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LINKING MATRICES IN SYSTEMS WITH PERIODIC BOUNDARY1

CONDITIONS2

ELENI PANAGIOTOU AND KENNETH C. MILLETT∗3

Abstract. Using the Gauss linking number, we define a new measure of entanglement, the4
linking matrix, for a collection of closed or open chains in 3-space. Periodic Boundary Conditions5
(PBC) are often used in the simulation of physical systems of filaments. Using the periodic linking6
number, defined in [24], we define the periodic linking matrix to study entanglement of closed or7
open chains in systems employing PBC. We study the properties of the periodic linking matrix as a8
function of cell size. We provide analytical results concerning the eigenvalues of the periodic linking9
matrix and show that some of them are invariant of cell-size.10
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1. Introduction. 113

The entanglement of open or closed filaments arises in many physical systems,14

such as polymers, biopolymers, fluid flows, textile weaves etc. Often, these systems15

consist of a large collection of filaments which interlace and cannot cross each other16

without breaking their constituent bonds. For the study of the conformational proper-17

ties of these systems, computer simulations are necessary. The computer simulations18

require the use of Periodic Boundary Conditions (PBC) to avoid having boundary19

effects.20

The uncrossability of the chains gives rise to entanglement. The degree of com-21

plexity of the entanglement of the chains dramatically affects their mechanical and22

dynamical properties. In determining the degree of entanglement in physical systems23

is therefore very important to understand their properties [11, 12, 10, 7, 32, 36, 34].24

Edwards first pointed out that in the case of ring polymers, the global entangle-25

ment of the chains can be studied by using tools from mathematical topology, such as26

the Gauss linking number [11, 12]. Since Edwards, many studies have been devoted to27

the topology of polymer rings and its relation to physical properties [14, 30, 20, 33, 13].28

However, in the case of linear polymers, the notion of topological invariant does not29

apply since topological open curves can be continuously deformed to attain any con-30

figuration [14, 21, 35]. A measure of global entanglement, that is meaningful both for31

closed or open chains, is the Gauss linking integral. For two closed chains (ring poly-32

mers) the Gauss linking integral is a topological invariant that measures the algebraic33

number of times one chain turns around the other. For two open chains (linear poly-34

mers), it is a real number that is a continuous function of the chain coordinates. The35

Gauss linking integral can be also applied to one chain in order to provide measures36

of global self-entanglement of a chain, called the writhe and the self-linking number37

[1, 18, 4]. Computer experiments indicate that the linking number and the writhe38

are effective indirect measures of global entanglement in systems of random filaments39

[3, 16, 20, 22, 23]. Analytical and numerical results have shown that the writhe of ran-40

dom walks and polygons depends on their length and that it follows a different scaling41
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2 E. PANAGIOTOU AND K. C. MILLETT

for random walks in a lattice, or under confinement [20, 8, 26]. In [28, 27, 25, 24]42

the linking integral was applied to polymer melts to study their entanglement and it43

was shown that it can give physically relevant information about polymer properties.44

In this work, we provide a more refined tool for measuring entanglement in polymers45

or collections of filaments, by taking into consideration all the pairwise linking in the46

system.47

The PBC impose further complexity in measuring the entanglement both for48

open and closed chains. In order to study entanglement in systems with PBC, in [24]49

we defined the periodic linking number and showed that it is well defined both for50

open and closed chains. In a periodic system, the periodic linking number measures51

the degree of entanglement of one filament in the periodic system with an entire52

collection of filaments in the periodic system. For closed chains the periodic linking53

number is a finite sum and it is an integer topological invariant. For open chains, the54

periodic linking number is an infinite summation, which we proved converges and is55

a continuous function of the chains’ coordinates. In this work, we provide a measure56

of all the pairwise entanglement in a system with PBC.57

More precisely, we propose that one may strengthen the measures of entanglement58

used so far by using a matrix containing all the pairwise entanglement information of59

the many components of the system. The eigenvalues of this matrix are indicative of60

the pairwise entanglement information in the system and provide more information61

than the average (absolute) linking of the chains in the system. An important advan-62

tage of using the linking matrix of a collection of chains is that its eigenvalues can63

detect inhomogeneities in the entanglement of the system. The material properties of64

polymeric systems, textiles, or wire weaves, all rely on homogeneous structures. The65

existence of inhomogeneities therein can result in undesired properties such as break-66

age of the corresponding material under deformation or, on the other hand, provide67

advantageous features of the system that can be exploited in novel applications.68

In this work we study the linking matrix of chains in 3-space and in systems69

employing one Periodic Boundary Condition. One reason to study systems in one70

PBC is that the results presented therein will be used as a basis to extend to the71

case of two and three PBC. More importantly, systems employing one PBC occur72

very often in applications, usually to simulate physical filaments confined to a tubular73

structure. Systems which employ PBC generate infinite systems of chains. To study74

entanglement in those systems we define the periodic linking matrix. We also examine75

how the periodic linking matrix changes with respect to the size of the simulation cell.76

There are several reasons to study this:77

(1) The properties of the linking matrix that are invariant of cell-size characterize78

the infinite periodic system and, therefore, are of particular importance.79

(2) Topologically, the larger cell-sizes correspond to different topological objects in80

the corresponding identification space, the space that results from gluing the opposite81

faces of the cell according to the PBC. In the case of a systems with 1,2 or 3 PBC the82

identification space is the solid torus, ST , the thickened torus. T × I or the 3-torus,83

T 3, respectively. In our study we analyze how these are related.84

This manuscript is organized as follows: In Section 2 we define the linking matrix85

and in section 3 we give the definitions necessary to study entanglement in systems86

employing PBC (as they were initially defined in [24]). In Section 4 we define the87

periodic linking matrix of filaments in PBC and discuss its properties. In Section 588

we study the properties of the periodic linking matrix for chains in one PBC as a89

function of cell-size.90

This manuscript is for review purposes only.



LINKING MATRICES 3

2. The linking matrix. In this section we define the linking matrix as a mea-91

sure of entanglement that contains all the pairwise and self-entanglement of the chains92

that compose a system. For its definition, the definitions of the linking and self-linking93

number are necessary.94

2.1. The Gauss linking number and the self-linking number. The Gauss95

linking number is a classical measure of the algebraic entanglement of two disjoint96

oriented closed curves that extends directly to disjoint oriented open chains [9, 26, 11].97

Definition 1. The Gauss linking number of two disjoint (closed or open) ori-98

ented curves l1 and l2, whose arc-length parametrizations are γ1(t), γ2(s) respectively,99

is defined as a double integral over l1 and l2 [15]:100

(1) L(l1, l2) =
1

4π

∫
[0,1]

∫
[0,1]

(γ̇1(t), γ̇2(s), γ1(t)− γ2(s))

||γ1(t)− γ2(s)||3
dtds,101

where (γ̇1(t), γ̇2(s), γ1(t)−γ2(s)) is the triple product of γ̇1(t), γ̇2(s) and γ1(t)−γ2(s).102

In the case of closed chains the Gauss linking number is an integer and a topo-103

logical invariant, equal to zero when the two chains are algebraically unlinked. The104

Gauss linking number can be computed for a fixed configuration of two open chains to105

give a real number that is equal to half the average algebraic sum of crossings between106

the two chains over all projection directions.107

For two open chains, the Gauss linking number may be non-zero, even if their108

convex hulls do not intersect. But as the distance between their convex hulls increases,109

the Gauss linking number tends to zero.110

The Gauss linking integral can be applied to one chain to measure its entangle-111

ment with itself. The self-linking number is defined as the linking number between112

a curve l and a translated image of that curve lϵ at a small distance ϵ, called the113

normal variation curve of l, that is, Sl (l) = L (l, lϵ) [5]. This can be expressed by the114

Gauss integral over [0, 1]
∗ × [0, 1]

∗
= {(x, y) ∈ [0, 1]× [0, 1] |x ̸= y} by adding to it a115

correction term, so that it is a topological invariant of closed curves [2] under regular116

isotopy,117

Sl (l) =
1

4π

∫
[0,1]∗

∫
[0,1]∗

(γ̇ (t) , γ̇ (s) , γ (t)− γ (s))

||γ (t)− γ (s) ||3
dtds118

+
1

2π

∫
[0,1]

(γ′(t)× γ′′(t)) · γ′′′(t)

||γ′(t)× γ′′(t)||2
dt.(2)119

2.2. The Linking Matrix. We use the linking and self-linking number to define120

a measure of entanglement of an entire collection of closed or open chains. We define121

the Linking Matrix, LM , of a collection of chains, say H1,H2, . . . , Hn, to be the n×n122

matrix with elements aij = L(Hi,Hj) if i ̸= j and aii = Sl(Hi), etc. The linking123

matrix collects together all the linking information of the system.124

The following properties derive from the properties of the Gauss linking number125

and the self-linking number:126

(i) Since the linking number is symmetric, this is a real symmetric matrix and therefore127

has n real eigenvalues, representantive of the pairwise entanglement of the system.128

(ii) For closed chains, the eigenvalues are link-homotopy invariants, i.e. does not129

change under continuous deformations of the system that allows intersections of a130
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4 E. PANAGIOTOU AND K. C. MILLETT

chain with itself but not between distinct chains, and they change when torsion of131

the chains changes. Notice that if the diagonal elements were 0 (so, suppressing the132

self-linking of the chains), the eigenvalues are invariants under link-homotopy).133

(iii) For open chains, the eigenvalues are real numbers that change continuously with134

the motion of the chains.135

The largest eigenvalue increases with increasing entanglement complexity and,136

indeed, is a principal measure of this. We apply the methods of graph theory to137

derive pairwise entanglement properties relevant to physical properties. A physical138

system of filaments is represented by a weighted graph as follows: We represent each139

chain in the melt by a vertex, i = 1, . . . , n. Then two vertices are connected with140

an edge if their absolute linking number is greater than zero. Also, there is an edge141

of a vertex to itself if the chain has absolute self-linking number greater than zero.142

Thus we have related the polymeric system to a graph. Each edge of this graph143

has an associated weight function, w, that is defined as w(i, j) = |L(Hi,Hj)| and144

w(i, i) = |Sl(Hi)|.145

The homogeneity of the entanglement in a polymer melt is related to the connec-146

tivity of the corresponding weighted graph. For example, let us consider the extreme147

case where all the chains are self-entangled but not at all entangled with each other.148

The linking matrix will be a diagonal matrix, and the melt consists of n isolated149

chains. Also, the corresponding weighted graph will be disconnected and the number150

of its components is the number of polymers. In general if the linking matrix has151

the form of a block diagonal matrix, then there exist collections of chains that are152

linked with each other and not at all linked with the chains that belong to the other153

collections. That is, there exist isolated collections of chains, and the corresponding154

graph is disconnected and the number of its components is equal to the number of155

collections. The linking matrix allows one to detect such situations. Moreover, the156

graph theoretic approach can be useful to determine which collections of chains are157

important in maintaining the homogeneity of the system, or, in other words, whether158

or not there are chains whose removal would result in a drastic change of the entangle-159

ment of the chains and therefore change the properties of the material. In a graph, a160

subset of edges that disconnects a graph is called a cut set. Cut sets arise naturally in161

the study of connectivity of graphs and the sizes of the connected components are an162

important consideration. Isoperimetric problems examine optimal relations between163

the size of the cut set and the sizes of the separated parts. Roughly speaking, isoperi-164

metric problems involving edge-cuts correspond in a natural way to Cheeger constants165

in spectral geometry. If the gap between the first and second eigenvalue of a regular166

graph is large then the graph has good connectivity, expansion and randomness prop-167

erties. Therefore, when none of the entries of the periodic linking matrix are zero,168

then the gap between the two eigenvalues is a measure of the homogeneity of their169

entanglement. Notice that for open chains, none of the entries is exactly zero with170

probability one, therefore, the gap between its first two eigenvalues is also a measure171

of its homogeneity. One can use thresholds to the entries of the linking matrix of open172

chains to relate the strength of linking to the structure of the material as expressed173

in the quantities derived via the graph. More precisely, one can set to zero all entries174

less than a given thresshold value which represents low linking. Then some entries of175

the matrix may become zero and reveal interesting properties of the system.176

3. Entanglement in systems with PBC.177

3.1. Systems in PBC. In this section we give some definitions that form the178

basis for our study of entanglement in PBC. They were originally defined and discussed179
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LINKING MATRICES 5

Fig. 1. The central cell C and the periodic system it generates in the case of closed free chains.
The generating chain i (resp. j) is composed by the blue (resp. red) arcs in C. The free chain I
(resp. J) is the set of blue (resp. red) chains in the periodic system. Highlighted are the minimal
unfoldings of the images I1 and J1.

in [24].180

We study a system consisting of a collection of polygonal chains of length n (ie.181

of n edges), by dividing the space into a family of cubic boxes of volume l3, where l182

is the edge length of the cube, so that the structure of the filaments in each cube is183

identical, i.e. we impose PBC on the system [32]. Specifically, we make the following184

definition:185

Definition 2. A cell consists of a cube with embedded arcs (ie. parts of curves)186

whose endpoints lie only in the interior of the cube or on the interior of one of its187

faces, but not on an edge or corner, and those arcs which meet a face satisfy the PBC188

requirement. That is, to each ending point corresponds a starting point at exactly189

the same position on the opposite face of the cube. See Figure 1 for an illustrative190

example.191

A cell generates a periodic system in 3-space by tiling 3-space with the cubes so192

that they fill space and only intersect on their faces. This allows an arc in one cube to193

be continued across a face into an adjacent cube and so on. Notice that the resulting194

chains may be closed, open or infinite.195

Without loss of generality, we choose a cell of the periodic system that we call196

generating cell. A generating chain is the union of all the arcs inside the cell the197

translations of which define a connected component in the periodic system. For each198

arc of a generating chain we choose an orientation such that the translations of all199

the arcs would define an oriented curve in the periodic system. For each generating200

chain we choose without loss of generality an arc and a point on it to be its base point201

in the generating cell. For generating chains we shall use the symbols i, j, . . . . For202

the arcs of a generating chain, say i, we use the symbols i1, . . . , ik. An unfolding of a203

generating chain is a connected arc in the periodic system composed by exactly one204

translation of each arc of the generating chain. Then an unfolding contains exactly205

one translation of the base point of the generating chain. Without loss of generality,206

let us make the convention that the base point of each image lies in the leftmost cell207

of its minimal unfolding. A generating chain is said to be closed (resp. open) when its208

unfolding is a closed (resp. open) chain. The smallest union of the copies of the cell209

needed for one unfolding of a generating chain shall be called the minimal unfolding.210
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6 E. PANAGIOTOU AND K. C. MILLETT

The smaller number of copies of the cell whose union contains the convex hull of the211

complete unfolding of a generating chain shall be called the minimal topological cell.212

The collection of all translations of the same generating chain i shall be called a213

free chain, denoted I. A free chain is a union of connected components, each of which214

is equivalent to any other under translation. For free chains we will use the symbols215

I, J, . . . . An image of a free chain is any arc of a free chain that is the unfolding216

of a generating chain. The minimal unfolding of I containing an image Iu of I, will217

be denoted mu(Iu). For example, in Figure 1, the blue closed curves are some of218

the images of the free chain I and the highlighted blue cells compose mu(I0). In219

the particular case where the images of a free chain form infinite components in the220

periodic system, this free chain shall be called infinite free chain. We call an infinite221

connected component of an infinite free chain I an infinite image of I. Note that an222

image of an infinite free chain is still a finite arc, an unfolding of a generating chain,223

lying on an infinite image of I. For example in Fig. 1 the infinite curve on which the224

image I0 lies is an infinite image of I, called I0. The image of I whose base point225

lies in the generating cell shall be called the parent image and it shall be denoted I0.226

Then any other image of I can be defined as a translation of I0 by a vector v⃗ based227

on the base point of the parent image. That is:228

(3) Iv = I0 + v⃗.229

Also, we denote i(0) the generating chain whose base pont is that of I(0) and any230

translation of it is denoted i(m) = i(0) + m⃗. Similarly, we define a base point for231

every cell in the periodic system (say to be its central point). Let us denote by C0232

the simulation cell. Then any cell, Cu, in the periodic system is a translation of it,233

Cu = C0 + u⃗.234

3.2. The periodic linking number. In a periodic system we must define link-235

ing at the level of free chains (see [24] for an analysis of the motivation for this236

definition). Given that two free chains are two infinite collections of chains, how can237

we measure the linking of only the different pairs of chains? Looking at the periodic238

system we notice that, due to the periodicity, the linking imposed by all the images239

of one free chain, say J , to one image of another free chain, say I, are the same for240

any image of I. Based on this observation in [24] we gave the following definition of241

a measure of entanglement between two free chains:242

Definition 3 (Periodic linking number). Let I and J denote two (closed, open243

or infinite) free chains in a periodic system. Suppose that I0 is the parent image of244

the free chain I in the periodic system. The periodic linking number, LKP , between245

two free chains I and J is defined as:246

LKP (I, J) =
∑
v

L(I0, J0 + v⃗),(4)247

where the sum is taken over all the images Jv = J0 + v⃗ of the free chain J in the248

periodic system.249

The periodic linking number has the following properties with respect to the250

structure of the cell, which follow directly by its definition:251

(i) LKP captures all the linking that all the images of a free chain impose to an image252

of the other.253
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(ii) LKP is independent of the choice of the image I0 of the free chain I in the periodic254

system.255

(iii) LKP is independent of the choice, the size and the shape of the generating cell.256

(iv) LKP is symmetric.257

We notice that the periodic linking number is an infinite summation of Gauss258

linking numbers (see Fig. 1 for an illustrative example). In the case of closed chains,259

LKP is reduced to a finite summation and in [24] we show that it is equal to the260

linking number of two chains in a manifold. However, the periodic linking number of261

open or infinite chains is an infinite summation since the Gauss linking number is in262

general non-zero even if the chains are far from each other. In [24] we show that LKP263

indeed converges and that it is a continuous function of the chain coordinates. Also264

in [24] we defined the local and cell periodic linking number as cut-offs of the periodic265

linking number.266

3.2.1. The periodic self-linking number. Inspired by the definition of the267

periodic linking number at the level of free chains in [24] we defined a measure of268

self-linking number at the level of free chains. We notice that an image of a free chain269

may be entangled with other images of itself (see Fig. 1 for an illustrative example).270

Thus a measure of self-entanglement of a free chain must capture this information.271

In [24] we introduced the following definition of self-linking for chains in PBC:272

Definition 4 (Periodic self-linking number). Let I denote a free chain in a273

periodic system and let I0 be the parent image of I, then the periodic self-linking274

number of I is defined as:275

(5) SLP (I) = Sl(I0) +
∑
v⃗

L(I0, I0 + v⃗),276

where the index v runs over all the images of I, except Iv = I0 + v⃗, in the periodic277

system.278

The periodic self-linking number has the following properties with respect to the279

structure of the cell, which follow directly by its definition:280

(i) SLP captures the linking that all the images of a free chain impose to one image281

of it.282

(ii) SLP is independent of the choice of the image Iu of the free chain I in the periodic283

system.284

(iii) SLP is independent of the choice, the size and the shape of the generating cell.285

(iv) SLP is invariant under regular isotopy of the corresponding diagrams (If we286

ignore the self-linking number in SLP , we obtain the periodic linking number with287

self-images, which is invariant under link homotopy).288

4. Periodic Linking Matrix. In order to capture all the pairwise and self-289

entanglement in a periodic system generated by a cell C with free chains H1,H2, . . . ,290

Hn, we define the periodic linking matrix, LMC , as the matrix with elements aij =291

LKP (Hi,Hj) if i ̸= j and aii = SLP (Hi). Therefore, LMC has size n × n. Thus292

the periodic linking number enables us to reduce the study of the entanglement of an293

infinite collection of chains that compose the periodic system to the study of a finite294

dimensional matrix.295

The periodic linking matrix has the following properties deriving from its defini-296

tion:297

(i) LMC is a real symmetric n× n, thus has n real eigenvalues.298
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(ii) For closed chains, the eigenvalues are a finite summation and are topological299

invariants up to regular isotopy of the corresponding diagram. If we suppress the300

self-linking number from the periodic self-linking number in the diagonal entries, the301

eigenvalues are topological invariants under link-homotopy.302

(iii) For open chains, the eigenvalues are infinite summations which converge and are303

continuous functions of the chains coordinates.304

Our next goal is the extraction of quantities characterizing a polymer system from305

the associated periodic linking matrix.306

We also expect the largest eigenvalue of the periodic linking matrix to increase for307

increasing entanglement complexity. Similarly with the case of chains in 3-space, we308

can use tools from graph theory to derive pairwise entanglement properties relevant309

to physical properties. In [27] our numerical results showed that the asphericity of the310

eigenvalues of the periodic linking matrix, the Cheeger constant and the Laplacian311

matrix of the corresponding graphs can provide measures of the homogeneity of the312

entanglement of a collection of chains. Our numerical results also suggest that the313

homogeneity of the entanglement depends on chain length.314

5. The Periodic Linking Matrix as a function of the cell size. In this sec-315

tion we will consider systems employing one PBC. This situation is often encountered316

in applications in the simulation of polymers in confinement, as for example tubular317

geometries, or grafted polymers.318

By concatenating m cells we obtain a larger cell that we denotemC, which applies319

PBC to the chains that touch its faces in the x−direction. We can concatenate cells320

of the type mC by gluing their x−faces with respect to the PBC, in order to create321

the same periodic system that is generated by the cell C. In this section we study322

the periodic linking matrix of a periodic system as the size of the cell used for its323

simulation, characterized by m, increases. We will see that the linking matrix depends324

on the size of the cell used for the simulation of a system. Since the periodic system325

simulated is the same, one would expect the periodic linking matrix to retain certain326

entanglement information. However, we will see that in a topological sense, these327

systems are different. With our study we extract entanglement information that is328

invariant of the cell size as well as information that depends on it.329

Let C denote a cell composed by n generating chains, and let LMC denote the330

corresponding periodic linking matrix of size n × n. Without loss of generality we331

will concatenate cells always to the positive direction of the x−axis. Let mC denote332

the cell that results by gluing m copies of C respecting the PBC. Let us denote333

the cells that compose mC as follows: Cj = C0 + v⃗j , where C0 = C, v⃗j = (lj, 0, 0),334

j = 1, . . . ,m−1 and l is the length of the edge of the simulation cell in the x-direction.335

By Lemma 5 in [24] there are m generating chains in the cell mC. Then mC has more336

chains. More precisely:337

Lemma 5. Let C be a cell with n generating chains. Then the cell mC that results338

by gluing m copies of C respecting the PBC, has mn generating chains.339

Proof. Let C0 denote the simulation cell. Let i1, i2, . . . , iw denote the arcs of the340

generating chain i in C0. Let ir + v⃗j , ir + v⃗h, where j > h, be two translations of341

the arc ir in mC. Then v⃗j − v⃗h = (l(j − h), 0, 0), where j − h ∈ Z, 0 < j − h < m.342

In the periodic system generated by mC, these two arcs generate the translations343

ir + v⃗j + u⃗ and ir + v⃗h + u⃗′, where u⃗ = (mlu, 0, 0), u⃗′ = (mlu′, 0, 0), u, u′ ∈ Z. Since344

jl + mlu mod ml = jl ̸= hl = hl + mlu′ mod ml, any two translations of these345

arcs are different arcs in the periodic system generated by mC. Thus, ir + v⃗j , ir + v⃗h346
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belong to different generating chains in mC. Therefore, the generating chains i(j) =347

i(0) + v⃗j , i
(h) = i(0) + v⃗h are different for all 0 < j ̸= h < m, j, h ∈ Z.348

Remark 6. The different generating chains in mC generate different free chains349

in the periodic system. We denote the free chains in mC generated by i(j), j =350

0, . . . ,m− 1, as I(j) = I(0) + v⃗j .351

Thus the corresponding periodic linking matrix, LMmC has sizemn×mn. Indeed,352

the cells C and mC describe different topological objects. If we identify the faces of353

the cell, then we will get an n−component link in the solid torus in the first case and354

a mn−component link in the second case. The 3-manifolds are the same in both cases355

even though the links that they contain are different, related by an m−fold covering356

space of the second manifold over the first. So, we notice that the linking matrices357

LMC and LMmC are different, but the periodic system that the cells generate and358

whose entanglement we wish to measure, is the same. For this purpose, we will study359

the dependence of the periodic linking matrix on the cell size and we will look for360

quantities that remain invariant of cell size.361

In the next sections, we will prove that some of the eigenvalues of the periodic362

linking matrix are independent of cell size. First we will study the simplest case of363

the periodic linking matrix of a single chain in a cell with one PBC. Next, we will364

generalize this to the case of n chains in a cell with one PBC. This case will facilitate365

the understanding of the general case of systems employing one PBC. The methods366

presented here can also be used to obtain similar results in 2 and 3 PBC.367

The following result will be helpful in our analysis:368

Lemma 7. If an image of a free chain I intersects k cells C, then there are k369

images of I that intersect a cell C.370

Proof. Let C0, C1, . . . , Ck−1 denote the cells that belong to mu(I0). Let iw denote371

an arc of I0 that lies in the cell Cw = C0+(w, 0, 0). Then the arc iw − (w, 0, 0) lies in372

C0 and belongs to I−w = I0 + (−w, 0, 0). Thus I−w intersects C0. Any other arc of373

I0 in Cw gets translated by (−w, 0, 0) to C0 and belongs to I−w. On the other hand,374

if I−n = I0 − v⃗n intersects C0 and i−n is an arc of I−n in C0, then the arc i−n + v⃗n375

belongs to I0 and lies in the cell Cn = C0 + v⃗n. Similarly, all the arcs of I−n in C0376

correspond to arcs of I0 in the cell Cn. Thus, the number of images of I intersecting377

C is equal to the number of cells in the minimal unfolding of I0.378

Corollary 8. Let I denote a free chain in a system with one PBC generated by379

the cell C. Suppose that the minimal unfolding of an image of I is formed by k cells.380

Let mC denote the new cell that is created by gluing m copies of C, where m = ak+b,381

a, b ∈ N and b < k. Then there are m free chains in mC; for ((a − 1)k + b + 1) = c382

of those free chains, their images do not touch the boundary of mC, and for the rest383

k − 1 free chains there are exactly two images of each intersecting mC.384

Proof. All the images Iw = I0 + (w, 0, 0) with m− w ≥ k − 1 unfold in mC and385

belong to different free chains in mC by Lemma 5. There are c = (a − 1)k + b + 1386

such chains. The rest m− c = k−1 free chains intersect mC and unfold in two copies387

of mC (since mC contains m cells and mu(I0) contains k < m cells), thus have two388

images intersecting mC by Lemma 7.389

5.1. One chain in a cell with one PBC. We will next study the case of a cell390

with one PBC that contains one generating chain that unfolds in k cells. The periodic391

linking matrix of that system has size 1× 1, LMC = SLP (I) = Sl(I0) +
∑

i L(I0, Ii).392
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10 E. PANAGIOTOU AND K. C. MILLETT

If we concatenate m cells to create a larger cell mC, then by Lemma 5 there393

are m generating chains in k1C, we denote I(0), I(1) = I(0) + (1, 0, 0), . . . , I(m) =394

I(0) + (m, 0, 0). The linking matrix for this cell has size m × m and is defined as395

(LMmC)(i,j) = LKP (I
(i), I(j)), when i ̸= j and (LMmC)(i,i) = SLP (I

(i)).396

Lemma 9. Let C denote a cell with one PBC that consists of only one chain,397

I. Let mC denote the cell that results after gluing m copies of C, then LMmC is a398

symmetric centrosymmetric matrix.399

Proof. We notice that Sl(I0) = Sl(Iu) for all u. Also, we notice that the images400

Ii + (mrl, 0, 0)) and Ii are in the same relative positions as I0 + (mrl, 0, 0) and I0,401

so L(I0, I0 + (mrl, 0, 0)) = L(Ii, Ii + (mrl, 0, 0)), i = 1, . . . , k − 1. Thus, L(Ih, Il) =402

L(Iu, Iv) when |h− l| = |u− v|. Therefore,403

SLP (I
(i)) = Sl(Ii) +

∑
r∈Z

L(Ii, Ii + (mrl, 0, 0))

= Sl(I0) +
∑
r∈Z

L(I0, I0 + l(r, 0, 0)) = SLP (I
(0))

(6)404

for i = 1, . . . ,m− 1.405

Similarly, we notice that |(m− i)− (m− (j + j1)| = |i− (j + j1)|, so406

LKP (I
(i), I(j)) =

∑
j1

L(I0 + (i, 0, 0), I0 + (j + j1, 0, 0))

=
∑
j1

L(I0 + (m− i, 0, 0), I0 + (m− j + j1, 0, 0)) = LKP (I
(m−i), I(m−j))

(7)407

Thus, the entries of the periodic linking matrix, LM = (li,j), satisfy the relations408

li,j = lm−i,m−j for 0 ≤ i, j ≤ m− 1. Thus, the periodic linking matrix is a symmetric409

centrosymmetric matrix [6, 31].410

Remark 10. For closed chains and for m > 2|mu(I0)|, the linking matrix obtains411

a simpler expression. When m > 2|mu(I0)|, any image of I(u) will link with at most412

one image of any I(v), since any two images of I(u) are further that 2|mu(I0)| cells413

apart, and any image of I(v) occupies |mu(I0)| cells. Therefore, SLP (I
(j)) = Sl(I0)414

for all j, LKP (I
(j), I(k)) = L(Ij , Ik), for |j− k| ≤ 2|mu(I0)|, and LKP (I

(j), I(k)) = 0,415

for |j − k| > 2|mu(I0)|. Thus, as m → ∞, LMmC becomes an m×m sparse matrix,416

where each row has at most 2|mu(I0)| non-zero entries.417

Proposition 11. Let I denote a chain in a cell C with one PBC. Let mC denote418

the cell that results after gluing m copies of C. Then the j-th eigenvalue of LMmC is419

given by:420

λj = SLP (I
(0)) + 2

m−1
2∑

k=1

LKP (I
(0), I(k)) cos

(2π
m

k(j − 1)
)

(8)421

for m odd and422
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λj =SLP (I
(0)) + (−1)(j−1)LKP (I

(0), I(⌊
m−1

2 ⌋+1))

+ 2

⌊m−1
2 ⌋∑

k=1

LKP (I
(0), I(k)) cos

(2π
m

k(j − 1)
)(9)423

for m even.424

Proof. By Lemma 9, LMmC is a real symmetric circulant matrix. Its j-th eigen-425

value is [31]:426

λj = SLP (I
(0)) + LKP (I

(0), I(1))ωj−1 + LKP (I
(0), I(2))ω2(j−1) + . . .

+ LKP (I
(0), I(m−2))ω̄2(j−1) + LKP (I

(0), I(m−1))ω̄j−1
(10)427

where ω = exp
(

2πi
m

)
, j = 1, . . . ,m.428

Since LKP (I
(0), I(k)) = LKP (I

(0), I(m−k)) and ωk = ω̄k, the eigenvalues can be429

expressed as:430

λj = SLP (I
(0)) + LKP (I

(0), I(1))ω(j−1) + LKP (I
(0), I(2))ω2(j−1)

+ . . .+ LKP (I
(0), I(m−1)/2)ω

m−1
2 (j−1) + LKP (I

(0), I(m+1)/2)ω̄
m−1

2 (j−1)

+ . . .+ LKP (I
(0), I(m−2))ω̄2(j−1) + LKP (I

(0), I(m−1))ω̄(j−1)

= SLP (I
(0)) + 2LKP (I

(0), I(1)) cos
(2π
m

(j − 1)
)

+ 2LKP (I
(0), I(2)) cos

(2π
m

2(j − 1)
)

+ . . .+ 2LKP (I
(0), I(m−1)/2) cos

(2π
m

m− 1

2
(j − 1)

)
(11)431

for m odd, and as:432

λj = SLP (I
(0)) + LKP (I

(0), I(1))ωj−1 + LKP (I
(0), I(2))ω2(j−1) + . . .

+ LKP (I
(0), I(⌊

m−1
2 ⌋))ω⌊m−1

2 ⌋(j−1)

+ LKP (I
(0), I(⌊

m−1
2 ⌋+1))ω(⌊m−1

2 ⌋+1)(j−1) + LKP (I
(0), I(⌊

m−1
2 ⌋+2))ω̄⌊m−1

2 ⌋j+

. . .+ LKP (I
(0), I(m−2))ω̄2(j−1) + LKP (I

(0), I(m−1))ω̄j−1

= SLP (I
(0)) + 2LKP (I

(0), I(1)) cos
(2π
m

(j − 1)
)

+ 2LKP (I
(0), I(2)) cos

(2π
m

2(j − 1)
)

+ . . .+ 2LKP (I
(0), I⌊

m−1
2 ⌋) cos

(2π
m

⌊m− 1

2
⌋(j − 1)

)
+ (−1)(j−1)LKP (I

(0), I(⌊
m−1

2 ⌋+1))

(12)433

for m even. In the last equality we noticed that ω(⌊m−1
2 ⌋+1) = −1 for m even.434
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12 E. PANAGIOTOU AND K. C. MILLETT

Remark 12. . (i) λ1 is independent of cell-size, m and λ1 = SLP (I) for all m.435

(ii) There are at most 1+⌊m−1
2 ⌋ distinct eigenvalues, as expected for real circulant436

matrices [31]. Therefore, λj = λm−j+2 for all j > 1.437

(iii) For closed chains and for m > 2|mu(I0)|, the j-th eigenvalue of the link-438

ing matrix has a simpler formula which can be obtained by Eq. 8,9 by replacing439

the periodic linking and self-linking numbers by the classical linking and self-linking440

numbers.441

Remark 13. The difference between the first two eigenvalues of LMmC is:442

λ1 − λ2 = 2

m−1
2∑

k=1

LKP (I
(0), I(k))(1− cos

(2π
m

k
)
)(13)443

for m odd and444

λ1 − λ2 = 2

⌊m−1
2 ⌋∑

k=1

LKP (I
(0), I(k))(1− cos

(2π
m

k
)
)(14)445

for m even.446

The above formula shows that the difference between the first eigenvalues does447

not depend on the self-linking number of the chain. The formula indicates that the448

difference, which is a measure of the homogeneity of the entanglement, is a weighted449

function of the linking numbers of the chain with its images. Interestingly, for large450

m, the linking with the nearest images contributes less than the linking with further451

images.452

Remark 14. Often in applications one is interested in the average properties of453

filaments. Cancellations may occur when using the Gauss and periodic linking num-454

ber. For this reason, one may want to use the absolute values of all the entries of the455

periodic linking matrix, we call the resulting matrix the absolute periodic linking ma-456

trix. The absolute periodic linking matrix is also symmetric centrosymmetric. Lower457

bounds on the maximum eigenvalue of nonnegative real symmetric centrosymmetric458

matrices can be found in [31].459

Lemma 15. Let C denote a cell with one PBC that consists of only one chain.460

Let mC denote the cell that results after gluing m copies of C, then the sum of all the461

entries of a row of LMmC is equal to SLP (I), for any m.462

Proof. Let us compute the total sum of the elements of the first row:463

SLP (I
(0)) + LKP (I

(0), I(1)) + . . .+ LKP (I
(0), I(m−1))

= Sl(I0) +
∑
r∈Z

L(I0, I0 + rml(1, 0, 0)) +
∑
r∈Z

L(I0, I0 + (1 + rm)l(1, 0, 0))+

+ . . .+
∑
r∈Z

L(I0, I0 + (m− 1 + rm)l(1, 0, 0))

= Sl(I0) +
∑
r∈Z

L(I0, I0 + rl(1, 0, 0)) = SLP (I)

(15)464

By Lemma 9, the sum of the elements of each row is SLP (I).465
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Remark 16. Exactly the same holds for the sum of all the terms of each column,466

since the matrix is symmetric.467

Remark 17. [Consequences of Lemma 15]468

(i) The total linking applied to a chain remains constant and is independent of the469

size of the cell, as expected from the structure of the periodic system.470

(ii) The total sum of the elements of the linking matrix depends linearly on the size of471

the cell. Let Total(LMC) denote the total sum of the elements of the periodic linking472

matrix LMC . Then, Total(LMmC) = mTotal(LMC) = mSLP (I).473

In the following we will use matrices that result from products of simple matrices.474

We denote Q the m×m matrix for which [Q]ij = 1 for j ≤ i and [Q]ij = 0, j > i, and475

Q−1 its inverse, ie. the matrix for which [Q−1]ii = 1, [Q−1]i,i−1 = −1 and [Q−1]ij = 0476

for j ̸= i, i− 1.477

These matrices can be expressed as478

(16) Q =
∏

0≤l≤m−1

Q(m−l) and Q−1 =
∏

0≤l≤m−1

(Q(m−l))−1,479

where Q(k) is the matrix whose elements are [Q(k)]ii = 1 and [Q(k)]ij = 0 for all j ̸= i480

except for the element [Q(k)]k,k−1 = 1.481

Accordingly, (Q(k))−1 is the matrix whose elements are [(Q(k))−1]ii = 1 and482

[(Q(k))−1]ij = 0 for all j ̸= i except for the element [(Q(k))−1]−1
k,k−1 = −1.483

Proposition 18. Consider one free chain I in the periodic system formed by a484

cell with one PBC. Then the periodic linking matrix LMmC of the periodic system485

generated by a larger cell made from m concatenated cells, mC, is similar to the486

matrix:487

(17) LM ′
mC =

[
SLP (I) C

0 D

]
488

where C and D are real matrices of size 1×(m−1) and (m−1)×(m−1) respectively.489

Proof. We will show that490

(18) LM ′
mC = Q−1LMmCQ =

[
SLP (I) C

0 D

]
491

where Q and Q−1 are products of simple matrices.492

The multiplication LMmCQ
(k) performs the addition of all the elements of the493

k-th column of LMmC to the elements of the (k − 1)-th column. The multiplication494

(Q(k))−1LMmC performs the subtraction of all the elements of the (k − 1)-th row of495

LMmC from the elements of the k-th row.496

The element [LM ′
mC ]ij can be expressed as:497

[LM ′
mC ]ij =

∑
1≤r≤m

[Q−1]ir
[ ∑
1≤v≤m

[LMmC ]rv[Q]vj
]

=
∑

j≤v≤m

([LMmC ]iv − [LMmC ]i+1,v)
(19)498
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14 E. PANAGIOTOU AND K. C. MILLETT

where we noticed that [Q]vj = 0 for v < j, and [Q]vj = 1 for v ≥ j. Also, [Q−1]ir = 0499

for all r ̸= i− 1, i and [Q]i,i−1 = −1, [Q]ii = 1.500

Thus, by Lemma 15 for i > 1, j = 1:501

[LM ′
mC ]i1 =

∑
1≤v≤m

[LMmC ]iv −
∑

1≤v≤m

[LMmC ]i+1,v = SLP (I)− SLP (I) = 0(20)502

Remark 19. [Consequences of Proposition 18] (i) From this result, follows that503

the eigenvalue of LMC , SLP (I), is among the eigenvalues of LMmC for all m, as we504

also derived from Proposition 11.505

(ii) By the Proof of Lemma 18 we can construct the ij-th element of D as506

(21) [D]ij =
∑

j≤v≤m

LKP (I
(i−1), I(v−1))− LKP (I

(i), I(v−1))507

5.1.1. n Chains in one PBC. In this subsection we will extend our previous508

results to the case of n chains in a system with one PBC.509

Let us consider n chains, say H1,H2, . . . , Hn in a system with one PBC that510

unfold in ki, i = 1, . . . , n cells each. The periodic linking matrix of that system has511

size n×n abd is defined as (LMC)(i,j) = LKP (Hi,Hj), when i ̸= j and (LMC)(i,i) =512

SLP (Hi).513

Then the matrix LMmC has size mn×mn, since to each free chain, Hj, of the cell514

C, correspond m free chains, Hj(i), i = 0, . . . ,m− 1, in the cell mC (see Lemma 5).515

We make the convention that the u-th row of LMmC , where u = rm+ l corresponds516

to the free chain H(r + 1)(l−1). Therefore, the (q, w)-th element of LMmC , where517

q = q1m+ q2, w = w1m+ w2, is: LKP (H(q1 + 1)(q2−1),H(w1 + 1)(w2−1)).518

Lemma 20. Let C denote a cell with one PBC that consists of n chains. Let mC519

denote the cell that results after gluing m copies of C, then the sum of all the elements520

of the (u− 1)m+ v-th row of LMmC is equal to to the sum of all the elements of the521

u−th row of LMC , for v = 1, . . . ,m.522

Proof. Let us consider the q-th row of LMmC , where q = q1m+ q2.523

The sum of the elements q1m+ 1 to q1m+m in that row is equal to524

m∑
i=1

LKP (H(q1 + 1)(q2−1),H(q1 + 1)(i−1))

= SLP (H(q1 + 1)(q2−1)) + LKP (H(q1 + 1)(q2−1),H(q1 + 1)(0)) + . . .

+ LKP (H(q1 + 1)(q2−1),H(q1 + 1)(m−1)) = SLP (H(q1 + 1))

(22)525

The sum of the elements h to h + (m − 1) of the same row, for h ∈ {1,m +526

1, . . . , (q1− 1)m+1}∪{(q1+1)m+1, . . . , (n− 1)m+1} corresponds to the linking of527

the free chainH(q1+1)(q2−1) with the free chains generated byHj, where j = h−1
m +1:528
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m∑
i=1

LKP (H(q1 + 1)(q2−1), Hj(i−1)) = LKP (H(q1 + 1)(q2−1),Hj(0))

+ . . .+ LKP (H(q1 + 1)(q2−1),Hj(m−1))

=
∑
u∈Z

L(H(q1 + 1)
(q2−1)
0 ,Hj

(0)
0 + uml(1, 0, 0))

+
∑
u∈Z

L(H(q1 + 1)
(q2−1)
0 , Hj(0) + (um+ 1)l(1, 0, 0))

+ . . .+
∑
u∈Z

L(H(q1 + 1)
(q2−1)
0 , Hj

(0)
0 + (um+m− 1)l(1, 0, 0))

=
∑
u∈Z

L(H(q1 + 1)
(q2−1)
0 ,Hj

(0)
0 + ul(1, 0, 0)) = LKP (H(q1 + 1),Hj)

(23)529

where in the last equality we noticed that, by definition, the periodic linking number530

does not depend on the image of H(q1 + 1) used for its computation.531

Thus, the total sum of the elements of the q-th row, where q = q1m+ q2, is532

LKP (H(q1 + 1),H(1)) + . . .+ LKP (H(q1 + 1), H(q1))

+ SLP (H(q1 + 1)) + LKP (H(q1 + 1), H(q1 + 2)) + . . .+ LKP (H(q1 + 1),H(n))

(24)

533

Exactly the same considerations apply for the sum of the rows q1m to (q1+1)m−1.534

Remark 21. [Consequences of Lemma 20] (i) The total sum of the elements of535

a row measures the total linking applied to a free chain in the system. This suggests536

that the total linking applied to a chain remains constant, and is independent of the537

size of the cell, as expected due to the structure of the periodic system.538

(ii) The total sum of the elements of the linking matrix depends linearly on the size539

of the cell.540

Remark 22. For closed chains and for m > 2maxi{|mu(Hi)|}, the linking ma-541

trix obtains a simpler expression. Then any image of Hj(u) will link with at most542

one image of any Hj(v) or Hk(d). Therefore, SLP (Hj(u)) = Sl(Hj0) for all j.543

Also, LKP (Hj(u),Hj(v)) = L(Hju, Hkv), for |u − v| ≤ 2maxi{|mu(Hi)|}, and544

LKP (Hj(u),Hk(v)) = 0, for |u − v| > 2maxi{|mu(Hi)|}. Thus, as m → ∞, LMmC545

becomes an mn×mn sparse matrix, where each row has at most 2nmaxi{|mu(Hi)|}546

non-zero entries.547

Proposition 23. Let C denote a cell with one PBC that consists of n chains.548

Let mC denote the cell that results after gluing m copies of C, then LMmC can be549

expressed as an n×n block matrix of m×m symmetric circulant matrices. Moreover,550

the diagonal block matrices are symmetric centrosymmetric matrices. The eigenvalues551

of the (i, i)-th block of LMmC , i = 1, . . . , n, are:552

λs = SLP (Hi(0)) + 2

m−1
2∑

k=1

LKP (Hi(0),Hi(k)) cos
(2π
m

k(s− 1)
)

(25)553

for m odd and554
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16 E. PANAGIOTOU AND K. C. MILLETT

λs = SLP (Hi(0)) + (−1)(s−1)LKP (Hi(0),Hi(⌊
m−1

2 ⌋+1))

+ 2

⌊m−1
2 ⌋∑

k=1

LKP (Hi(0),Hi(k)) cos
(2π
m

k(s− 1)
)(26)555

for m even, s = 1, . . . ,m.556

The eigenvalues of the (i, j)-th block of LMmC , 1 ≤ i < j ≤ n, are:557

λs = LKP (Hi(0),Hj(0)) + 2

m−1
2∑

k=1

LKP (Hi(0), Hj(k)) cos
(2π
m

k(s− 1)
)
,(27)558

for m odd and559

λs = LKP (Hi(0),Hj(0)) + (−1)(s−1)LKP (Hi(0),Hj(⌊
m−1

2 ⌋+1))

+ 2

⌊m−1
2 ⌋∑

k=1

LKP (Hi(0),Hj(k)) cos
(2π
m

k(s− 1)
)(28)560

for m even, s = 1, . . . ,m.561

Proof. By its definition, LMmC can be expressed as a block matrix of m × m562

symmetric matrices, (LMmC)
i,j , where (k, l)-th element of (LMmC)

i,j is equal to563

LKP (Hi(k−1),Hj(l−1)).564

We notice that, when |k1 − l1| = |k2 − l2| mod m,565

LKP (Hi(k1),Hj(l1)) = LKP (Hi+ (k1, 0, 0),Hj + (l1, 0, 0))

=
∑
r∈Z

L(Hi0 + (k1, 0, 0),Hj0 + (l1 +mrl, 0, 0))

=
∑
r∈Z

L(Hi0 + (k2, 0, 0),Hj0 + (l2 +mL, 0, 0))

= LKP (Hi+ (k2, 0, 0),Hj + (l2, 0, 0)) = LKP (Hi(k2),Hj(l2))

(29)566

Thus, each matrix (LMmC)
i,j is symmetric circulant.567

A matrix, (LMmC)
i,i, on the diagonal of LMmC corresponds to the self-image568

linking of the chain Hi, which by Proposition 9, it is a symmetric centrosymmetric569

matrix.570

The eigenvalues of the block matrices are obtained by Proposition 11.571

Remark 24. When m > 2maxj{|mu(Hj)|}, the eigenvalues of the (i, i)-th and572

(i, j)-th block, i = 1, . . . , n, obtain a simpler expression, which can be obtained by573

Eq. 25,26,27,28, by replacing the periodic linking and self-linking numbers by the574

classical linking and self-linking numbers.575

Remark 25. From Proposition 23 follows that SLP (Hi) is an eigenvalue of the576

(i, i)-th block of LMmC and LKP (Hi,Hj) is an eigenvalue of the (i, j)-th block577

Notice that in the case of n chains in a system with 1 PBC the periodic linking578

matrix is no longer a circulant matrix and its eigenvalues are not known. However, the579

This manuscript is for review purposes only.



LINKING MATRICES 17

eigenvalues of its block matrices are known. More precisely, LMmC can be expressed580

as581

(30) LMmC = ΣM + ΛM582

where ΣM,ΛM are m × m block matrices. ΣM is a diagonal block matrix, whose583

blocks represent the linking of a chain Hi with its own images and are symmetric584

centrosymmetric. ΛM is a block matrix whose diagonal matrices are zero and its585

off-diagonal matrices represent the linking between different generating chains, and586

are symmetric circulant matrices587

One could use methods such as the ones in [29] to find the determinant of LMmC588

in terms of the determinants of the block matrices. However, its computation is cum-589

bersome and the eigenvalues of LMmC remain unknown. The following Proposition590

shows that some of the eigenvalues of the periodic linking matrix are invariant of591

cell-size, m.592

Proposition 26. Let LMC be the periodic linking matrix of a periodic system593

generated by the cell C with one PBC, which contains n chains. Then any other594

periodic linking matrix LMmC of the same periodic system generated by the cell mC595

is of the form596

(31) LMmC =

[
LMC E
0 F

]
597

where E has size 1× (m− 1) and F has size (m− 1)× (m− 1).598

Proof. Let us multiply LMmC by the matrices Q′ = Q⊕Q⊕ . . .⊕Q and (Q′)−1 =599

Q−1⊕Q−1⊕ . . .⊕Q−1, (n direct sums in each term). Let i = k1m+ l1, j = k2m+ l2.600

The diagonal elements of (Q′)1LMmCQ
′ are601

[(Q′)−1LMmCQ
′]ii =

∑
1≤u≤n

[(Q′)−1]i,u
∑

1≤v≤n

(LMmC)
u,v[Q′]v,j(32)602

where [Q′]v,j = O if v ̸= j, [Q′]j,j = Q, [(Q′)−1]v,j = O if v ̸= j, and [(Q′)−1]j,j =603

Q−1. Thus,604

[Q−1LMmCQ]ij = [(Q′)−1]i,i(LMmC)
u,j [Q′]j,j = Q−1(LMmC)

i,jQ(33)605

Then for the diagonal elements, we showed in the proof of Proposition 18 that606

(34) Q−1(LMmC)i,iQ =

[
SLP (H(k1 + 1)) Ci

0 Di

]
607

for i ̸= j, then in the proof of Lemma 15 we proved that the sum of all the elements608

of a row of (LMmC)
i,j is equal to LKP (H(k1), H(k2)). Then we compute609

[Q−1(LMmC)
i,jQ]u,v =

∑
1≤s≤m

[Q−1]u,s
[ ∑
1≤t≤m

[(LMmC)
i,j ]v,t[Q]t,s

]
=

∑
v≤s≤m

([(LMmC)
i,j ]s,v − [(LMmC)

i,j ]s+1,v)
(35)610
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where we notice that [Q]t,s = 0 for t < s, and [Q]t,s = 1 for t ≥ s. Also, [Q]−1
t,s = 0611

for all s ̸= t− 1, t and [Q−1]t,t−1 = −1, [Q−1]t,t = 1.612

Thus, by Lemma 20, for u > 1, v = 1, the sum of each row of (LMmC)
i,j is613

LKP (H(k1 + 1),H(k2 + 1)):614

[Q−1(LMmC)
i,jQ]u1

=
∑

1≤s≤m

[(LMmC)
i,j ]u,s −

∑
1≤s≤m

[(LMmC)
i,j ]u+1,s

= LKP (H(k1 + 1),H(k2 + 1))− LKP (H(k1 + 1),H(k2 + 1)) = 0

(36)615

Thus we have proved that each block is similar to a matrix of the form:616

(37) Q−1(LMmC)
i,jQ =

[
LKP (H(k1), H(k2)) Cij

0 Dij

]
617

Next, let ei denote the i-th vector of the standard basis of Rmn. Let E denote the618

mn×mn matrix whose j-th column is e(j−1)m+1, for j ≤ n, ek when j = km+1, j > n619

and ej if j mod m ̸= 1, j > n. Then620

LMmC ∼ E−1(Q′)−1LMmCQ
′E =

[
LMC G
0 F

]
(38)621

Remark 27. From Proposition 26 it follows that the eigenvalues of LMC are622

among the eigenvalues of LMmC , for all m.623

6. Conclusion. The entanglement in polymer melts is a many body problem.624

Our goal is to provide a measure of entanglement that takes into consideration the625

overall conformation of a melt. For this purpose we defined the linking matrix. For626

systems employing PBC we defined the periodic linking matrix using the periodic627

linking and self-linking measures. In the simulation of a polymer system, the size of628

the cell may vary. It is necessary to know how the data obtained from different cell629

sizes are related. By focusing on an arbitrary fixed periodic system simulated by a630

varying cell-size simulation box with one PBC, we proved that some of the eigenvalues631

of the periodic linking matrix are invariant of cell size. This information can be used632

to characterize a periodic system. On the other hand, the rest of the eigenvalues633

change with the cell-size, as does the topology in the identification space.634

More precisely, the size of the periodic linking matrix and the total sum of its635

entries increase linearly with the size of the cell. Also, the number of eigenvalues636

increases linearly with cell size. For systems generated by only one chain, we provided637

analytical formulas for the eigenvalues as a function of cell-size. In the case of systems638

generated by many chains, we proved that the periodic linking matrix can be expressed639

as a sum of a block symmetric centrosymmetric matrix, whose eigenvalues are known640

analytically, and a block symmetric circulant matrix, for which the eigenvalues of641

each block are known analytically. We also proved that some of the eigenvalues are642

invariant of cell-size, therefore, they represent properties of the periodic system. In643

fact, for closed chains, all the eigenvalues are invariant under isotopy of the chains644

that compose the melt. But some of the eigenvalues change with the size of the cell,645

which determines the number of components in the identification space, ie. the solid646
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torus in the case of systems with one PBC. This suggests that the periodic linking647

matrix can be used to study both the periodic system and the identification space.648

One could think of physical experiments that would simulate the effect of cell-size649

to the periodic linking matrix. Our results could apply to experiments where the650

cell size increases and the number of chains in the cell also increases with chains of651

the same molecular weight. This is not the same as using copies of the same cell,652

but we can expect that, on average, the linking of the different chains will be the653

same and, therefore, we can expect, on average, to have similar results. Another654

physical experiment that would simulate the effect of cell-size would be the following:655

One can use the same simulation cell, but increase the number of components. In656

order to keep the same density for the systems (as is the case in our analysis), while657

increasing the number of components, one should decrease their molecular weight.658

Chains of molecular weight may not be able to form links of the same type as the659

longer chains if they are not flexible enough. Therefore, one should use more chains660

that are more flexible and of smaller molecular weight. Then we expect that, on661

average, our analytical results would hold among the different systems.662

We have demonstrated that the Gauss linking integral, the periodic linking num-663

ber and the periodic linking matrix provide fundamental information concerning the664

structure of polymeric systems. Moreover, they are mathematically well-defined and665

provide continuous measures in the space of configurations. Thus their properties666

make them good candidates for the use in thermodynamic equations. In the formula-667

tion of evolution equations for polymer melts, there is a need for variables that capture668

the conformational properties of polymers that are related to entanglement [19, 17].669

The radius of gyration tensor, or end-to-end distance, or the number of entanglements670

per chain are used in these formulations. It would be interesting to use the linking671

and self-linking measures in these formulations. Furthermore the linking matrix and672

the Laplacian of the corresponding graph describe the entire melt in one measure and673

could also be useful in these formulations. Moreover, our results can be extended to674

any other measures of pairwise interactions in systems with PBC that depend on the675

relative positions of the chains.676
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[25] E. Panagiotou and M. Kröger, Pulling-force-induced elongation and alignment effects on730
entanglement and knotting characteristics of linear polymers in a melt, Phys. Rev. E, 90731
(2014), p. 042602.732

[26] E. Panagiotou, K. C. Millett, and S. Lambropoulou, The linking number and the writhe of733
uniform random walks and polygons in confined space, J. Phys. A, 43 (2010), pp. 045208–734
30.735

[27] E. Panagiotou, K. C. Millett, and S. Lambropoulou, Quantifying entanglement for collec-736
tions of chains in models with periodic boundary conditions, Procedia IUTAM: Topological737
Fluid Dynamics, 7 (2013), pp. 251–260.738

[28] E. Panagiotou, C. Tzoumanekas, S. Lambropoulou, K. C. Millett, and D. N.739
Theodorou, A study of the entanglement in systems with periodic boundary conditions,740
Progr. Theor. Phys. Suppl., 191 (2011), pp. 172–181.741

[29] P. D. Powdell, Calculating determinants of block matrices, aeXiv:11124379v1, (2011), pp. 1–742
11.743

[30] J. Qin and S. T. Milner, Counting polymer knots to find the entanglement length, Soft Matter,744
7 (2011), pp. 10676–93.745

[31] O. Rojo and H. Rojo, Some results on symmetric circulant matrices and on symmetric746
centrosymmetric matrices, Lin. Alg. Appl., 392 (2004), pp. 211–33.747

[32] M. Rubinstein and R. Colby, Polymer Physics, Oxford University Press, 2003.748
[33] A. Stasiak, V. Katritch, and L. Kauffman, Ideal knots, vol. 19 of Series on knots and749

everything, World Scientific, Singapore, 1999.750
[34] P. S. Stephanou, C. Baig, G. Tsolou, V. G. Mavrantzas, and M. Kröger, Quantifying751
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