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Today’s lecture is a strange one; in it, we’re going to use a fundamental proof technique
(induction) to prove a deep and beautiful fact in topology (the Euler characteristic) to
answer a problem in chemistry! It might seem sort of strange, but in fact these sorts of
connections are what mathematics becomes as you go further into it; lectures are almost
never “let’s talk about this one idea,” but rather become “what happens when you stick
together ideas x,y and z?”

Also, it’s gorgeous! We start with the fundamental idea for today: induction!

1 Induction

Sometimes, in mathematics, we will want to prove the truth of some statement P (n) that
depends on some variable n. For example:

• P (n) = “The sum of the first n natural numbers is n(n+1)
2 .”

• P (n) = “If q ≥ 2, we have n ≤ qn.

• P (n) = “Every polynomial of degree n has at most n roots.”

For any fixed n, we can usually use our previously-established methods to prove the
truth or falsity of the statement. However, sometimes we will want to prove that one of
these statements holds for every value n ∈ N. How can we do this?

One method for proving such claims for every n ∈ N is the method of mathematical
induction! Proofs by induction are somewhat more complicated than the previous two
methods. We sketch their structure below:

• To start, we take our claim P (n), that we want to prove holds for every n ∈ N.

• The first step in our proof is the base step:in this step, we explicitly prove that the
statement P (1) holds, using normal proof methods.

• With this done, we move to the induction step of our proof: here, we prove the
statement P (n) =⇒ P (n + 1), for every n ∈ N. This is an implication; we will
usually prove it directly by assuming that P (n) holds and using this to conclude that
P (n + 1) holds.

Once we’ve done these two steps, the principle of induction says that we’ve actually proven
our claim for all n ∈ N! The rigorous reason for this is the well-ordering principle,
which we discussed in class; however, there are perhaps more intuitive ways to think about
induction as well.

The way I usually think of inductive proofs is to think of toppling dominoes. Specifically,
think of each of your P (n) propositions as individual dominoes – one labeled P (1), one
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labeled P (2), one labeled P (3), and so on/so forth. With our inductive step, we are insuring
that all of our dominoes are lined up – in other words, that if one of them is true, that
it will “knock over” whichever one comes after it and force it to be true as well! Then,
we can think of the base step as “knocking over” the first domino; once we do that, the
inductive step makes it so that all of the later dominoes also have to fall, and therefore that
our proposition must be true for all n (because all the dominoes fell!)

To illustrate how these kinds of proofs go, here’s an example:

Claim. For any n ∈ N, take a 2n × 2n grid of unit squares, and remove one square from

somewhere in your grid. The resulting grid can be tiled by - shapes.

Proof. As suggested by the section title, we proceed by induction.
Base case: for n = 1, we simply have a 2× 2 grid with one square punched out. As this

*is* one of our three-square shapes, we are trivially done here.
Inductive step: Assume that we can do this for a 2k × 2k-grid without a square, for any

k ≤ n. We then want to prove that we can do this for a 2n+1 × 2n+1 grid minus a square.
So: take any such grid, and divide it along the dashed indicated lines into four 2n × 2n

grids. By rotating our grid, make it so that the one missing square is in the upper-right
hand corner, as shown below:

Take this grid, and carefully place down one thre-square shape as depicted in the picture
below:
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Now, look at each of the four 2n × 2n squares in the above picture. They all are missing
exactly one square: the upper-right hand one because of our original setup, and the other
three because of our placed three-square-shape. Thus, by our inductive hypothesis, we know
that all of these squares can also be tiled! Doing so then gives us a tiling of the whole shape;
so we’ve created a tiling of the 2n+1 × 2n+1 grid!

As this completes our inductive step, we are thus done with our proof by induction.

Let’s look at another example of an inductive problem:

Example. Draw some straight lines in the plane. Notice that when we do this, we divide
the plane up into regions bounded by these lines. What is the maximum number of regions
we can divide the plane into with n lines?

Answer. Again, take a moment to work out some base cases and figure out what’s going
on here!

Here’s a few observations you’re likely to have made:

1. No lines break the plane into one piece, as we’ve not split anything up! One line
breaks the plane into two pieces; two lines breaks the plane into up to four pieces if
those lines are not parallel; three lines can break the plane up into seven pieces if we
are careful to not let all three lines intersect at the same place; and four lines can
break the plane up into up to 11 pieces if we are again careful to not have any more
than two lines intersect at any point, and also not have any parallel lines! In general,
it looks like n lines is giving us 1 + n(n+1)

2 regions, given enough data and staring at
things.

2. In general, it looks like the n-th line is adding at most n new regions to our plane. To
see why this might hold in general, consider the process of drawing any line.

(a) If our line intersects any region, it divides that region into two pieces! This is
the only way our line creates new regions.

(b) Our line enters a region if and only if it crosses one of the lines that bounds that
region.

(c) As well, before our line crosses any other regions, it by default starts in some
region already.

(d) Therefore, the total number of times our line intersects other lines, plus one, is
the total number of new regions created!

(e) We can cross each other line at most once, as our lines are straight.

(f) Therefore, if there are n lines in existence, we can create at most n + 1 new
regions by adding a n + 1-th line.

3. Furthermore, notice that it is always possible to draw such a line! To draw a line, we
need to give two pieces of information:

(a) Its slope needs to not be parallel to any other existing line’s slope, to insure that
it can intersect that line. There are only n slopes currently used and infinitely
many possibilities, so this is always possible.
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(b) Given a slope, we need to pick a x-intercept for our line. Furthermore, we want
to do this so that our line does not intersect any other lines at places where
multiple lines are already intersecting: this would make our line use up multiple
“intersecting other line” instances, while only entering one region (which means
we wouldn’t get to n+1!) There are only finitely many such existing intersection
points, and infinitely many choices of x-intercept; so we can also avoid all of these
possibilities.

Therefore, it is possible to always draw a line that intersects other lines in n places,
and thus that creates n + 1 new regions!

By the above, we have a rather nice recurrence relation: if Ln is the total number of regions
that we can divide the plane up into with n lines, we have

Ln+1 = (n + 1) + Ln.

Using this, we can prove that our guess of Ln = 1 + n(n+1)
2 is right via induction:

Base case: We know L0 = 1 = 1 + 0·1
2 from our case work.

Ind. step: Assume that Ln = 1 + n(n+1)
2 for each n from 1 to m; we will seek to prove that

Lm+1 = 1 + (m+1)(m+2)
2 . This is pretty quick: notice that

Lm+1 = (m + 1) + Lm, by our recurrence relation,

= (m + 1) +
m(m + 1)

2
+ 1, by our inductive hypothesis,

=
m2 + m + 2m + 2

2
+ 1

=
(m + 1)(m + 2)

2
+ 1, as claimed.

2 Euler characteristic

To start this part of the talk, I need to introduce a very useful concept that we’ll refer to
in many future lectures: graphs!

Definition. A graph G with n vertices and m edges consists of the following two objects:

1. a set V = {v1, . . . vn}, the members of which we call G’s vertices, and

2. a set E = {e1, . . . em}, the members of which we call G’s edges, where each edge ei is
an unordered pair of distinct elements in V , and no unordered pair is repeated. For
a given edge e = {v, w}, we will often refer to the two vertices v, w contained by e as
its endpoints.

Example. The following pair (V,E) defines a graph G on five vertices and five edges:

• V = {1, 2, 3, 4, 5},
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• E = {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 1}}.

Something mathematicians like to do to quickly represent graphs is draw them, which we
can do by taking each vertex and assigning it a point in the plane, and taking each edge
and drawing a curve between the two vertices represented by that edge. For example, one
way to draw our graph G is the following:

1

2

34

5

We could also draw our graph like this:

1

3

52

4

One nice property of a graph is when we can draw it in such a way that none of the
edges cross. We call this property planarity:

Definition. We say that a graph G is planar if we can draw it in the plane so that none
of its edges intersect.

For example, the pentagon above is planar, because you can draw it without having any of
its edges cross with the first drawing! (In particular, this graph is planar even though the
second drawing does have crossing edges; all we need is that there is some way to draw it
without crossings.)

One useful notion for a planar graph is the idea of “faces,” i.e. the regions bounded by
the edges of our graph.

Definition. For any planar graph G, we can define a face of G to be a connected region
of R whose boundary is given by the edges of G.

For example, the following graph has four faces, as labeled:

f1
f2 f4

f3

Planar graphs have a surprising property: for any planar graph G, if we let V denote
the number of edges in the graph, E denote the number of edges, and F denote the number
of faces, then V − E + F is always the same! In particular, it is always 2! We prove this
fact, called the Euler characterstic of the plane:
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Theorem. (Euler characteristic.) Take any graph that has been drawn in R2 as a planar
graph. Then, if V is the number of vertices, E is the number of edges, and F is the number
of faces in this graph, we have the following relation:

V − E + F = 2.

Proof. We will actually prove a stronger claim: we will show that any planar multigraph
(a graph, but where we allow multiple edges between vertices, and also edges that start and
end at the same vertex) satisfies the V −E + F = 2 formula. For the rest of this proof, we
will assume that graph and multigraph are synonymous; once we are done with this proof,
though, we will stop assuming this.

3

1

2

45

6
f1

f2
f3

f6

f4

f5

We proceed by induction on the number of vertices. Suppose that V = 1. Then our
graph looks like something of the following form:

...

...

...

I claim that V − E + F = 2 for any of these graphs, and prove it by a second induction
on the number of edges. For a zero-edge graph, this is easy; we have one vertex, no edges
and one face, we have V − E + F = 1 − 0 + 1 = 2. Now, assume via induction that every
one-vertex multigraph on n edges has V − E + F = 2. Take any graph on one vertex with
n + 1 edges. Pick one of these edges, and look at it.

I claim that this edge borders exactly two faces. To see why, take any edge, and assign
an orientation to it (i.e. if our edge is {x, y}, then orient the edge so that we travel from
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x to y.) If you do this, then our edge has two “sides,” the left- and right-hand sides, if we
travel along it via this orientation.

x

y

(left) (right)
x

y

(left) (right)

There are two possibilities, as drawn above: either the left- and right-hand sides are different,
or they are the same. This tells us that our edge either borders one or two faces! To see
that we have exactly two, we now recall that our edge (because our graph has exactly one
vertex) must start and end at the same vertex. In other words, it is a closed loop: i.e.
its outside is different from its inside! In other words, our left- and right-hand sides are
different, and our edge separates two distinct faces.

Therefore, deleting this edge does the following things to the graph: it decreases our
edge count by 1, and also decreases our face count by 1 (as we merge two faces when we
delete this edge.) In other words, deleting this edge does not change V − E + F ! But by
induction we know that V − E + F = 2 for all 1-vertex graphs on n edges, which is what
we get if we delete this edge from a n + 1-edge graph. So we’re done!

This settles our base case for our larger induction on V , the number of vertices. We
now go to the second phase of an inductive proof: we show how to reduce larger cases to
smaller cases!

To do this, consider the following operation, called edge contraction. Take any edge
with two distinct endpoints. Delete this edge, and combine its two endpoints together: this
gives us a new graph! We draw examples of this process below: we start with a graph on
six vertices, and contract one by one the edges labeled in red at each step.
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2

45

6

1

2

45

6

1

2

5

6

1

26 26 2

Contracting an edge decreases the number of vertices by 1 at each step, as it “squishes
together” two adjacent vertices into one vertex. It also decreases the number of edges by 1
at each step, as we are contracting an edge to a point! Finally, it never changes the number
of faces; if two faces were distinct before this process happens, they stay distinct, as we’re
not making any cuts in any of our boundaries (and instead are just shrinking them partially
a bit!)
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But this means that V −E+F is still constant! Therefore, by induction, if V −E+F holds
for every n-vertex multigraph, it holds for any n + 1-vertex multigraph by just contracting
an edge! This finishes our induction, and thus our proof.

3 Chemistry

In chemistry, a fullerene1 is (roughly) any molecule made entirely out of carbons that
makes a sphere or ellipsoid. Fullerenes have lots of strange applications ranging from cancer
treatments to superstrong materials; some people even conjecture that they are the seed
behind all organic life on Earth.

Accordingly, we’d like to understand them! To do this, let’s use a bit of mathematics.
In chemistry, carbon molecules want to do very specific things:

• Each carbon wants to be connected to three other carbons.

• Those connections do not want to cross.

• The faces formed by this graph want to all be either 5-cycles2 and 6-cycles. (Cycles
that are smaller or larger make the carbon molecules unstable and prone to breaking.)

With these simple restrictions, you can prove the following remarkable result:

Proposition 1. Any fullerene has precisely 12 5-cycles.

Proof. This is this week’s HW!

In chemistry, it seems that not every fullerene is realizable. In particular, one rule that
chemists have noticed that all fullerenes obey is that they never have two adjacent
pentagonal faces: this is probably because the pentagon is not a shape that carbons are
terribly happy in, and the stress of having any carbon in two such faces probably makes
any such molecule unstable.

Therefore, it seems likely that any viable fullerene will have to have all of its pentagonal
faces isolated. By the proposition above, it must have at least 60 vertices, as it has precisely
12 such faces, and each face has 5 vertices. So: does such a fullerene exist?

The answer, as it turns out, is yes! We draw it stretched out as a planar graph on the
next page:

1In popular science fiction, a fullerene is a plot device that basically allows you to do whatever you
want. See also: wormholes, quantum mechanics, hot cups of tea.

2The cycle graph on n vertices, Cn, is the graph on the vertex set {v1, v2, . . . vn} with edge set E(Cn) =
{{v1, v2}, {v2, v3}, . . . {vn−1, vn}, {vn, v1}}. The cycle graphs Cn can be drawn as n-gons, as depicted below:

...
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And also as a sphere, which is what it’s like when we don’t stretch it out:

Cool, right?
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