Math 7H	Professor: Padraic Bartlett
Due Tuesday, week 2, at the start of class	
UCSB 2015	

Try some of the problems below! As always, work on problems here until you've spent at least 90 minutes on this set. Show your work, so that I can see that you've spent time/effort on this!

This week's HW centers around the following idea:
Definition. A partial latin square of order n is a $n \times n$ array where each cell is filled with either blanks or symbols $\{1, \ldots n\}$, such that no symbol is repeated twice in any row or column.

Example. Here are a pair of partial 4×4 latin squares:

			4
2			
3	4		
4	1	2	

1			
	1		
		1	
			2

The most obvious question we can ask about partial latin squares is the following: when can we complete them into filled-in latin squares? There are clearly cases where this is possible: the first array above, for example, can be completed as illustrated below.

			4					
2								
3	4							
4	1	2		\mapsto	1	2	3	4
:---	:---	:---	:---					
2	3	4	1					
3	4	1	2					
4	1	2	3					

However, there are also clearly partial Latin squares that cannot be completed. For example, if we look at the second array

we can pretty quickly see that there is no way to complete this array to a Latin square: any 4×4 Latin square will have to have a 1 in its last column somewhere, yet it cannot be in any of the three available slots in that last column, because there's already a 1 in those three rows.

1. For any n, create a partial $n \times n$ Latin square that contains n symbols, that cannot be filled to a complete Latin square.
2. A partial Latin square is called critical if it has a completion to exactly one other Latin square. For example, \begin{tabular}{|l|l}
1 \& \\
\& is a critical partial Latin square, as it can be completed to

 only one Latin square,

\hline 1 \& 2 \\
\hline 2 \& 1 \\
\hline
\end{tabular}.

Find the smallest 4×4 critical Latin square.
3. (Open / my research!) For any constant $\epsilon>0$, a partial $n \times n$ Latin square is called ϵ-sparse if it contains at most ϵn entries in any row or column, and also no symbol is used more than ϵn many times.
Show that any $1 / 4$-dense partial Latin square is completable.

