
Math 7H Professor: Padraic Bartlett

Lecture 2: Error-Correcting Codes

Week 2 UCSB 2015

1 Error-Correcting Codes

Consider the following problem:

Problem. Suppose that you are the Voyager 1 probe. You are currently on the outer limits
of the solar system, and about to leave the solar system forever! Consequently, you want
to call your parents. However, you are currently separated from your parents by the vast
interstellar void of SPAAAAAAAAAACE.

SPAAAAACE

The vast interstellar void of space has an annoying habit of occasionally containing stray
electromagnetic waves that interfere with your communications back home; when you send
a signal back home (in binary, naturally), occasionally one of your 1’s will be switched into
a 0, or vice-versa. Assume that no more than one out of three consecutive bits in any
message you send will be scrambled.

How can you call home?

One solution to this problem you might come up with is to simply “build redundancy”
into the signals you send home, by sending (say) six 1’s every time you went to send a 1,
and six 0’s every time you went to send a 0. For example, to send the message “0101,”
you’d send

000000111111000000111111.

Then, even if some of the bits are flipped, your parents back on earth could still decode
your message. In particular, if at most one bit out of any consecutive three is flipped, each
of your all-0’s blocks will have at most two 1’s in them after errors are introduced, while
each of your all-1’s blocks will have at most two 0’s in them after errors. In either case, we
would never confuse one of these blocks with the other: if your parents received the signal

010010001111100001101011,

1

they’d break it up into the four blocks

010010001111100001101011,

and “correct” the errors to

000000111111000000111111,

which is unambiguously the signal 0101.
This code can correct for the presence of one error out of any three consecutive blocks,

but no better (i.e. if we could have more than two errors in a block of six, we might have
three errors in a string of six: in this case it would be impossibe to tell what our string was
intended to be. For example, the string 000111 could have resulted from three errors on
the signal 000000, or three errors on the signal 111111.) It can accomplish this at the cost
of sending 6k bits whenever it wants to transmit k bits of information.

Can we do better? In specific, can we make a code that is more efficient (i.e. needs
less bits to transmit the same information,) or can correct for more errors? With a little
thought, it’s easy to improve our code above: if we instead simply replace each 0 with just
000 and each 1 with 111, our code can still correct for the presence of at most one error in
any three consecutive blocks (for example, 101 is unambiguously the result of one error to
111,) and now needs to send just 3k bits to transmit k bits of information.

There are more interesting codes than just these repetition codes: consider for example
the codeword table

word signal to transmit

000 000000
100 100011
010 010101
001 001110
011 011011
101 101101
110 110110
111 111000

In this code, we encode messages by breaking them into groups of three, and then replacing
each string of three with the corresponding group of six. For example, the message “010
101 111” would become

010101101101111000.

In this code, every word in the table above differs from any other word in at least three
spots (check this!) Therefore, if we have at most 1 error in any six consecutive bits, we
would never confuse a word here with any other word: changing at most one bit in any
block of six would still make it completely unambiguous what word we started with.

Therefore, if we sent the string that we described above, and people on Earth received

010111101111110000,

2

they would first break it into groups of six

010111101111110000,

and then look through our codeword table for what words these strings of six could possibly
be, if at most one error in every six consecutive bits could occur:

010101101101111000.

This then decodes to “010 101 111,” the message we sent.
This code can correct for at most one error in any six consecutive bits (worse than our

earlier code,) but does so much more efficiently: it only needs to send 2k bits to transmit
a signal with k bits of information in it.

So: suppose we know ahead of time the maximum number of errors in any consecutive
string of symbols. What is the most efficient code we can make to transmit our signals?

At this time, it makes sense to try to formalize these notions of “maximum number of
errors” and “efficiency.” Here are a series of definitions, that formalize the words and ideas
we’ve been playing with in this talk:

Definition. A q-ary block code C of length n is a collection C of words of length n, written
in base q. In other words, C is just a subset of (Z/qZ)n.

Example. The “repeat three times” code we described earlier is a 2-ary code of length 3,
consisting of the two elements {(000), (111)}. We used it to encode a language with two
symbols, specifically 0 and 1.

The second code we made is a 2-ary code of length 6, consisting of the 8 elements we
wrote down in our table.

Definition. Given a q-ary code C of length n, we define its information rate as the
quantity

logq(# of elements in C)

n

This, roughly speaking, captures the idea of how “efficient” a code is.

Example. The “repeat three times” code we described earlier contains two codewords of
length 3; therefore, its information rate is

log2(2)

3
=

1

3
.

This captures the idea that this code needed to transmit three bits to send any one bit of
information.

Similarly, the second code we made contains 8 codewords of length six, and therefore
has information rate

log2(8)

6
=

3

6
=

1

2
.

Again, this captures the idea that this code needed to transmit two bits in order to send
any one bit of information.

3

Definition. The Hamming distance dH(x,y) between any two elements x,y of (Z/qZ)n

is simply the number of places where these two elements disagree.
Given a code C, we say that the minimum distance of C, d(C), is the smallest possible

value of dH(x,y) taken over all distinct x,y within the code. If d(C) ≥ k, we will call such
a code a distance-k code.

Example. The Hamming distance between the two words

12213, 13211

is 2, because they disagree in precisely two places. Similarly, the Hamming distance between
the two words

TOMATO,POTATO

is 2, because these two words again disagree in precisely two places.
The “repeat three times” code from earlier has minimum distance 3, because the Ham-

ming distance between 000 and 111 is 3.
Similarly, the second code we described from earlier has minimum distance 3, because

every two words in our list disagreed in at least 3 places.

The following theorem explains why we care about this concept of distance:

Theorem. A code C can detect up to s errors in any received codeword as long as d(C) ≥
s+ 1. Similarly, a code C can correct up to t errors in any received codeword to the correct
codeword as long as d(C) ≥ 2t + 1.

Proof. If d(C) ≥ s + 1, then making s changes to any codeword cannot change it into any
other codeword, as every pair of codewords differ in at least s + 1 places. Therefore, our
code will detect an error as long as at most s changes occur in any codeword.

Similarly, if d(C) ≥ 2t + 1, then changing t entries in any codeword still means that it
differs from any other codeword in at least t + 1 many places; therefore, the codeword we
started from is completely unambiguous, and we can correct these errors.

Example. Using this theorem, we can see that both of our codewords can correct at most
one error in any codeword, because their Hamming distances were both three.

Now that we’ve made this formal, we can now state our question rigorously:

Problem. Suppose that you are given a base q, a block length n for your codewords, and
a minimum distance d that you want your codewords to be from each other (because you
want to be able to correct up to d(d− 1)/2e many errors in any codeword, for example.)

What is the maximum size of C — in other words, what is the maximum information
rate you can get a code to have with these parameters?

Formally speaking, mathematicians phrase this problem as follows:

Question 1. Let Aq(n, d) denote the maximum number of elements in a block-length n
q-ary code C with d(C) ≥ d. What is Aq(n, d) for various values of q, n, d?

4

Amazingly enough, this problem is wide open for tons of values! We really know
very little about these maximum values: for example, when n = 21, q = 2, d = 10 this
question is still open (the number of elements in C is between 42 and 47, according to
http://www.win.tue.nl/ aeb/codes/binary-1.html. For general information on what we
know and do not know, check out http://www.codetables.de/!)

So: we have a mathematical object that on one hand seems incredibly practical (almost
all modern electronical objects need some automated way to correct for errors) and also
shockingly open (we don’t know what the most efficient codes are for even very small block
lengths n and distances d!) This, for me, is the sign of an exciting area of research: we both
know nothing and want to be able to know everything!

That said, we can find and determine several values of Aq(n, d)! Some, in fact, are
downright trivial:

Theorem. Aq(n, 1) = qn, for any q, n.

Proof. First, notice that any code C has distance at least 1; this is by definition, as

d(C) = min
c1 6=c2∈C

d(c1, c2),

and the smallest distance between any two nonequal words c1, c2 is at least 1 (because if
they were distance 0, then they would be equal!)

Consequently, Aq(n, 1) is just asking us for the maximum number of elements in a q-ary
block-length n code, as the “distance 1” property is trivial to satisfy! Consequently, the
code with the maximum number of elements is simply the code given by taking all of the
possible code words: that is, it is the set (Z/qZ)n. This set has qn elements, as claimed; so
our proof is done!

It doesn’t take much more work to prove the following:

Theorem. Aq(n, n) = q, for any q, n.

Proof. First, notice that if we take the code
n zeroes︷ ︸︸ ︷

000 . . . 0,

n ones︷ ︸︸ ︷
111 . . . 1, . . .

n copies of (q−1) symbols︷ ︸︸ ︷
q − 1 . . . q − 1 ,

 ,

this code has q elements, all of which are distance n apart. So we have shown that Aq(n, n) ≥
q for any q, n.

So it suffices to prove that q is an upper bound for the size of any such code C, as
well! To do this: take any q-ary block-length n code C with d(C) ≥ n. Because C is a
block-length n code, it is impossible for any two words to disagree in more than n places
(as each word is length n); therefore, we can actually say that d(C) = n.

Suppose, for contradiction, that C has q + 1 or more words. Then, because there are q
choices of symbol for the first symbol in each of the words of C, and there are q+1 words in
total, there must be two words c1, c2 ∈ C that start with the same symbol. But this means
that d(c1, c2) ≤ n − 1, because they can disagree in at most n − 1 places; in other words
d(C) ≤ n− 1, a contradiction! Therefore, we have shown that |C| ≤ q, as claimed.

5

http://www.win.tue.nl/~aeb/codes/binary-1.html
http://www.codetables.de/

2 Connections to Latin Squares

Fun fact:

Theorem 2. For any value of q, Aq(4, 3) ≤ q2. This is attainable — that is, Aq(4, 3) = q2

— if there are a pair of mutually orthogonal Latin squares of order q.

Proof. Homework!

6

	Error-Correcting Codes
	Connections to Latin Squares

