
Math 7H Professor: Padraic Bartlett

Lecture 5: Drawing Fractals

Week 5 UCSB 2015

(This talk draws heavily on the Hasse Prize-winning paper “Fractals, Graphs and Fields”
by F. Mendivil. It’s a fantastic read, and is remarkably accessible; check it out!)

1 Fractals

1.1 Definitions and Examples

Intuitively, a “fractal” is a shape or set in mathematics that is “self-similar:” in other words,
fractals are sets that “look the same” when we zoom in on them.

From top to bottom: the Vicsek fractal, the Sierpinski triangle, and the dragon curve. The fractal is drawn

at right, with the first few steps of the “pattern” used to generate each fractal drawn at left.

“Looks the same,” however, is not a particularly rigorous definition. In this talk, we
are going to consider one specific notion for fractals: the concept of an iterated function
system.

Before defining an iterated function system (IFS for short), we first give an example to
illustrate the ideas here.

Example. Take the unit square X = [0, 1]2 ⊂ R2, and the following three functions X →
X:
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Given any subset A ⊂ X, set wi(A) = {(wi(x, y) | (x, y) ∈ A}.
With all of this set up, we can finally define the iterated function system W on X

associated to {w1, w2, w3} as follows: given any set A, define1

W (A) = w1(A) ∪ w2(A) ∪ w3(A).

In words: the map W takes in any set A and outputs the three sets w1(A), w2(A) and
w3(A); each of which are 1/4-scale copies of A in the top-left, bottom-left, and bottom-right
quadrants of [0, 1]2. To illustrate this idea, consider the following subset A of [0, 1]2:

When we apply W to this “smiling-face” set, we get the following object:

We can apply W again to get the following:

If we keep applying W , we get the following pattern:

...

We call the set at the far right above the limit set L of our iterated function system W .
Notice two things about this limit set:

• In the limit, it didn’t matter what our initial set A was! We started with a smiley-
face for A, but in the limit we can’t tell the difference between this shape and (say)
a frowning face, or really anything else.

• If we were to start with our initial set A equal to our limit set L: i.e. suppose that
we let A be the following set:

1If you haven’t seen this notation before: we write A ∪ B to denote the set that consists of all of the
elements that are in either A or B (or both!) We call this the union of the two sets A and B.
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Then, notice that applying W to this set doesn’t change anything: i.e. we have

So our limit set, in a sense, is fixed under the map W ! We will call such sets fixed
sets in general.

In general, we define an iterated function system as follows:

Definition. A iterated function system consists of the following objects:

• A space X that we want to iterate our maps on. (Usually this will be [0, 1]2, though
other spaces like R2 or [0, 1]3 are certainly used as well!)

• A collection of maps {w1, w2, . . . wk}, such that each wi is a map X → X.

With these two objects defined, we say that the IFS associated to X, {w1, . . . wn} is the
following map W , defined on any subset A of X as follows:

W (A) = w1(A) ∪ w2(A) ∪ . . . ∪ wn(A).

Definition. For any subset X of Rn, a map w : X → X is called a contraction with
contraction factor s if

• For any two points a, b ∈ X, we have that the distance between w(a) and w(b),
d(w(a), w(b)), is at most s · d(a, b).

• s is the smallest real number such that the above point is true.

In other words, the map w “shrinks” space by a factor of s. For instance, all three of the
maps w1, w2, w3 from our example above are contractions with contraction factor 1/2.

The reason that we like IFS is that in general, they always exhibit the “limit/fixed
set” phenomena that we noticed in our example above! Specifically, we have the following
theorem:
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Theorem. (Banach Fixed-Point Theorem.) Suppose that W is an IFS with associated
maps {w1, w2, . . . wn}, with the following property: there is some s < 1 such that all of the
maps wi are contractions with contraction factor no greater than s.

Then W has a unique limit set; in other words, there is some set L such that for any2

subset A ⊂ X, we have

lim
n→∞

Wn(A) = L.

Moreover, this set L is the unique “fixed set” for the map W : that is, L is the only set such
that

W (L) = L.

We’re not going to prove this in this class (though we may come back for it later!) Instead,
we’re going to assume it’s true (it certainly worked for our example above!) and focus
instead on how we can work with an IFS!

1.2 How to Draw a Fractal: A Deterministic Approach

In particular, I want to consider the following problem: suppose we are given an IFS, and
we want to draw its limit set. How can we do this?

To make this problem more tractable, let’s suppose that we’re working with our example
from earlier: that is, an IFS on X = [0, 1]2, with three maps w1, w2, w3, each of which have
contraction factor 1/2. Suppose that we want to display the limit set of this IFS on a
monitor; to be particularly specific, let’s suppose that we’re trying to draw this limit set on
a n× n grid of pixels.

How can we do this? Well, let’s subdivide [0, 1]2 into a grid of 1
n ×

1
n -sized cells, each of

which we think of as a pixel. If any points from our limit set is contained within any such
cell, we turn that pixel “on,” and otherwise keep that cell turned “off.”

So, for example, if we had a particularly small monitor — say, 8× 8 pixels — we would
display the following images when drawing the sets ,, W (,),W 2(,), . . .

...

Notice that when we do this, our image “stabilizes” after a few steps! In particular, the
pixelated image we drew for W 3(,) was the same as for W 4(,) and W 5(,) (and in fact
for any future iteration, if you draw it out!)

This is not too surprising, when you look at how the maps wi work. In particular, notice
the following property:

2In practice, there are some minor restrictions on what “any” means here that need a lot of real analy-
sis/topology to talk about. Basically, any set you’re going to ever look at will work here!
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Lemma. Take any two points ~a,~b ∈ X, and any sequence wi1 , . . . wim of our IFS maps.
Then, we have that

d
(
wi1(wi2(. . . (wim(~a)))), wi1(wi2(. . . (wim(~b))))

)
≤ d(~a,~b)

2m
.

Proof. This is just because each map wi contracts space by a factor of 1/2; therefore, if we
apply m of these maps, we contract space by a factor of 1/2m!

Suppose that
√
2

2m < 1
n . Then, on our n × n pixel grid, notice that this tells us that for

any two points ~a,~b, the two points

wi1(wi2(. . . (wim(~a)))), wi1(wi2(. . . (wim(~b))))

are distance at most 1/n apart; in other words, the two points ~a,~b are “indistinguishable”
on our monitor after m applications of our IFS maps!

In particular, this tells us that for any ~a and any wim+1 , we cannot distinguish wi1(wi2(. . . (wim(~a))))
and wi1(wi2(. . . (wim(wim+1(~a))))) — i.e. if we want to draw our image, we only need to
apply W to our set m times, instead of having to somehow apply it “infinitely” many times!
In particular, only the most recently applied m maps matter for determining where ~a is
sent; applying more maps doesn’t matter!

This gives us our first answer for how to draw our image on a n×n grid of pixels: simply

pick out m such that
√
2

2m < 1
n , take any set A, and create the set Wm(A). To make our

lives easier, because (as noticed before) it doesn’t matter what set we start with, we can
start with a one-element set {~a} for any single point ~a:

Wm({~a}) = {wi1(wi2(. . . (wim(~a)))) | i1, . . . im ∈ {1, 2, 3}} .

This is a finite set, containing at most 3m many points (one for each sequence of length
m from {1, 2, 3}); if we draw them all, we get our image!

1.3 How to Draw a Fractal: A Randomized Approach

This, however, is not the most efficient approach. In the above system, we calculate the
two points

m functions︷ ︸︸ ︷
w1(w1(w1 . . . (w1(~a)) . . .)),

m functions︷ ︸︸ ︷
w2(w1(w1 . . . (w1(~a)) . . .))

separately; this takes us 2m calculations. However, this is very inefficient! As we noted
above, for our purposes, only the most recently applied m functions matter for determining
where a point goes. So, if we know

m functions︷ ︸︸ ︷
w1(w1(w1 . . . (w1(~a)) . . .)),
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we can simply apply w2 to this to get

m+1 functions︷ ︸︸ ︷
w2(w1(w1(w1 . . . (w1(~a)) . . .))),

which by our argument before is the same as applying the most recent m maps: i.e.

m functions︷ ︸︸ ︷
w2(w1(w1 . . . (w1(~a)) . . .))!

So, if we are clever, we can save ourselves m− 1 calculations here with this one point! This
inefficiency generalizes, of course — there was nothing special about the all-w1 sequence
here — which makes us want to know how to consistently avoid this inefficiency.

One solution for this is to adopt a randomized algorithm. Specifically, consider the
following process:

0. Take any point ~a ∈ X, and any sequence of m maps wi1 , . . . wim−1 . Set ~x0 =
wim(wim−1(. . . w1(~x))).

1. Suppose that we have defined the point ~xi. Randomly pick a value k ∈ {1, 2, 3}, and
define ~xi = wk(x).

2. Draw the point ~xi, and return to 1.

If we let the process above run long enough, we will eventually randomly list every possible
sequence of values from {1, 2, 3}; consequently, because only the most recent m values
matter for when we’re applying maps to a point, the process above will eventually generate
every point in Wm(~a)!

1.4 How to Draw a Fractal: Graphs and Eulerian Circuits

This, however, is still not the most efficient process. Consider the task of simply drawing a
limit set on a 4×4 grid, for which we would need to generate W 2({~a}). This set potentially
has 9 elements to consider:

w1(w1(~a)), w1(w2(~a)), w1(w3(~a)), w2(w1(~a)), w2(w2(~a)), w2(w3(~a)), w3(w1(~a)), w3(w2(~a)), w3(w3(~a)).

These correspond to the three length-2 sequences of symbols from {1, 2, 3}, namely

11, 12, 13, 21, 22, 23, 31, 32, 33.

If you head over to random.org and generate a random list of these sequences, you’ll be
surprised at how long a random sequence might take to generate these numbers! For
example, the first sequence of twenty numbers I tried,

32312123123211333112

is missing the 22 sequence. The second such sequence I tried worked,

22312113231332322123
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but the third one I tried failed to have the 13 sequence:

23332321121223121233

As well, you can notice that these sequences are also inefficient in a number of ways. All of
the three sequences above repeated several smaller strings multiple times; the first has 12
show up several times, for instance.

What we want, then is a way to create such a sequence that avoids repeating earlier
sequences (as this is inefficient) and yet lists all of the sequences we want! This is an
interesting combinatorial object, and as such mathematicians have given it a name:

Definition. A DeBruijn sequence on symbol set {1, 2, . . . N} with window length l is a
sequence made out of listing symbols from {1, 2, . . . N}, so that the following holds:

• Every possible string of l consecutive symbols comes up exactly once.

For example,

2231211 3 2 313 3 2 322123

is not a DeBruijn sequence on symbols {1, 2, 3} with window 2: as boxed above, we have
repeated a pair of length-2 strings. Conversely,

1122331321

is a DeBruijn sequence!
If we can find these DeBruijn sequences, we can use them as the “random” sequence in

our algorithm earlier to efficiently find and draw our limit sets! So it suffices to figure out
how to create these objects.

Surprisingly, this is where graphs come in! To see how this works, consider the following
small example, which we can use to generate the DeBruijn sequences on {1, 2, 3} with
window size 2.

Draw the following directed3 graph:

• Vertices: draw three vertices, one for each of {1, 2, 3}.

• Edges: draw an edge from every vertex to every other vertex, including itself. Label
each edge with the vertex that it ends at.

This gives us the following picture:

1

23

1

1
1

2

2
2

3

3

3

3This is a graph, where we add directions to all of our edges, and also allow a vertex to have a “loop-edge”
that goes to itself.
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In this situation, suppose we have something called an Eulerian walk of our graph G:
a walk4 on G so that every edge of G shows up exactly once.

We draw such a walk here:

1

1

1
1

2

2
2

3

3

3

3 2

Take any such walk, and do the following:

• Write down the name of the vertex our circuit starts at.

• Then, write down in order the names of each of the edges in our walk.

This gives us the following sequence:

1133221231.

Notice that this is a DeBruijn sequence! This is because for any pair of symbols (i, j) from
{1, 2, 3}, there is a unique vertex-edge pair in our graph that is also named (i, j) (as we
have three vertices 1, 2, 3 and each has an edge leaving it for each possible symbol 1, 2, 3,
thus giving us all nine possible triples (i, j)! So, if our walk doesn’t repeat any edge, then
writing down the edges will give us a DeBruijn sequence.

We can generalize this to a DeBruijn sequence on {1, 2, . . . N} with window size l as
follows:

• Vertices: draw a vertex for each element of {1, 2, . . . N}l−1: that is, a vertex for each
sequence of l − 1 symbols of {1, 2, . . . N}.

• Edges: for any two vertices of the form a1a2 . . . al−1, a2a3 . . . al−1b, draw an edge from
a1a2 . . . al−1 to a2a3 . . . al−1b and label it b.

This, too, gives us a DeBruijn sequence, and gives us a nice, efficient way to draw our
fractals. Cool!

4A walk in a graph is a sequence of edges e1, e2, . . . en so that the endpoint of ei is the start of ei+1 for
every i: in a sense, a “walk” is describing a way to move around on the edges of our graph!
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