
Math 7H Professor: Padraic Bartlett

Lecture 9: Trees and Art Galleries

Week 10 UCSB 2015

1 Prelude: Graph Theory

This talk uses the mathematical concepts of graphs from our previous class. In particular,
it refers to the concepts of trees and cycles, which we redefine here:

Definition. The cycle graph on n vertices, Cn, is the graph on the vertex set {v1, v2, . . . vn}
with edge set E(Cn) = {{v1, v2}, {v2, v3}, . . . {vn−1, vn}, {vn, v1}}. The cycle graphs Cn can
be drawn as n-gons, as depicted below:

...

Definition. The path graph on n vertices, Pn, is the graph on the vertex set {v1, v2, . . . vn}
with edge set E(Cn) = {{v1, v2}, {v2, v3}, . . . {vn−1, vn}}. The path graphs Pn can be drawn
as paths of length n, as depicted below:

...

Definition. Given a graph G and another graph H, we say that H is a subgraph of G if
and only if V (H) ⊂ V (G) and E(H) ⊂ E(G).

Definition. Given a graph G, we call G connected if for any two vertices x, y ∈ V (G),
there is a path that starts at x and ends at y in our graph G.

Definition. If a graph G has no subgraphs that are cycle graphs, we call G acyclic. A
tree T is a graph that’s both connected and acyclic. In a tree, a leaf is a vertex whose
degree is 1.

Example. The following graph is a tree:
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With these terms restated, we can move to today’s problem: the Art Gallery Problem!

2 The Art Gallery Problem

Question 1. Suppose that you have an art gallery that is shaped like some sort of n-polygon,
and you want to place cameras with 360◦-viewing angles along the vertices of your polygon
in such a way that the entire gallery is under surveillance. How many cameras do you need?

A gallery guarded by 2 guards, Red and Green.

One trivial upper bound you can come up with is n guards: just put one guard on each
vertex of our polygon with n sides!

Can we do better? As it turns out, we can!

Claim. (Chvátal) You need at most bn/3c-many cameras to guard a n-polygon.

It bears noting that this bound of bn/3c is sharp. Consider the following art gallery:
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A crown-shaped art gallery.

In this sort-of “crown-shaped” art gallery, each prong of the crown (i.e. triangle) needs
to have a guard on one of its three vertices to guard the entire triangle, as no other vertices
can “see” the entirety of that prong. Therefore, you need one guard for each prong; i.e.
n/3 guards, for a crown with n/3 prongs (i.e. n vertices.)

To prove Chvátal’s theorem, we need a few lemmas first:

Lemma 2. If G is a n-polygon with n ≥ 4, then there is some line segment formed by two
of the vertices in G that lies entirely in G.

Proof. Let v be the leftmost vertex of G. (If there is a tie, take v to be the top leftmost
vertex of G.) Let u and w be v’s neighbors, and examine the line segment uw. If this lies
entirely in G, great! Otherwise, it must cross some edge of G; consequently, there must be
a vertex of G that lies inside of the triangle spanned by the three points u, v, w. Let x be
the vertex furthest from the line segment uw that lies in this triangle. Then, look at the
line segment vx; because x is the furthest point in ∆uvw from uw, there can’t be any edges
of G that are crossed by this line segment (as one of their endpoints would necessarily be
closer to v.) So vx lies entirely in G.

Corollary 3. Any n-polygon can be divided into n− 2-triangles.

Proof. Using the process above, repeatedly divide our n-polygon into a pair of smaller
polygons, one with k vertices and the other with n+2−k vertices, until all of these polygons
are triangles. By induction, it is not hard to see that the number of these triangles is n− 2.

So: we can turn any polygon into a number of triangles stuck to each other! We use
this to turn any art gallery on n vertices into a graph on n− 2 vertices, as follows:

• Start by taking our polygon G and turning it into a collection {Ti}n−2i=1 of triangles.

• For each triangle Ti, associate a vertex ti.

• Connect two vertices ti, tj with an edge if their corresponding triangles Ti, Tj share a
face.

Call this graph T ′ the dual graph of T .
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Turning the crown into a tree.

This is a graph! Furthermore, it’s a fairly special kind of graph: it’s a tree! We prove
this here:

Lemma 4. Let G be a polygon, T be a triangulation of G performed as above, and let T ′

be the dual graph to this triangulation (i.e. put a vertex in the center of every face of T ,
and connect two faces iff they share an edge.) This graph is a tree.

Proof. Let T be our triangulated polygon. In our construction above, each of the edges of
T ′ corresponds to a diagonal of the polygon G, that divides our polygon into two distinct
smaller polygons. Because cutting our polygon G along one of those diagonals will always
divide the polygon into two disconnected pieces, doing so will always result in two triangles
that are no longer connected by a chain of triangles with adjacent faces!

In other words: in the dual graph T ′ that we made above, removing any edge disconnects
our graph! So our graph has the following properties:

• There is a path between any two vertices because our polygon is connected.

• There is at most one path between any two vertices, because if there were two paths
and we cut an edge on one path, our graph would not be disconnected (we could simply
use the other path to connect vertices!) In other words, our graph is acyclic, because
a cycle exists in our graph if and only if there are two different paths connecting two
vertices! (Prove this to yourself if you are skeptical.)

Therefore T is connected and acyclic: i.e. it’s a tree!

This tree is remarkably useful; in particular, we can use its structure to create a system
for assigning guards! We do this here:

Lemma 5. Take a polygon G that has been triangulated as described earlier. Then we can
color each of the vertices of G either red, blue or green, so that each triangle contains one
vertex of each color.
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Proof. For our triangulated polygon G, take the dual graph/tree T ′ that we constructed
above, and pick some vertex t0 in it. For all relevant integers k, let T ′k be the collection of
vertices that are distance k away from v, for every k. (The distance of two vertices from
each other is the length of the shortest path between them.)

Color the vertices of T as follows:

• Take the triangle in G associated to t0 and color its three vertices red, green and blue.

• Suppose we’ve colored all of the vertices attached to triangles with corresponding
vertices in T ′i , for some i. Now, look at the triangles corresponding to vertices in T ′i+1.
Each triangle associated to a vertex ti+1 in this set shares exactly one edge with some
triangle associated to a vertex in T ′i ; this is because if our vertex is distance i+1 from
t0, then (by taking the path of distance i + 1 and walking one step closer to t0) there
is an adjacent vertex (and thus face-sharing triangle) at distance i, i.e. in T ′i .

Furthermore, because T ′ is a tree, there is exactly one edge from any ti+1 to vertices
in the set

⋃i+1
j=0 T

′
j . This is because the existence of any other edge would create a

cycle, because it would give us two distinct paths to t0!

Therefore, the triangle associated to ti+1 shares a face with only one other triangle
in all of the sets that we’ve already colored! Therefore, only two of its vertices have
been assigned colors. Thus, there is always some spare third color to use to color its
third vertex! Use this to color its third vertex, and repeat for all vertices in Ti+1.

• Repeat until every vertex in T is colored. Note that each triangle has one vertex of
each color.

Corollary 6. You need at most bn/3c-many cameras to guard a n-polygon.

Proof. By the above, create a triangulation and 3-coloring of our polygon G with the colors
{R,G,B}. Now, station guards at whichever color is used the least number of times in this
triangulation! Each guard can see everything in their assigned triangle by construction.
Therefore, the entire art gallery is guarded.

To guard this crown, simply pick one of (red, green, blue,) and station guards at vertices of that color.
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