
Math 7H Professor: Padraic Bartlett

Lecture 1: Latin Squares and Experimental Design

Week 1 UCSB 2015

I want to start this class with a brief introduction to an object that I spent the bulk of
my Ph.D studying: Latin squares!

Definition. A Latin square of order n is a n× n array filled with n distinct symbols (by
convention {1, . . . n}), such that no symbol is repeated twice in any row or column.

Example. Here are all of the Latin squares of order 2:

1 2

2 1

2 1

1 2
.

A quick observation we can make is the following:

Proposition. Latin squares exist for all n.

Proof. Behold!

1 2 . . . n− 1 n

2 3 . . . n 1
...

...
. . .

...
...

n 1 . . . n− 2 n− 1

Given this observation, a natural question to ask might be “How many Latin squares
exist of a given order n?” And indeed, this is an excellent question! So excellent, in fact,
that it turns out that we have no idea what the answer to it is; indeed, we only know the
true number of Latin squares of any given order up to 11.

n reduced Latin squares of size n1 all Latin squares of size n

1 1 1

2 1 2

3 1 12

4 4 576

5 56 161280

6 9408 812851200

7 16942080 61479419904000

8 535281401856 108776032459082956800

9 377597570964258816 5524751496156892842531225600

10 7580721483160132811489280 9982437658213039871725064756920320000

11 5363937773277371298119673540771840 776966836171770144107444346734230682311065600000

12 ? ?

1

Asymptotically, the best we know (and you could show, given a lot of linear algebra tools)
that

L(n) ∼
(n

e2

)n2

.

0.1 Mutually Orthogonal Latin Squares

In these notes, we look at a specific notion related to Latin squares — the concept of “or-
thogonal” Latin squares! To understand how this works, try solving the following problem:

Question. Take a deck of playing cards, and remove the 16 aces, kings, queens, and jacks
from the deck. Can you arrange these cards into a 4× 4 array, so that in each column and
row, no two cards share the same suit or same face value?

This question should feel similar to the problem of constructing a Latin square: we have
an array, and we want to fill it with symbols that are not repeated in any row or column.
However, we have the additional constraint that we’re actually putting two symbols in
every cell: one corresponding to a suit, and another corresponding to a face value.

So: if we just look at the face values, we should get a 4 × 4 Latin square. Similarly,
if we ignore the face values and look only at the suits, we should have a different 4 × 4
Latin square; as well, these two Latin squares ought to have the property that when we
superimpose them (i.e. place one on top of the other), each of the resulting possible 16
pairs of symbols occurs exactly once (because we started with 16 distinct cards.)

You can do this! Here is one possible solution:

A♥ K♦ Q♠ J♣
K♠ A♣ J♥ Q♦
Q♣ J♠ A♦ K♥
J♥ Q♥ K♣ A♠

The generalization of this idea is to the concept of orthogonality2 for Latin squares,
which we define here:

Definition. A pair of n× n Latin squares are called orthogonal if when we superimpose
them (i.e. place one on top of the other), each of the possible n2 ordered pairs of symbols
occur exactly once.

A collection of k n × n Latin squares is called mutually orthogonal if every pair of
Latin squares in our collection is orthogonal.

1A reduced Latin square of size n is a Latin square where the first column and row are both (1, 2, 3 . . . n).
The idea here is that by permuting the rows and columns of any Latin square, you can make it have this
“reduced” property. Therefore, in a sense, the only interesting things to count are the number of different
reduced squares; this is because from there you can generate any other Latin square by permuting its rows
and columns.

2This idea has no obvious corresponding geometric context; just think of it as a name for now.

2

Example. The grid of playing cards we constructed earlier is a pair of 4×4 squares, for the
reasons we discussed earlier. To further illustrate the idea, we present a pair of orthogonal
3× 3 Latin squares:

1 2 3

2 3 1

3 1 2

,

1 2 3

3 1 2

2 3 1

−→
(1, 1) (2, 2) (3, 3)

(2, 3) (3, 1) (1, 2)

(3, 2) (1, 3) (2, 1)

Like always, whenever we introduce a mathematical concept in combinatorics, our first
instinct should be to attempt to count it! In other words: given an order n, what is the
largest collection of mutually orthogonal Latin squares we can find? An upper bound is not
too hard to find:

Proposition. For any n, the maximum size of a set of n × n mutually orthogonal Latin
squares is n− 1.

Proof. Take any collection T1, . . . Tk of mutually orthogonal Latin squares. Then notice the
following property: if we take any of our Latin squares and permute its symbols (i.e. switch
all the 1 and 2’s), the new square is still mutually orthogonal to all of the other squares.
(Think about this for a bit if you are unpersuaded.)

Using the above observation, notice that we can without any loss of generality assume
that the first row of each of our Latin squares is (1, 2, 3 . . . n). Now, take any pair of mutually
orthogonal Latin squares from our collection, and look at the symbol in the cell in the first
column/second row (i.e. the symbol at (2, 1)):

1 2 . . . n

x − . . . −
...

...
. . .

...

− − . . . −

,

1 2 . . . n

y − . . . −
...

...
. . .

...

− − . . . −

.

We know that neither x nor y can be 1, because both of these squares are Latin squares.
As well, we know that they cannot agree, as the first row of the superimposition of these
two squares contains the pairs (k, k) , for every 1 ≤ k ≤ n. This means that there are at
most n − 1 squares in our collection T1, . . . Tk, because there are n − 1 distinct choices for
the cell (2, 1) that are not 1.

We already know that sometimes n− 1 is attainable: in our example above, we found 2
orthogonal Latin squares of order 3. When can we attain this bound?

This (somewhat frustratingly) turns out to be open! That is; we do not know for what
values of n this bound is attainable. It’s not too hard to prove that it holds for any prime
value of n (try it!), but for composite values of n we don’t know the answer for almost every
possible value.

1 Why We Care

A natural question to ask, before putting more effort into our studies, might be the following:
why do we care?

3

A pure mathematician’s answer to this would likely be “because it’s interesting!” In
mathematics, as a general rule, the practical applications of any field will often only emerge
decades after the original work is done. Graph theory — one of the most fundamental
tools used in studying big data and the internet today — started off as a almost completely
recreational field centered around solving a map-coloring problem. Similarly, most of num-
ber theory — the basis for all of today’s modern cryptography and security systems —
was thought of as “useless” for practical matters by most of its founding fathers. See this
mathoverflow thread for some excellent answers!

However, Latin squares have been around long enough to have acquired some obviously
useful applications. We’ll see some of these next week, in our discussions of error-correcting
codes; to finish off today’s lecture, however, we’ll talk about a few applications to arguably
the most applicable of the mathematical sciences: statistics!

Specifically, consider the following problem:

Problem. Suppose that you have three varieties of chickens w1, c2, c3. We want to measure
which variety of chicken lays the most eggs over the months April, May and June. How can
we design an experiment to determine this quickly?

One näıve solution for this problem could be the following:

• Buy three plots of land p1, p2, p3.

• Place chicken flock c1 in plot p1, flock c2 in plot p2, and flock c3 in plot p3.

• Harvest eggs through April, May and June to get yields yA,1, yM,1, yJ,1 for our first
flock c1, and similarly yields yA,2, yM,2, yJ,2 and yA,3, yM,3, yJ,3 for the other two flocks.

• Total our yields, to get numbers Yi = YA,i +YM,i +YJ,i for each of our three chickens.
Whichever chicken has the highest total yield is clearly the best chicken breed!

This plan, however, has an obvious flaw: it never switches up the plots of land! This
leaves our experiment open to significant flaws and bias; if plot p1 is (say) exposed to more
external noise than the others, or plot p2 is prone to fox predation, we might have external
factors that create bias.

A second solution might be to buy a ton of plots of land in the area, and tend to multiple
flocks on many different plots of land. This kind-of works (though you are still exposed to
the risk that one given chicken breed variety has “bad luck” with the plots of land it’s on,)
but it’s also remarkably expensive; you have to increase your testing costs by several orders
of magnitude, and you’re not even guaranteed to have fixed the problem!

A third, still bad solution might be to run tests over three years: i.e. to test flock bi in
plot pi in year 1, in plot pi+1 in year 2, and in plot pi+2 in year 3. This avoids plot bias:
i.e. each flock is tested in each plot. However, this takes three times as long to run; in
business, this is not a luxury you’ll often get!

A much better solution (as you may have guessed) is to use Latin squares! Specifically,
consider the following flock rotation schedule:

Plots \ Months April May June

p1 c1 c2 c3
p2 c2 c3 c1
p3 c3 c1 c2

4

http://mathoverflow.net/questions/116627/useless-math-that-became-useful
http://mathoverflow.net/questions/116627/useless-math-that-became-useful

I.e. in April, we have flock c1 in plot c1, flock c2 in plot c2, and flock c3 in plot c3, with
flocks rotating at the end of each month. This tests each flock in each plot; therefore, when
we sum up our results over the three-month period, we are (in theory) no longer biased by
our choice of plots!

We can actually use this idea to do one better. Suppose that we also want to test out
three different forms of chicken feed f1, f2, f3 at the same time. How can we determine the
relative effectiveness of these feeds at the same time as our breed testing, without biasing
any of our tests?

The answer here, as you may have guessed, is to use mutually orthogonal Latin squares!
In particular, take the two mutually orthogonal 3× 3 Latin squares from earlier in lecture:

1 2 3

2 3 1

3 1 2

,

1 2 3

3 1 2

2 3 1

If we use the first of these to plan our flocks and the second of these to plan our feeds, we
get the following plan:

c1 c2 c3
c2 c3 c1
c3 c1 c2

,

f1 f2 f3
f3 f1 f2
f2 f3 f1

−→

Plots\Months April May June

p1 (c1, f1) (c2, f2) (c3, f3)
p2 (c2, f3) (c3, f1) (c1, f2)
p3 (c3, f2) (c1, f3) (c2, f1)

To determine the effectiveness of any breed, we simply sum the yields for that breed’s plot
over the three months; similarly, to determine the effectiveness of any feed, we sum the
yields for that feed’s three breeds over the three months it was used in. In both process,
each of the “non-relevant” variables that we aren’t measuring for all occur equally often,
and thus in theory shouldn’t interact too much with the data we’re trying to measure. This
isn’t a perfect process; there could be time-sensitive interactions between the feeds and the
months, or perhaps certain feeds pair better with certain plots. But it’s pretty good, and
remarkably efficient at measuring lots of information in a compact and efficient manner!
(By contrast, if we wanted to measure each breed against each feed/plot/month possibility,
we would need 81 tests; i.e. a ninefold increase in testing expenses!)

So, yes! Latin squares: actually applicable, in addition to being a source of open prob-
lems.

5

	Mutually Orthogonal Latin Squares
	Why We Care

