Math 7H \quad Professor: Padraic Bartlett
Homework 2: Error-Correcting Codes

Due Tuesday, Week 2
UCSB 2015

Try some of the problems below! As always, work on problems here until you've spent at least 90 minutes on this set. Show your work, so that I can see that you've spent time/effort on this!

1. Here's a fun problem from a UCSB mathematics Ph.D. student ${ }^{1}$ from their dissertation:

Question. You and two friends have been captured by eeeeevil logicians! They tell you ahead of time about the following puzzle they have for you:

- You will all be led into a locked room.
- Each person will have a hat placed on their head; hats are either black or white, and randomly decided for each person by flipping a fair coin.
- No one can see their own hat.
- Each person can see other people's hats.
- You and your friends cannot communicate once in the room.
- When the guards say so, you and your friends must all either guess (simultaneously) the color of their own hat, or say "pass."
- If at least one person guesses correctly and no one is incorrect, you're free!
- If anyone guesses incorrectly, you are sad/eaten by bears.

Find a strategy that insures that on average, you are not eaten by bears three-quarters of the time.
2. Historically, one of the first codes developed was the Hamming [7, 4] code. It works like this: take any string of four bits (i.e. any string of four 0's and 1's.) Turn this into a string of seven bits in the following way:

- Place the bits of the original message, in order, in the slots $3,5,6,7$.
- In slot 1 , put the parity ${ }^{2}$ of the sum of the bits in slots $3,5,7$.
- In slot 2 , put the parity of the sum of the bits in slots $3,6,7$.
- In slot 4, put the parity of the sum of the bits in slots 5, 6, 7 .

For example, to encode the message 1010, we would first place
_-_1_010;

[^0]then, because $1+0+0=1,1+1+0=0,0+1+0=1$, we would fill in the remaining slots to get
1011010.

This is a 2-ary code of length 7 . Find its information density and its minimum distance.

[^0]: ${ }^{1}$ Todd Ebert, 1998. The silly framing is me.
 ${ }^{2}$ The parity of a number n is just $n \bmod 2$. In other words, it is 1 if n is odd, and 0 if n is even.

