µ)2). This can also be expressed as E(X2) − (E(X))2, via some simple algebraic
manipulations.

The standard deviation of X, σ(X), is just the square root of the variance.

Definition. Given a random variable X : Ω → R on a probability space Ω, we can define
the density function for X, denoted FX(t), as

FX(t) = Pr(X(ω) ≤ t).

Given this function, we can define the probability density function fX(t) as d
dtFx(t).

Notice that for any a, b, we have

Pr(a < X(ω) ≤ b) =

∫ b

a
fX(t)dt.

A random variable has a uniform distribution if its probability density function is a
constant; this expresses the idea that uniformly-distributed things “don’t care” about the
differences between elements of our probability space.

A random variable X with standard deviation σ, expectation µ has a normal distri-
bution if its probability density function has the form

fX(t) =
1

σ
√

2π
· e−(t−µ)2/2σ2

.

This generates the standard “bell-curve” picture that you’ve seen in tons of different
settings. One useful observation about normally-distributed events is that about 68% of the
events occur within one standard deviation of the mean (i.e. Pr(µ−σ < X ≤ µ+σ) ≈ .68),
about 95% of events occur within two standard deviations of the mean, and about 99.7%
of events occur within three standard deviations of the mean.

Definition. For any two events A,B that occur with nonzero probability, define Pr(A
given B), denoted Pr(A|B), as the likelihood that A happens given that B happens as well.
Mathematically, we define this as follows:

Pr(A|B) =
Pr(A ∩B)

Pr(B)
.

In other words, we are taking as our probability space all of the events for which B happens,
and measuring how many of them also have A happen.
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Definition. Take any two events A,B that occur with nonzero probability. We say that A
and B are independent if knowledge about A is useless in determining knowledge about
B. Mathematically, we can express this as follows:

Pr(A) = Pr(A|B).

Notice that this is equivalent to asking that

Pr(A) · Pr(B) = Pr(A ∩B).

Definition. Take any n events A1, A2, . . . An that each occur with nonzero probability. We
say that these n events are are mutually independent if knowledge about any of these
Ai events is useless in determining knowledge about any other Aj . Mathematically, we can
express this as follows: for any i1, . . . ik and j 6= i1, . . . ik, we have

Pr(Aj) = Pr(Aj |Ai1 ∩ . . . ∩Aik).

It is not hard to prove the following results:

Theorem. A collection of n events A1, A2, . . . An are mutually independent if and only if
for any distinct i1, . . . ik ⊂ {1, . . . n}, we have

Pr(Ai1 ∩ . . . ∩Aik) =

k∏
j=1

Aij .

Theorem. Given any event A in a probability space Ω, let Ac = {ω ∈ Ω | ω /∈ A} denote
the complement of A.

A collection of n events A1, A2, . . . An are mutually independent if and only if their
complements {Ac1, . . . Acn} are mutually independent.

It is also useful to note the following non-result:

Not-theorem. Pairwise independence does not imply independence! In other words, it is
possible for a collection of events A1, . . . An to all be pairwise independent (i.e. Pr(Ai ∩
Aj) = Pr(Ai)Pr(Aj) for any i, j) but not mutually independent!

Example. There are many, many examples. One of the simplest is the following: consider
the probability space generated by rolling two fair six-sided dice, where any pair (i, j) of
faces comes up with probability 1/6.

Consider the following three events:

• A, the event that the first die comes up even.

• B, the event that the second die comes up even.

• C, the event that the sum of the two dice is odd.
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Each of these events clearly has probability 1/2. Moreover, the probability of A∩B,A∩C
and B ∩ C are all clearly 1/4; in the first case we are asking that both dice come up even,
in the second we are asking for (even, odd) and in the third asking for (odd, even), all of
which happen 1/4 of the time. So these events are pairwise independent, as the probability
that any two happen is just the products of their individual probabilities.

However, A ∩ B ∩ C is impossible, as A ∩ B holds iff the sum of our two dice is even!
So Pr(A ∩ B ∩ C) = 0 6= Pr(A)Pr(B)Pr(C) = 1/8, and therefore we are not mutually
independent.
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