Math 7H: Honors Seminar

Professor: Padraic Bartlett

Homework 1: Sizes of Infinity

Due Tuesday, week 2, at the start of class

UCSB 2014

Checkdown problem.

1. In class, we defined what it means for a function from $\mathbb{N} \to \mathbb{N}$ to be injective.

- (a) Create two distinct functions $f, g : \mathbb{N} \to \mathbb{N}$, that are both injective. Create a third function $h : \mathbb{N} \to \mathbb{N}$ that is not injective.
- (b) Given two functions f, g, we can form their composition, f ∘ g, as the function formed by first applying g and then f to any input. For example, if g(x) = x² and f(x) = x + 1, the function f ∘ g(x) is just x² + 1. Take the three functions f, g, h that you created in part a. Is the composition f ∘ g an injective function? How about f ∘ h?

Extra-credit problems.

2. Can there ever be more words than numbers?

Specifically: let's suppose that we're limiting ourselves to the 26-character Latin alphabet, and that the only kinds of things that can be **words** are finite strings of characters from the Latin alphabet. So things like

- rabbit ssss
- barglearglesnarg froyo

are all possibly words. Call the set of all possible words \mathbb{W} . Is the set \mathbb{W} the same cardinality as \mathbb{N} ? Prove your claim.