Homework 9: Latin Squares

Due Tuesday, week 10, at the start of class

UCSB

Checkdown problem

Prove one of the two problems below!

1. In class, we made the following claim. Prove it!

Claim. Suppose that n is a prime number. Then $\langle \mathbb{Z}/n\mathbb{Z}, +, \cdot \rangle$ has the following property:

For any $a, b \in \{0, \dots, n-1\}$, if $a \cdot b \equiv 0 \mod n$, then at least one of a, b are equal to 0.

2. In class, we made the following claim. Prove it!

Claim. Suppose that n is a prime. Take any $a \in \mathbb{Z}/n\mathbb{Z}$. If $a \neq 0$, then there is some $b \in \mathbb{Z}/n\mathbb{Z}$ such that $a \cdot b = 1$.

Extra-credit problems

1. In class, every pair of orthogonal Latin squares were related to each other by simple row permutations: that is, if L and M were orthogonal, then we could turn L into M by switching the rows of L around.

Prove that this is not true for all Latin squares! That is: find a pair of mutually orthogonal Latin squares L, M such that you cannot switch the rows of L around to get M.

- 2. Given a pair of mutually orthogonal Latin squares (A, B) of order m and another pair of mutually orthogonal Latin squares (C, D) of order n, create a pair of mutually orthogonal Latin squares (X, Y) of order mn.
- 3. Write a computer program that, given inputs n, k, will try to find k mutually orthogonal Latin squares of order n. For what values of n, k does your program finish running in (say) under half a hour?