
Math 7H Professor: Padraic Bartlett

Lecture 10: Cryptography

Week 10 UCSB

In our earlier lectures, we’ve discussed at length a few concepts behind “hard” and
“easy” problems, with a specific focus on P and NP. In this talk, we examine a particular
application of “hard” problems: the field of cryptography!

1 Cryptography: Classical Approaches

Definition. An encryption algorithm, or cipher, is a method that allows us to turn
normal, plainly-readable text into difficult-to-read ciphertext, via the use of a secret key.
Formally, we write

enc(k, plaintext) = ciphertext,

dec(k, ciphertext) = plaintext,

where

• plaintext is a message we want to encrypt,

• k is a key,

• enc is a function that takes in a unencrypted message and a key, and outputs an
encrypted version of that message, and

• dec is a function that takes in an encrypted message and a key, and outputs the
unencrypted version of that message.

In this system, the functions enc, dec are assumed to be widely known. There are cryp-
tographic systems that do not assume this, but they are widely considered to be “bad.”
There are a number of reasons for why this is believed to be true (see security through
obscurity and Kerckhoffs’s principle for a wider discussion of this philosophy;) one of the
simpler arguments is that there are many more ways to determine what an algorithm does
(intimidate/bribe any of a number of engineers, steal a copy of the code, pose as a legitimate
user and buy the algorithm, etc.) than to steal a specific key (which can only be done by
attacking the specific user of the key you want.)

Typically, in cryptography, we refer to the two communicating parties as Alice and
Bob (A and B for short, but seriously everyone uses Alice and Bob,) and the hypothetical
third-party eavesdropper as Eve (E.) Given any encryption system, we typically evaluate
its strength by looking at it in the following three situations:

1. The attacker, Eve, has access to a number of cipher texts.

2. The attacker, Eve, has access to a number of cipher texts and their original plaintexts.
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3. The attacker, Eve, has the ability to generate cipher texts for whatever plaintext
inputs they choose.

The first situation is the most common one: it is typically assumed that the attacker Eve
has access to most, if not all, of the encrypted traffic that Alice and Bob send back and forth
to each other. The second is stronger, but not unreasonable to expect; in many situations
(see: WWII and the Enigma machine for some great stories) the attacker will be able to
“steal” some unencrypted messages via subterfuge, and it would be great if an encryption
method could still work even with this occasionally happening. The third is stronger yet: it
basically is a kind of system that can withstand most anything, as long as the keys remain
hidden. Strong cryptographical systems work in all of these systems, and are what we want
to find.

People have been creating encryption schemes for thousands of years; essentially, as long
as there have been people with secrets to keep, there have been ways to keep things secret.
We study several of these here:

Algorithm. The Caesar-shift cipher. The Caesar-shift cipher, whose first recorded
use was by Julius Caesar to protect various military secrets, is the following encryption
scheme. Given a plaintext message m and a key k, “encrypt” m by doing the following:
one-by-one, take each character of m and circularly shift it over k places to the right in the
alphabet. Caesar historically used this cipher with a shift of three: i.e. A 7→ D, B 7→ E,
. . .W 7→ Z, X 7→ A, Y 7→ B, Z 7→ C. The decryption scheme is similar: take your
encrypted message and character-by-character, circularly shift each letter over k places to
the left in the alphabet.

This cipher, with a key of 13, is known as “ROT13” and is frequently used on the Internet
to hide spoilers; this cipher-key combo is particularly convenient, because its encryption and
decryption functions are identical (shifting right by 13 and left by 13 are the same in a 26-
character alphabet.)

Example. Take the message1

"Just the place for a Snark!" the Bellman cried,

As he landed his crew with care;

Supporting each man on the top of the tide

By a finger entwined in his hair.

If we applied a Caesar shift with key 4, we would get the message

"Nywx xli tpegi jsv e Wrevo!" xli Fippqer gvmih,

Ew li perhih lmw gvia amxl gevi;

Wyttsvxmrk iegl qer sr xli xst sj xli xmhi

Fc e jmrkiv irxamrih mr lmw lemv.

Weaknesses. This is a very weak cipher. In particular, it is easy to beat with brute-force
approaches: for example, suppose we saw the text

1From The Hunting of the Snark, by Lewis Carroll. It’s pretty great.
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Ns ymj gjlnssnsl ymjwj bfx stymnsl, bmnhm jcuqtiji.

we could simply just go through values of k until we got something that looked like a
promising translation:

Mr xli fikmrrmrk xlivi aew rsxlmrk, almgl ibtpshih.

Lq wkh ehjlqqlqj wkhuh zdv qrwklqj, zklfk hasorghg.

Kp vjg dgikppkpi vjgtg ycu pqvjkpi, yjkej gzrnqfgf.

Jo uif cfhjoojoh uifsf xbt opuijoh, xijdi fyqmpefe.

In the beginning there was nothing, which exploded.

Given that there are only 26 values of k to pick, this should be something we can do
relatively quickly. Moreover, we could just do this to a small sample of text if it took us
too long to translate everything, as there’s usually only one shift that’s going to make our
text look readable.

Algorithm. Simple substition ciphers. One key issue with the algorithm above was
that the range of possible key choices was far too small: we could simply adopt a brute-force
approach and look at all possible outputs of our decryption function under different keys,
and discover the original plaintext in this way.

A solution to this was the idea of a simple substition cipher, which is defined as follows:
first, write down the alphabet. Then, write down some permutation ρ of that alphabet: i.e.

ABCDEFGHIJKLMNOPQRSTUVWXYZ

This permutation ρ is the key for an encryption scheme defined as follows: take a plaintext
message, and character-by-character replace each letter in the plaintext message with a
character from the permutation. For example, if we used the permutation described above,
we would have A 7→ E,B 7→ J,C 7→W,D 7→ D, . . .

This algorithm avoids the weakness we’ve noticed that Caesar-shift is weak to: where
the Caesar shift only had 26 keys, this algorithm has as many keys as there are ways to
permute the characters of the alphabet. If we count, we can see that there are 26! ways
in which to do this: this is because in creating a permutation we are choosing one of our
26 characters for A to map to, any of the remaining 25 characters for B to map to, and so
on/so forth until we have have one last character for Z to map to.

26! is a much larger search space than 26: it’s roughly 4 · 1026. By comparison, the
fastest supercomputer on record (as of November, 2013, and as far as I know) can perform
roughly 34 ∗ 1015 calculations per second; if it could check whether one given permutation
was a viable interpretation of our encrypted text per calculation, it would require about
373 years to test all possible calculations. So, at the least, brute-force is not always the best
strategy to use. . .

Example. Under the permutation

ABCDEFGHIJKLMNOPQRSTUVWXYZ

the phrase
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is transformed into the phrase

Weaknesses. While this algorithm is pretty much immune to brute-force attacks, it is
still remarkably easy to crack, even by hand. We can do this by studying the underlying
structure of the plaintext message sent — i.e. the structure of the English language itself!
— and use this information to crack the algorithm.

To get an idea of how this would work, consider the following longer sample of ciphertext:

Ony rgon af ony tdznoyapk hgb dk qykyo ab gii kdjyk qu ony

dbycpdodyk af ony kyifdkn gbj ony outgbbu af yedi hyb.

Qiykkyj dk ny wna, db ony bghy af vngtdou gbj zaaj wdii,

knyrnytjk ony wygl ontapzn ony egiiyu af ony jgtlbykk, fat ny

dk otpiu ndk qtaonyt’k lyyryt gbj ony fdbjyt af iako vndijtyb.

Gbj D wdii kotdly jawb prab onyy wdon ztygo eybzygbvy gbj

fptdapk gbzyt onaky wna gooyhro oa radkab gbj jykotau Hu

qtaonytk. Gbj uap wdii lbaw D gh ony Iatj wnyb D igu Hu

eybzygbvy prab uap.

On its surface, this doesn’t look much like English anymore. However, there are still bits of
underlying structure that we can use to figure out what the cipher might be! For example,
you could make the following observations:

• There is only one single-letter word that occurs in our passage above, the word “d.”
In English, there are only two one-letter words: “a” and “I.” Consequently, it would
seem rather likely that one of the letters A or I were mapped to D.

• Similarly, there is a character “k” that occurs as a single character after an apostrophe
in our text sample; this likely eliminates every character except for “s”, “t” or rarely
“d.” So we likely have that one of S or T maps to D.

• The three-letter word “ony” repeatedly occurs. If you do a word frequency analysis
of the English language, you can see that the two most common three-letter words
by a decent margin are “the” and “and”; so we could try seeing what happens if we
assume one of these two words map to ONY.

• . . .

An objection you could make here is that we’re deriving all of this structure from the
“unencrypted” parts of our communication – i.e. we’re figuring things out about our message
by looking at the spaces and punctuation, which weren’t encrypted!

In practice, people sometimes deal with this specific attack by simply omitting punctu-
ation and spaces (or replacing all instances of a space with an infrequently-used letter like
“q”). However, this doesn’t stop us from a more fundamental method of attack — character
frequency!

Specifically: notice that the characters in the above text occur with the following fre-
quencies:
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A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Now, notice that if you were to take a sufficiently large sample of works in English — say,
a handful of Iain M. Banks novels, or the works of Raymond Chandler — you also have
certain character frequencies! Intuitively, this makes sense: we’re much more likely to see
the letter “a” than the letter “q,” for example. In general, English text tends to have the
following character distributions:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

This gives us the following observations:

• Given the above two graphs, we might assume that the most frequently-occurring
character in our sample set, “y”, corresponds to the most frequently-occurring char-
acter in English, “e.”
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• Consequently, if we looked through our text and picked out the most frequently-
occurring three-letter cipherphrase, “ony”, we could assume that this matches up
with frequently-occurring three-letter objects in English! Again, studying a large
body of work reveals that the most frequently occurring trigrams in English, in order,
are

1. the

2. and

3. tha

4. ent

5. ing

6. ion

7. tio

8. for

9. nde

10. has

11. nce

12. edt

13. tis

14. oft

15. sth

16. men

Of these, “the” is the only one in the top 8 that ends in “e”: so it may be reasonable
to assume that “the” and “ony” correspond to each other!

• If we apply this observation — that it is likely that T 7→ O,H 7→ N,E 7→ Y — we
get

The rgth af the tdzhteapk hgb dk qeket ab gii kdjek qu the

dbecpdtdek af the keifdkh gbj the tutgbbu af eedi heb.

Qiekkej dk he wha, db the bghe af vhgtdtu gbj zaaj wdii,

kherhetjk the wegl thtapzh the egiieu af the jgtlbekk, fat he

dk ttpiu hdk qtathet’k leeret gbj the fdbjet af iakt vhdijteb.

Gbj D wdii kttdle jawb prab thee wdth ztegt eebzegbve gbj

fptdapk gbzet thake wha gttehrt ta radkab gbj jekttau Hu

qtathetk. Gbj uap wdii lbaw D gh the Iatj wheb D igu Hu

eebzygbvy prab uap.

The symbols we believe to be “correct” are in red.

• We now return to our earlier observations about the text that used its structure: (1)
that the apostrophe character “k” likely corresponds to one of “s” or “t”, and (2) that
the only occurring single character “d” should correspond to one of the two English
single-letter words, “I” or “a”. In particular, the letter “d” is always capitalized in
our text, so “I” likely maps to “D”! Furthermore, if we’re assuming that “t” maps
to “o”, then we cannot have it mapping to “k” as well: therefore, we likely have “s”
mapping to “k”. We can further update our text here with these observations:

The rgth af the tizhteaps hgb is qeset ab gii sijes qu the

ibecpities af the seifish gbj the tutgbbu af eeii heb.

Qiessej is he wha, ib the bghe af vhgtitu gbj zaaj wiii,

sherhetjs the wegl thtapzh the egiieu af the jgtlbess, fat he

is ttpiu his qtathet’s leeret gbj the fibjet af iast vhiijteb.

Gbj I wiii sttile jawb prab thee with ztegt eebzegbve gbj

fptiaps gbzet thase wha gttehrt ta raisab gbj jesttau Hu

qtathets. Gbj uap wiii lbaw I gh the Iatj wheb I igu Hu

eebzygbvy prab uap.
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From here, we can simply look at the phrases with all but one character determined —
“qeset,” “sijes,” “with” — and make more guesses at characters. I.e. the only common
word word ending in “eset” with five characters is “beset,” so we have b mapping to
q; similarly, “si?es” is either sides, sires, sites, sixes or sizes. We can eliminate sites
on the grounds that we are already using the character t, and sixes and sizes on the
fact that the character j occurs often in our sample text, and it’s unlikely that x or
z would do so. So we’re down to j correspond to either d or r: the high frequency of
the three-letter phrase “gbj” would lead us to believe that this is not “r,” as there are
not many three-letter words ending in “r” that we’d expect to see this many times,
while there definitely are such words (specifically, “and”) that end in d and occur this
frequently!

In turn this motivates us to guess that the rest of gbj actually corresponds to “and:”
if we do this, we get

The rath af the tizhteaps han is beset an aii sides bu the

inecpities af the seifish and the tutannu af eeii hen.

Biessed is he wha, in the nahe af vhatitu and zaad wiii,

sherhetds the weal thtapzh the eaiieu af the datlness, fat he

is ttpiu his btathet’s leeret and the findet af iast vhiidten.

And I wiii sttile dawn pran thee with zteat eenzeanve and

fptiaps anzet thase wha attehrt ta raisan and desttau Hu

btathets. And uap wiii lnaw I ah the Iatd when I iau Hu

eenzyanvy pran uap.

Repeating this process one more time — look for words like “B?essed,” “da??ness,”
“ine??ities,” etc. that are mostly completed, compare to the English language, make
a guess — eventually gives us that our permutation is

ABCDEFGHIJKLMNOPQRSTUVWXYZ

and that our corresponding text is the following passage:

The path of the righteous man is beset on all sides by the

inequities of the selfish and the tyranny of evil men.

Blessed is he who, in the name of charity and good will,

shepherds the weak through the valley of the darkness, for he

is truly his brother’s keeper and the finder of lost children.

And I will strike down upon thee with great vengeance and

furious anger those who attempt to poison and destroy My

brothers. And you will know I am the Lord when I lay My

vengeance upon you.

Cryptography, now featuring Samuel L. Jackson.

Some of the weaknesses in this algorithm can be fixed, as we illustrate below:
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Algorithm. Vigenère ciphers. In a sense, the main weakness of the simple substitution
cipher is that each plaintext letter always corresponded to the same encrypted symbol: this
allowed us to use our knowledge of English to break the code. We can fix this, however, by
using a Vigenère cipher!

Specifically: the key to a Vigenère cipher is a code word k that is some string of char-
acters. To illustrate, suppose that the code word is “bah.” To encrypt some message, like
(for example) “Friendship is Magic!,” we use the code word as a way to “shift” the letters
of the codephrase as follows:

1. Write down your message. Below it, write a number of copies of the codeword so that
each character in our message is matched up with a character from the codeword, as
below:

Friendship is Magic!

bahbahbahb ah bahba

2. Then, take each character in the message, and “shift” it by the codeword character
corresponding to it! In other words, take each codeword character, interpret it as a
number (i.e. a 7→ 1, b 7→ 2, . . .), and circularly shift the message character to the right
that many places. For example, our message becomes

Hsqgoluiqr ja Obokd!

Example. We provide another example here, this one a bit more long-form. Consider the
codeword “bode,” and the message to be encoded2

The wasp and all his numerous family

I look upon as a major calamity.

He throws open his nest with prodigality,

But I distrust his waspitality.

In this setting, we would form the four lines

The wasp and all his numerous family

bod ebod ebo deb ode bodebode bodebo

I look upon as a major calamity.

d ebod ebod eb o debod ebodebod

He throws open his nest with prodigality,

eb odebod ebod ebo debo debo debodebodeb

But I distrust his waspitality.

ode b odebodeb ode bodebodebod

which results in the text

Vwi bcht fps eqn wmx pjqjtdyx hpqnnn

M qqdo zrdr fu p qfldv hcaerkic.

Mg ilwqlw trtr mkh rjui anvw twqsmlcamya,

Qyy K smxvgyxv wmx ypwukieqkic.

2The Wasp, a poem by Ogden Nash. He’s great.
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Weaknesses. This algorithm, given a sufficiently long codephrase, can avoid all of the
issues that came up with our earlier work: given a codephrase that’s like a few sentences
long, then we would expect any given letter in our message to be shifted by many different
values, and therefore that analyzing the character distributions will be useless.

And this is true! However, it is still weak to attacks that exploit the underlying structure
of the English language. Specifically, there is a technique, called the Kasiski test, that we
can use to break this code.

Roughly speaking, the Kasiski test is centered around the following observations:

• English has a lot of repeated sets of characters. We used this structure to great success
in our earlier problem: we broke our earlier code largely by looking for repeated triples
of characters and matching them up to known English characters.

• It is likely that our source message, being originally some large English text, has a
number of often-repeated sequences. While it is possible that not all of those repeats
will be preserved by the Vigenère cipher, (i.e. in our earlier text sample, the triple
“him” occurred above the triple “ebo” the second time and “ode” the third time,)
it is certainly likely that some triples will line up nicely with our code word, and
therefore still occur as triples (for example, the first and second occurrences of “him”
are matched with the same triple “ode.”)

• Why do we care about these repeated phrases in our encrypted text? Well: if they
correspond to repeated phrases in the original text (and aren’t there just by accident,)
then they tell us something about our codeword! In particular, they tell us that if our
codeword sent those two repeated phrases to the same phrases, then both of those
phrases were lined up over the “same” portion of our codeword!

• Therefore, there must be a whole number of copies of the codeword separating these
two phrases, in order for them to line up! For example, using this observation on our
text above with the repeated “his” phrase, if we count the number of letters between
the first occurrence of “his” and the second occurrence of “his,” we get 88. This tells
us that it is likely that our codephrase is a divisor of 88; i.e. one of 2,4,8 or 11. Further
analysis, by looking for more of these repeated sets, can eliminate other options, and
tell us the precise length of the codeword we’re studying.

• From there, we simply need to find the elements of the codeword! We can do this
just like we did for the simple substitution cipher, basically. To be specific: break our
cipher text into groups, each corresponding to the character of the code word that
translated it. I.e. if we had the text from our earlier example and had deduced that
the code word was length 4, we could then simply group our cipher text into four
groups, each corresponding to the characters in the ciphertext that were shifted by a
fixed codeletter.

On each of these groups, we can then perform the character analysis we did before,
and deduce one-by-one the codeword’s characters. We omit a worked example here,
but it is entirely within the reader’s powers to solve one in the HW!
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In the preamble to this lecture, we mentioned that the idea of “hard” problems was
useful for creating cryptosystems. We haven’t illustrated how that works yet — all of the
cryptosystems above don’t rely on “hard” problems! However, all of the cryptosystems
above also had weaknesses of various kinds, that has made each of them mostly unused in
the modern world. Next quarter, we’ll talk about how an NP-hard problem can be used to
create a “better” encryption scheme, and what some of the encryption schemes used today
are!
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