Math 7H: Honors Seminar Professor: Padraic Bartlett
Homework 1: Sizes of Infinity
Due Tuesday, week 2, at the start of class 2014

Checkdown problem.

1. In class, we defined what it means for a function from $\mathbb{N} \rightarrow \mathbb{N}$ to be injective.
(a) Create two distinct functions $f, g: \mathbb{N} \rightarrow \mathbb{N}$, that are both injective. Create a third function $h: \mathbb{N} \rightarrow \mathbb{N}$ that is not injective.
(b) Given two functions f, g, we can form their composition, $f \circ g$, as the function formed by first applying g and then f to any input. For example, if $g(x)=x^{2}$ and $f(x)=x+1$, the function $f \circ g(x)$ is just $x^{2}+1$.
Take the three functions f, g, h that you created in part a. Is the composition $f \circ g$ an injective function? How about $f \circ h$?

Extra-credit problems.

2. Can there ever be more words than numbers?

Specifically: let's suppose that we're limiting ourselves to the 26-character Latin alphabet, and that the only kinds of things that can be words are finite strings of characters from the Latin alphabet. So things like

- rabbit
- barglearglesnarg
- ssss
- froyo
are all possibly words. Call the set of all possible words \mathbb{W}. Is the set \mathbb{W} the same cardinality as \mathbb{N} ? Prove your claim.

