
Math 7H Professor: Padraic Bartlett

Lecture 3: Cryptography

Week 3 UCSB 2015

1 Cryptography: Classical Approaches

Definition. An encryption algorithm, or cipher, is a method that allows us to turn
normal, plainly-readable text into difficult-to-read ciphertext, via the use of a secret key.
Formally, we write

enc(k, plaintext) = ciphertext,

dec(k, ciphertext) = plaintext,

where

• plaintext is a message we want to encrypt,

• k is a key,

• enc is a function that takes in a unencrypted message and a key, and outputs an
encrypted version of that message, and

• dec is a function that takes in an encrypted message and a key, and outputs the
unencrypted version of that message.

In this system, the functions enc, dec are assumed to be widely known. There are cryp-
tographic systems that do not assume this, but they are widely considered to be “bad.”
There are a number of reasons for why this is believed to be true (see security through
obscurity and Kerckhoffs’s principle for a wider discussion of this philosophy;) one of the
simpler arguments is that there are many more ways to determine what an algorithm does
(intimidate/bribe any of a number of engineers, steal a copy of the code, pose as a legitimate
user and buy the algorithm, etc.) than to steal a specific key (which can only be done by
attacking the specific user of the key you want.)

Typically, in cryptography, we refer to the two communicating parties as Alice and
Bob (A and B for short, but seriously everyone uses Alice and Bob,) and the hypothetical
third-party eavesdropper as Eve (E.) Given any encryption system, we typically evaluate
its strength by looking at it in the following three situations:

1. The attacker, Eve, has access to a number of cipher texts.

2. The attacker, Eve, has access to a number of cipher texts and their original plaintexts.

3. The attacker, Eve, has the ability to generate cipher texts for whatever plaintext
inputs they choose.

1

http://en.wikipedia.org/wiki/Security_through_obscurity
http://en.wikipedia.org/wiki/Security_through_obscurity
http://en.wikipedia.org/wiki/Kerckhoffs%27_principle

The first situation is the most common one: it is typically assumed that the attacker Eve
has access to most, if not all, of the encrypted traffic that Alice and Bob send back and forth
to each other. The second is stronger, but not unreasonable to expect; in many situations
(see: WWII and the Enigma machine for some great stories) the attacker will be able to
“steal” some unencrypted messages via subterfuge, and it would be great if an encryption
method could still work even with this occasionally happening. The third is stronger yet: it
basically is a kind of system that can withstand most anything, as long as the keys remain
hidden. Strong cryptographical systems work in all of these systems, and are what we want
to find.

People have been creating encryption schemes for thousands of years; essentially, as long
as there have been people with secrets to keep, there have been ways to keep things secret.
We study several of these here:

Algorithm. The Caesar-shift cipher. The Caesar-shift cipher, whose first recorded
use was by Julius Caesar to protect various military secrets, is the following encryption
scheme. Given a plaintext message m and a key k, “encrypt” m by doing the following:
one-by-one, take each character of m and circularly shift it over k places to the right in the
alphabet. Caesar historically used this cipher with a shift of three: i.e. A 7→ D, B 7→ E,
. . .W 7→ Z, X 7→ A, Y 7→ B, Z 7→ C. The decryption scheme is similar: take your
encrypted message and character-by-character, circularly shift each letter over k places to
the left in the alphabet.

This cipher, with a key of 13, is known as “ROT13” and is frequently used on the Internet
to hide spoilers; this cipher-key combo is particularly convenient, because its encryption and
decryption functions are identical (shifting right by 13 and left by 13 are the same in a 26-
character alphabet.)

Example. Take the message1

"Just the place for a Snark!" the Bellman cried,

As he landed his crew with care;

Supporting each man on the top of the tide

By a finger entwined in his hair.

If we applied a Caesar shift with key 4, we would get the message

"Nywx xli tpegi jsv e Wrevo!" xli Fippqer gvmih,

Ew li perhih lmw gvia amxl gevi;

Wyttsvxmrk iegl qer sr xli xst sj xli xmhi

Fc e jmrkiv irxamrih mr lmw lemv.

Weaknesses. This is a very weak cipher. In particular, it is easy to beat with brute-force
approaches: for example, suppose we saw the text

Ns ymj gjlnssnsl ymjwj bfx stymnsl, bmnhm jcuqtiji.

we could simply just go through values of k until we got something that looked like a
promising translation:

1From The Hunting of the Snark, by Lewis Carroll. It’s pretty great.

2

http://en.wikipedia.org/wiki/Cryptanalysis_of_the_Enigma

Mr xli fikmrrmrk xlivi aew rsxlmrk, almgl ibtpshih.

Lq wkh ehjlqqlqj wkhuh zdv qrwklqj, zklfk hasorghg.

Kp vjg dgikppkpi vjgtg ycu pqvjkpi, yjkej gzrnqfgf.

Jo uif cfhjoojoh uifsf xbt opuijoh, xijdi fyqmpefe.

In the beginning there was nothing, which exploded.

Given that there are only 26 values of k to pick, this should be something we can do
relatively quickly. Moreover, we could just do this to a small sample of text if it took us
too long to translate everything, as there’s usually only one shift that’s going to make our
text look readable.

Algorithm. Simple substition ciphers. One key issue with the algorithm above was
that the range of possible key choices was far too small: we could simply adopt a brute-force
approach and look at all possible outputs of our decryption function under different keys,
and discover the original plaintext in this way.

A solution to this was the idea of a simple substition cipher, which is defined as follows:
first, write down the alphabet. Then, write down some permutation ρ of that alphabet: i.e.

ABCDEFGHIJKLMNOPQRSTUVWXYZ

This permutation ρ is the key for an encryption scheme defined as follows: take a plaintext
message, and character-by-character replace each letter in the plaintext message with a
character from the permutation. For example, if we used the permutation described above,
we would have A 7→ E,B 7→ J,C 7→W,D 7→ D, . . .

This algorithm avoids the weakness we’ve noticed that Caesar-shift is weak to: where
the Caesar shift only had 26 keys, this algorithm has as many keys as there are ways to
permute the characters of the alphabet. If we count, we can see that there are 26! ways
in which to do this: this is because in creating a permutation we are choosing one of our
26 characters for A to map to, any of the remaining 25 characters for B to map to, and so
on/so forth until we have have one last character for Z to map to.

26! is a much larger search space than 26: it’s roughly 4 · 1026. By comparison, the
fastest supercomputer on record (as of November, 2013, and as far as I know) can perform
roughly 34 ∗ 1015 calculations per second; if it could check whether one given permutation
was a viable interpretation of our encrypted text per calculation, it would require about
373 years to test all possible calculations. So, at the least, brute-force is not always the best
strategy to use. . .

Example. Under the permutation

ABCDEFGHIJKLMNOPQRSTUVWXYZ

the phrase

is transformed into the phrase

3

Weaknesses. While this algorithm is pretty much immune to brute-force attacks, it is
still remarkably easy to crack, even by hand. We can do this by studying the underlying
structure of the plaintext message sent — i.e. the structure of the English language itself!
— and use this information to crack the algorithm.

To get an idea of how this would work, consider the following longer sample of ciphertext:

Hvni tobnwk mqnt gn vt Ynkqqn Ynbuqjkbti vnr, jqwjqttvdli,

tqvzobnw ovr tg dq gnq ga toqh. Toq avzylti ovr lgnw vwg

zgnajgntqr tobk avzt vnr ovr cqjaqztqr uvjbgyk rqubzqk agj

vugbrbnw bt. Dyt tobk mvk cqjaqztli vll jbwot dqzvykq, tg

dq avbj, kg ovr toq ktyrqntk. Toq kiktqh mgjkqr fybtq mqll

vnr, vk ovccqnk bn kyzo zvkqk, ovr tvkqn gn toq ktvtyk ga

tjvrbtbgn. Lqztyjqk zlqvjli tggk clvzq, dqzvykq toqi mqjq

rgmn toqjq gn toq tbhqtvdlq bn dlvzk vnr mobtq. Toq avzt tovt

ng-gnq vttqnrqr mvk vn bjjqlquvnt rqtvbl. Bt mvk gzzvkbgnvlli

hvbntvbnqr tovt tobk hqvnt tovt toq lqztyjqk rbr ngt bn avzt

ovccqn vt vll, dyt ng-gnq quqj vttqnrqr toqh tg abnr gyt

ba tobk mvk tjyq. Vnimvi, bt mvk vjwyqr (di toq Jqvrqj bn

Mgglli Tobnkbnw mobzo bk lbkq Ayppi Lgwbz, gnli lqkk kg) tovt

lqztyjqk ovr tvkqn clvzq bn qkkqnzq, kg tovt mvk vll jbwot,

tgg.

On its surface, this doesn’t look much like English anymore. However, this doesn’t stop us
from a more fundamental method of attack — character frequency!

Specifically: notice that the characters in the above text occur with the following fre-
quencies:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Now, notice that if you were to take a sufficiently large sample of works in English — say,
a handful of Iain M. Banks novels, or the works of Raymond Chandler — you also have
certain character frequencies! Intuitively, this makes sense: we’re much more likely to see

4

the letter “a” than the letter “q,” for example. In general, English text tends to have the
following character distributions:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

This gives us the following observations:

• The most frequently occurring characters in our ciphertext are the characters t (12%,)
q (10%,) v (7%,) n, k, o and g (all at 6%.) Conversely, the most commonly-occurring
characters in the English language are (in order) e (13%,) t (9%,) a (8%,) o (8%,)
i and n(all at 7%). Consequently, it is likely that most of our frequently-occurring
characters in our ciphertext correspond to these common characters in English!

• Moreover, we can scan our text for commonly-occurring three-letter strings. We see
the following strings occurring multiple times in our text:

1. toq (12 times)

2. tob (6 times)

3. tov (6 times)

4. mvk (6 times)

5. ovr (6 times)

6. qzt (5 times)

7. tto (5 times)

8. obk (5 times)

9. ovt (5 times)

10. vtt (4 times)

11. vll (4 times)

12. rto (4 times)

13. bmw (4 times)

14. vnr (4 times)

15. vrt (4 times)

16. avz (4 times)

Consequently, if we looked through our text and picked out the most frequently-
occurring three-letter cipherphrase, “toq”, we could assume that this matches up with
one of the most frequently-occurring three-letter objects in English! Again, studying
a large body of work reveals that the most frequently occurring trigrams in English,
in order, are

1. the (3.51%)

2. and (1.59%)

3. ing (1.14%)

4. her (0.82%)

5. hat (0.65%)

6. his (0.59%)

7. tha (0.59%)

8. ere (0.56%)

9. for (0.55%)

10. ent (0.53%)

11. ion (0.51%)

12. ter (0.46%)

5

13. was (0.46%)

14. you (0.43%)

15. ith (0.43%)

16. ver (0.43%)

17. all (0.42%)

18. wit (0.40%)

19. thi (0.39%)

20. tio (0.38%)

Of these, “the” is by far and away the most common. So, it is fairly likely that “toq”
in our ciphertext corresponds to “the” in English! This is backed up by looking at
frequencies of individual characters; t and q are the two most common characters in
our ciphertext, while t and e are the two most common characters in English.

• If we apply this observation — that it is likely that T 7→ T,O 7→ H, and Q 7→ E —
we get

Hvni thbnwk ment gn vt Ynkeen Ynbuejkbti vnr, jewjettvdli,

tevzhbnw hvr tg de gne ga theh. The avzylti hvr lgnw vwg

zgnajgnter thbk avzt vnr hvr cejaezter uvjbgyk reubzek agj

vugbrbnw bt. Dyt thbk mvk cejaeztli vll jbwht dezvyke, tg

de avbj, kg hvr the ktyrentk. The kikteh mgjker fybte mell

vnr, vk hvccenk bn kyzh zvkek, hvr tvken gn the ktvtyk ga

tjvrbtbgn. Leztyjek zlevjli tggk clvze, dezvyke thei meje

rgmn theje gn the tbhetvdle bn dlvzk vnr mhbte. The avzt thvt

ng-gne vttenrer mvk vn bjjeleuvnt retvbl. Bt mvk gzzvkbgnvlli

hvbntvbner thvt thbk hevnt thvt the leztyjek rbr ngt bn avzt

hvccen vt vll, dyt ng-gne euej vttenrer theh tg abnr gyt

ba thbk mvk tjye. Vnimvi, bt mvk vjwyer (di the Jevrej bn

Mgglli Thbnkbnw mhbzh bk lbke Ayppi Lgwbz, gnli lekk kg) thvt

leztyjek hvr tvken clvze bn ekkenze, kg thvt mvk vll jbwht,

tgg.

(The symbols we “guessed” are in red.

• This guess lets us make more guesses. For example, we can see lots of repeated two-
letter words of the form “tg”. There is only one common two-letter English word that
starts with a t: “to.” So, it is a reasonable guess that G 7→ O, and therefore that

Hvni thbnwk ment on vt Ynkeen Ynbuejkbti vnr, jewjettvdli,

tevzhbnw hvr to de one oa theh. The avzylti hvr lonw vwo

zonajonter thbk avzt vnr hvr cejaezter uvjboyk reubzek aoj

vuobrbnw bt. Dyt thbk mvk cejaeztli vll jbwht dezvyke, to

de avbj, ko hvr the ktyrentk. The kikteh mojker fybte mell

vnr, vk hvccenk bn kyzh zvkek, hvr tvken on the ktvtyk oa

tjvrbtbon. Leztyjek zlevjli took clvze, dezvyke thei meje

romn theje on the tbhetvdle bn dlvzk vnr mhbte. The avzt thvt

no-one vttenrer mvk vn bjjeleuvnt retvbl. Bt mvk ozzvkbonvlli

hvbntvbner thvt thbk hevnt thvt the leztyjek rbr not bn avzt

hvccen vt vll, dyt no-one euej vttenrer theh to abnr oyt

ba thbk mvk tjye. Vnimvi, bt mvk vjwyer (di the Jevrej bn

Moolli Thbnkbnw mhbzh bk lbke Ayppi Lowbz, onli lekk ko) thvt

leztyjek hvr tvken clvze bn ekkenze, ko thvt mvk vll jbwht,

too.

6

• We can continue in this fashion; for example, we might look at the multiple “thvt”
instances, and decide that the character “v” is likely to correspond to “a”, as that’s
the only vowel that makes this a word.

Hani thbnwk ment on at Ynkeen Ynbuejkbti anr, jewjettadli,

teazhbnw har to de one oa theh. The aazylti har lonw awo

zonajonter thbk aazt anr har cejaezter uajboyk reubzek aoj

auobrbnw bt. Dyt thbk mak cejaeztli all jbwht dezayke, to

de aabj, ko har the ktyrentk. The kikteh mojker fybte mell

anr, ak haccenk bn kyzh zakek, har taken on the ktatyk oa

tjarbtbon. Leztyjek zleajli took claze, dezayke thei meje

romn theje on the tbhetadle bn dlazk anr mhbte. The aazt that

no-one attenrer mak an bjjeleuant retabl. Bt mak ozzakbonalli

habntabner that thbk heant that the leztyjek rbr not bn aazt

haccen at all, dyt no-one euej attenrer theh to abnr oyt

ba thbk mak tjye. Animai, bt mak ajwyer (di the Jearej bn

Moolli Thbnkbnw mhbzh bk lbke Ayppi Lowbz, onli lekk ko) that

leztyjek har taken claze bn ekkenze, ko that mak all jbwht,

too.

• We are nearly done. We can now start exploiting the longer words in our sentence: for
instance, consider the word “attenrer.” If you search for “atte**e*” on onelook.com,
you’ll come across only one word that has identical third-to-last and last characters:
“attended.”

Therefore, we can guess that N 7→ N and R 7→ D.

Hani thbnwk ment on at Ynkeen Ynbuejkbti and, jewjettadli,

teazhbnw had to de one oa theh. The aazylti had lonw awo

zonajonted thbk aazt and had cejaezted uajboyk deubzek aoj

auobdbnw bt. Dyt thbk mak cejaeztli all jbwht dezayke, to

de aabj, ko had the ktydentk. The kikteh mojked fybte mell

and, ak haccenk bn kyzh zakek, had taken on the ktatyk oa

tjadbtbon. Leztyjek zleajli took claze, dezayke thei meje

domn theje on the tbhetadle bn dlazk and mhbte. The aazt that

no-one attended mak an bjjeleuant detabl. Bt mak ozzakbonalli

habntabned that thbk heant that the leztyjek dbd not bn aazt

haccen at all, dyt no-one euej attended theh to abnd oyt

ba thbk mak tjye. Animai, bt mak ajwyed (di the Jeadej bn

Moolli Thbnkbnw mhbzh bk lbke Ayppi Lowbz, onli lekk ko) that

leztyjek had taken claze bn ekkenze, ko that mak all jbwht,

too.

Repeating this process a few more times (“Jeadej” should be “reader,” so J 7→ R”;
“habntabned” should map to “maintained,” so H 7→ M , B 7→ I; “haccen” maps to
“happen”, so C 7→ p; etc) will eventually give us the following as our source text:

7

http://www.onelook.com/?w=atte%3F%3Fe%3F&ls=a

Many things went on at Unseen University and, regrettably,

teaching had to be one of them. The faculty had long ago

confronted this fact and had perfected various devices for

avoiding it. But this was perfectly all right because, to

be fair, so had the students. The system worked quite well

and, as happens in such cases, had taken on the status of

tradition. Lectures clearly took place, because they were

down there on the timetable in black and white. The fact that

no-one attended was an irrelevant detail. It was occasionally

maintained that this meant that the lectures did not in fact

happen at all, but no-one ever attended them to find out if

this was true. Anyway, it was argued (by the Reader in Woolly

Thinking --- which is like Fuzzy Logic, only less so) that

lectures had taken place in essence, so that was all right,

too.

Cryptography, now with Terry Pratchett!2

Some of the weaknesses in this algorithm can be fixed, as we illustrate below:

Algorithm. Vigenère ciphers. In a sense, the main weakness of the simple substitution
cipher is that each plaintext letter always corresponded to the same encrypted symbol: this
allowed us to use our knowledge of English to break the code. We can fix this, however, by
using a Vigenère cipher!

Specifically: the key to a Vigenère cipher is a code word k that is some string of char-
acters. To illustrate, suppose that the code word is “bah.” To encrypt some message, like
(for example) “Friendship is Magic!,” we use the code word as a way to “shift” the letters
of the codephrase as follows:

1. Write down your message. Below it, write a number of copies of the codeword so that
each character in our message is matched up with a character from the codeword, as
below:

Friendship is Magic!

bahbahbahb ah bahba

2. Then, take each character in the message, and “shift” it by the codeword character
corresponding to it! In other words, take each codeword character, interpret it as a
number (i.e. a 7→ 1, b 7→ 2, . . .), and circularly shift the message character to the right
that many places. For example, our message becomes

Hsqgoluiqr ja Obokd!

Example. We provide another example here, this one a bit more long-form. Consider the
codeword “bode,” and the message to be encoded3

2This quote of his is not a wholly accurate sentiment for your UCSB teachers. We like teaching you!
Usually.

3The Wasp, a poem by Ogden Nash. He’s great.

8

The wasp and all his numerous family

I look upon as a major calamity.

He throws open his nest with prodigality,

But I distrust his waspitality.

In this setting, we would form the four lines

The wasp and all his numerous family

bod ebod ebo deb ode bodebode bodebo

I look upon as a major calamity.

d ebod ebod eb o debod ebodebod

He throws open his nest with prodigality,

eb odebod ebod ebo debo debo debodebodeb

But I distrust his waspitality.

ode b odebodeb ode bodebodebod

which results in the text

Vwi bcht fps eqn wmx pjqjtdyx hpqnnn

M qqdo zrdr fu p qfldv hcaerkic.

Mg ilwqlw trtr mkh rjui anvw twqsmlcamya,

Qyy K smxvgyxv wmx ypwukieqkic.

Weaknesses. This algorithm, given a sufficiently long codephrase, can avoid all of the
issues that came up with our earlier work: given a codephrase that’s like a few sentences
long, then we would expect any given letter in our message to be shifted by many different
values, and therefore that analyzing the character distributions will be useless.

And this is true! However, it is still weak to attacks that exploit the underlying structure
of the English language. Specifically, there is a technique, called the Kasiski test, that we
can use to break this code.

Roughly speaking, the Kasiski test is centered around the following observations:

• English has a lot of repeated sets of characters. We used this structure to great success
in our earlier problem: we broke our earlier code largely by looking for repeated triples
of characters and matching them up to known English characters.

• It is likely that our source message, being originally some large English text, has a
number of often-repeated sequences. While it is possible that not all of those repeats
will be preserved by the Vigenère cipher, (i.e. in our earlier text sample, the triple
“him” occurred above the triple “ebo” the second time and “ode” the third time,)
it is certainly likely that some triples will line up nicely with our code word, and
therefore still occur as triples (for example, the first and second occurrences of “him”
are matched with the same triple “ode.”)

• Why do we care about these repeated phrases in our encrypted text? Well: if they
correspond to repeated phrases in the original text (and aren’t there just by accident,)
then they tell us something about our codeword! In particular, they tell us that if our
codeword sent those two repeated phrases to the same phrases, then both of those
phrases were lined up over the “same” portion of our codeword!

9

• Therefore, there must be a whole number of copies of the codeword separating these
two phrases, in order for them to line up! For example, using this observation on our
text above with the repeated “his” phrase, if we count the number of letters between
the first occurrence of “his” and the second occurrence of “his,” we get 88. This tells
us that it is likely that our codephrase is a divisor of 88; i.e. one of 2,4,8 or 11. Further
analysis, by looking for more of these repeated sets, can eliminate other options, and
tell us the precise length of the codeword we’re studying.

• From there, we simply need to find the elements of the codeword! We can do this
just like we did for the simple substitution cipher, basically. To be specific: break our
cipher text into groups, each corresponding to the character of the code word that
translated it. I.e. if we had the text from our earlier example and had deduced that
the code word was length 4, we could then simply group our cipher text into four
groups, each corresponding to the characters in the ciphertext that were shifted by a
fixed codeletter.

On each of these groups, we can then perform the character analysis we did before,
and deduce one-by-one the codeword’s characters. We omit a worked example here,
but it is entirely within the reader’s powers to solve one in the HW!

Next week, we’ll talk about how to create a “better” encryption scheme, and what some
of the encryption schemes used today are!

10

	Cryptography: Classical Approaches

