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Abstract

With a focus on one-dimensional periodic boundary systems, we de-
scribe the application of extensions of the Gauss linking number of closed
rings to open chains and, then, to systems of such chains via the peri-
odic linking and periodic self-linking of chains. These lead to the periodic
linking matrix and its associated eigenvalues providing measures of entan-
glement that can be applied to complex systems. We describe the general
one-dimensional case and applications to one-dimensional Olympic gels
and to tubular filamental structures.

1 Introduction1

The objective of this report is to describe the application of the Gauss linking2

number [7] to collections of open chains in models of filamental systems that3

employ periodic boundary conditions (PBC). These enable one to define peri-4

odic linking and periodic self-linking numbers [15, 16] that quantify the linking5

between pairs of filaments and, thereby, define the periodic linking matrix. The6

information they provide has been studied in several one-dimensional PBC mod-7

els, fore example: general systems such as polymer gels [13], Olympic gels [9],8

and filamental structures in a long tube [12], see Figure 1.9

In the next section we describe the Gauss linking and self-linking numbers,10

one-dimensional periodic boundary condition models, the extension to periodic11

linking and self linking, and the definition of the periodic linking matrix whose12

eigenvalues quantify the extent of entanglement in the systems to which they are13

applied. We will then describe instances in which the periodic linking matrix14

provides important information in the study of general systems such as polymer15

gels, Olympic gels, and filamental structures such as vortex flow lines in tubes.16
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Figure 1: A general 1PBC example, an Olympic system, and filamental structure
in a tube.

2 Gauss Linking, Periodic Boundary Condition17

(PBC) Models, Periodic Linking, and the Pe-18

riodic Linking Matrix19

2.1 Gauss Linking and Self-linking20

The linking number between two oriented chains, l1 and l2, is defined using21

parameterizations of the chains, γ1(t) and γ2(s), via the Gauss linking integral:22

Definition 2.1. The Gauss linking number of two disjoint (closed or open)23

oriented curves l1 and l2, whose arc-length parametrizations are γ1(t), γ2(s)24

respectively, is defined as a double integral over l1 and l2 [7]:25

L(l1, l2) =
1

4π

∫
[0,1]

∫
[0,1]

(γ̇1(t), γ̇2(s), γ1(t)− γ2(s))

||γ1(t)− γ2(s)||3
dtds, (1)

where (γ̇1(t), γ̇2(s), γ1(t)−γ2(s)) is the triple product of γ̇1(t), γ̇2(s) and γ1(t)−26

γ2(s).27

Definition 2.2 (Self-linking number). Let l denote a chain, paramerterized by28

γ(t), then the self-linking number of l is defined as:29

Sl (l) = 1
4π

∫
[0,1]∗

∫
[0,1]∗

(γ̇(t),γ̇(s),γ(t)−γ(s))
||γ(t)−γ(s)||3 dtds

+ 1
2π

∫
[0,1]

(γ′(t)×γ′′(t))·γ′′′(t)
||γ′(t)×γ′′(t)||2 dt. (2)

The self-linking number consists of two terms, the first being the Gauss30

integral and the second being the total torsion of the curve.31

2.2 One-dimensional Periodic Boundary Condition Mod-32

els33

The underlying structure of the Periodic Boundary Condition, PBC, model34

employed in this study consists of a cube or a solid right cylinder whose x length35

is one and whose y and z coordinates lie within the unit square or, respectively,36

in a disc of radius a > 0. The three-dimensional body contains a collection of37
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arcs whose endpoints either lie in the interior or intersect the x = 0 or x = 138

faces under the constraint that the pattern on both faces is identical, see Figure39

1. The later condition allows one to create and infinite structure by taking the40

union of integer translates of the cells and taking the unions of the resulting41

one-chains to define a collection of one dimensional chains. As, in general, these42

chains may be non-compact, we will require that each chain has precisely the43

same number of edges, N , thereby imposing one aspect of homogeneity. Due to44

the PBC structure, there is also a large scale homogeneity in the collection of45

chains.46

2.3 Periodic Linking and Self-linking47

In a PBC model, each chain is translated to give an infinite collection copies of48

itself. As a consequence, one is faced with quantifying the linking of one chain,49

l0 with infinitely many translation copies of itself, lv = l0 + ~v, or with infinitely50

many copies of another chain, Jv = J0 + ~v. This is achieved by employing51

Panagioutou’s periodic linking and self-linkings numbers described next. In the52

periodic system we define linking at the level of free chains (i.e. the collection53

of translation copies of a chain, l0; see [15] for a discussion of the motivation54

for this definition). The underlying idea is to calculate the linking between the55

generating chain in one with all the chains in the other free chain.56

Definition 2.3 (Periodic linking number). Let I and J denote two (closed,57

open or infinite) free chains in a periodic system. Suppose that I0 is an image58

of the free chain I in the periodic system. The periodic linking number, LKP ,59

between two free chains I and J is defined as:60

LKP (I, J) =
∑
~v 6=~0

L(I0, J0 + ~v), (3)

where the sum is taken over all the images of the free chain J in the periodic61

system.62

The periodic linking number has the following properties with respect to the63

structure of the cell, see [15], which follow directly by its definition:64

(i) The infinite sum defining LKP converges, i.e. LKP makes sense mathemat-65

ically.66

(i) LKP captures all the linking that all the images of a free chain impose to an67

image of the other.68

(ii) LKP is independent of the choice of the image I0 of the free chain I in the69

periodic system.70

(iii) LKP is independent of the choice, the size and the shape of the generating71

cell.72

(iv) LKP is symmetric.73

The quantification of the linking of a free chain with itself is a bit special74

and requires a bit more care as there are two contributing cases, the linking of75

3



a chain with itself and the linking of a chain with translations of itself. As a76

consequence, one is lead to the following definitions [15]:77

Definition 2.4 (Periodic self-linking number). Let I denote a free chain in a78

periodic system and let I0 be an image of I, then the periodic self-linking number79

of I is defined as:80

SLP (I) = Sl(I0) +
∑
v 6=u

L(I0, Iv), (4)

where the index v runs over all the images of I, except I0, in the periodic system.81

As with the periodic linking number, the mathematical proof of its existence82

of this quantity and its properties are proved in [15].83

2.4 Periodic Linking Matrix84

In order to analyze the linking entanglement present in our PBC system, L,85

consisting of a finite number of free chains, l1, l2, ..., ln, we employ an n x n real86

symmetric matrix, M(L), whose i, jth entry is defined by equation87

M(L)i,i = SLP (li)

M(L)i,j = LMC(li, lj)
(5)

In the case of a single generating chain, l, the periodic linking matrix consists88

of a single entry, the periodic self-linkng number, Sl(l). From the definitiion,89

there are two contributing factors, the self-linking given by the equation 2 and90

the linking between distinct copies, reflecting distinct features of periodic self-91

linking.92

For systems with two independent chain types, the periodic linking ma-93

trix adds entanglement information due to the linking between the two distinct94

chains. Associated to the periodic linking matrix are two real eigenvalues, e1(L)95

and e2(L), given in decreasing order. The larger of these, e1(L) is proposed as96

the dominant characterization of the linking entanglement of the PBC system.97

The set of eigenvalues is the periodic linking spectrum of the system.98

Similarly, for systems with n independent chain types, one defines the pe-99

riodic linking matrix, M(L),. The associated ordered collection of eigenvalues,100

e1(L), ..., en(L) define the spectrum of the PBC system.101

3 General Systems, Olympic Systems, Tubular102

Systems103

3.1 General Systems104

For computational efficiency, only a small portion of the physical system is105

simulated and periodic boundary constraints are used to avoid boundary effects.106
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The size of the simulation cell may influence the results of a computational107

experiment. We examine how the periodic linking matrix changes with respect108

to the size of the simulation cell.109

By concatenating m cells we obtain a larger cell that we denote mC, which110

applies PBC to the chains that touch its faces in the x−direction. We can111

concatenate cells of the type mC by gluing their x−faces with respect to the112

PBC, in order to create the same periodic system that is generated by the cell C.113

In this section we study the periodic linking matrix of a periodic system as the114

size of the cell used for its simulation, characterized by m, increases. We will see115

that the linking matrix depends on the size of the cell used for the simulation of116

a system. Since the periodic system simulated is the same, one would expect the117

periodic linking matrix to retain certain entanglement information. However,118

we will see that in a topological sense, these systems are different. With our119

study we extract entanglement information that is invariant of the cell size as120

well as information that depends on it.121

Let C denote a cell composed by n generating chains, and let LMC denote122

the corresponding periodic linking matrix of size n×n. Without loss of generality123

we will concatenate cells always to the positive direction of the x−axis. Let mC124

denote the cell that results by gluing m copies of C respecting the PBC. Then125

mC has more chains. More precisely:126

Lemma 3.1. Let C be a cell with n generating chains. Then the cell mC that127

results by gluing m copies of C respecting the PBC, has mn generating chains.128

Remark 3.2. The different generating chains in mC generate different free129

chains in the periodic system. We denote the free chains in mC generated by130

i(j), j = 0, . . . ,m− 1, as I(j) = I(0) + ~vj .131

Thus the corresponding periodic linking matrix, LMmC has size mn×mn.132

Indeed, the cells C and mC describe different topological objects. If we identify133

the faces of the cell, then we will get an n−component link in the solid torus in134

the first case and a mn−component link in the second case. The 3-manifolds135

are the same in both cases even though the links that they contain are different,136

related by an m−fold covering space of the second manifold over the first. So, we137

notice that the linking matrices LMC and LMmC are different, but the periodic138

system that the cells generate and whose entanglement we wish to measure, is139

the same. For this purpose, we will study the dependence of the periodic linking140

matrix on the cell size and we will look for quantities that remain invariant of141

cell size.142

In the following we will prove that some of the eigenvalues of the periodic143

linking matrix are independent of cell size. First we will study the simplest case144

of the periodic linking matrix of a single chain in a cell with one PBC. Next,145

we will generalize this to the case of n chains in a cell with one PBC. This case146

will facilitate the understanding of the general case of systems employing one147

PBC. The methods presented here can also be used to obtain similar results in148

2 and 3 PBC.149
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Figure 2: One chain in a system with one PBC. Left: The original cell C contains
1 generating chain. Right: The cell 2C contains 2 generating chains.

We will next study the case of a cell with one PBC that contains one gener-150

ating chain that unfolds in k cells. The periodic linking matrix of that system151

has size 1× 1, LMC = SLP (I) = Sl(I0) +
∑
i L(I0, Ii).152

If we concatenate m cells to create a larger cell mC, then by Lemma 3.1 there153

are m generating chains in k1C, we denote I(0), I(1) = I(0) +(1, 0, 0), . . . , I(m) =154

I(0) + (m, 0, 0) (see Figure 2). The linking matrix for this cell has size m ×m155

and has the following form:156

LMmC =


SLP (I(0)) LKP (I(0), I(1)) . . . LKP (I(0), I(m−1))

LKP (I(0), I(1)) SLP (I(1)) . . . LKP (I(1), I(m−1))
. . . . . . . . . . . .

LKP (I(0), I(m−1)) LKP (I(1), I(m−1)) . . . SLP (I(m−1))


(6)

Lemma 3.3. Let C denote a cell with one PBC that consists of only one chain,157

I. Let mC denote the cell that results after gluing m copies of C, then LMmC158

is a symmetric centrosymmetric matrix.159

Proposition 3.4. Let I denote a chain in a cell C with one PBC. Let mC160

denote the cell that results after gluing m copies of C. Then the j-th eigenvalue161

of LMmC is given by:162

λj = SLP (I(0)) + 2

m−1
2∑

k=1

LKP (I(0), I(k)) cos
(2π

m
k(j − 1)

)
(7)

for m odd and163

λj =SLP (I(0)) + (−1)(j−1)LKP (I(0), I(b
m−1

2 c+1))

+ 2

bm−1
2 c∑

k=1

LKP (I(0), I(k)) cos
(2π

m
k(j − 1)

) (8)
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for m even.164

Remark 3.5. . (i) λ1 is independent of cell-size, m and λ1 = SLP (I) for all165

m.166

(ii) There are at most 1 + bm−12 c distinct eigenvalues, as expected for real167

circulant matrices [17]. Indeed, notice that sin2
(

2π(j−1)
m

)
= sin2

(
2π(m−(j−1))

m

)
168

and cos
(

2π(j−1)
m

)
= cos

(
2π(m−(j−1))

m

)
. Therefore, λj = λm−j+2 for all j > 1.169

(iii) For closed chains and for m > 2|mu(I0)|, the j-th eigenvalue of the170

linking matrix has a simpler formula, namely:171

λj = Sl(I0) + 2

m−1
2∑

k=1

L(I0, I0 + (k, 0, 0)) cos
(2π

m
k(j − 1)

)
(9)

for m odd and172

λj = Sl(I0) + (−1)(j−1)L(I0, I0 + ((bm− 1

2
c+ 1), 0, 0)

+ 2

bm−1
2 c∑

k=1

L(I0, I0 + (k, 0, 0)) cos
(2π

m
k(j − 1)

) (10)

for m even.173

Remark 3.6. The difference between the first two eigenvalues of LMmC is:174

λ1 − λ2 = SLP (I(0)) + 2

m−1
2∑

k=1

LKP (I(0), I(k))− SLP (I(0))

− 2

m−1
2∑

k=1

LKP (I(0), I(k)) cos
(2π

m
k
)

= 2

m−1
2∑

k=1

LKP (I(0), I(k))(1− cos
(2π

m
k
)

)

(11)

for m odd and175
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Figure 3: 2 chains in a system with one PBC. Left: The original cell C contains
2 generating chains. Right: The cell 2C contains 4 generating chains.

λ1 − λ2 = SLP (I(0)) + LKP (I(0), I(b
m−1

2 c+1)) + 2

bm−1
2 c∑

k=1

LKP (I(0), I(k))− SLP (I(0))

− LKP (I(0), I(b
m−1

2 c+1))− 2

bm−1
2 c∑

k=1

LKP (I(0), I(k)) cos
(2π

m
k
)

= 2

bm−1
2 c∑

k=1

LKP (I(0), I(k))(1− cos
(2π

m
k
)

)

(12)

for m even.176

The above formula shows that the difference between the first eigenvalues177

does not depend on the self-linking number of the chain. The formula indicates178

that the difference, which is a measure of the homogeneity of the entanglement,179

is a weighted function of the linking numbers of the chain with its images.180

Interestinlgy, for large m, the linking with the nearest images contributes less181

than the linking with further images.182

Remark 3.7. Often in applications one is interested in the average properties183

of filaments. Cancellations may occur when using the Gauss and periodic link-184

ing number. For this reason, one may want to use the absolute values of all185

the entries of the periodic linking matrix, we call the absolute periodic linking186

matrix. The absolute periodic linking matrix is also symmetric centrosymmet-187

ric. Lower bounds on the maximum eigenvalue of nonnegative real symmetric188

centrosymmetric matrices can be found in [17].189

Next, we will extend our previous results to the case of n chains in a system190

with one PBC.191

Let us consider n chains, say H1, H2, . . . ,Hn in a system with one PBC192

that unfold in ki, i = 1, . . . , n cells each. The periodic linking matrix of that193

system has size n× n,194
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LMC =


SLP (H1) LKP (H1, H2) . . . LKP (H1, Hn)

LKP (H1, H2) SLP (H2) . . . LKP (H2, Hn)
. . .

LKP (H1, Hn) LKP (H2, Hn) . . . SLP (Hn)

 (13)

Then the matrix LMmC has size mn × mn, since to each free chain, Hj,195

of the cell C, correspond m free chains, Hj(i), i = 0, . . . ,m − 1, in the cell196

mC (see Lemma 3.1) (see Figure 3). We make the convention that the u-th197

row of LMmC , where u = rm + l corresponds to the free chain H(r + 1)(l−1).198

Therefore, the (q, w)-th element of LMmC , where q = q1m+ q2, w = w1m+w2,199

is: LKP (H(q1 + 1)(q2−1), H(w1 + 1)(w2−1)).200

Proposition 3.8. Let C denote a cell with one PBC that consists of n chains.201

Let mC denote the cell that results after gluing m copies of C, then LMmC can202

be expressed as an n × n block matrix of m ×m symmetric circulant matrices.203

Moreover, the diagonal block matrices are symmetric centrosymmetric matrices.204

The eigenvalues of the (i, i)-th block of LMmC , i = 1, . . . , n, are:205

λs = SLP (Hi(0)) + 2

m−1
2∑

k=1

LKP (Hi(0), Hi(k)) cos
(2π

m
k(s− 1)

)
(14)

for m odd and206

λs = SLP (Hi(0)) + (−1)(s−1)LKP (Hi(0), Hi(b
m−1

2 c+1))

+ 2

bm−1
2 c∑

k=1

LKP (Hi(0), Hi(k)) cos
(2π

m
k(s− 1)

) (15)

for m even, s = 1, . . . ,m.207

The eigenvalues of the (i, j)-th block of LMmC , 1 ≤ i < j ≤ n, are:208

λs = LKP (Hi(0), Hj(0)) + 2

m−1
2∑

k=1

LKP (Hi(0), Hj(k)) cos
(2π

m
k(s− 1)

)
, (16)

for m odd and209

λs = LKP (Hi(0), Hj(0)) + (−1)(s−1)LKP (Hi(0), Hj(b
m−1

2 c+1))

+ 2

bm−1
2 c∑

k=1

LKP (Hi(0), Hj(k)) cos
(2π

m
k(s− 1)

) (17)

for m even, s = 1, . . . ,m.210
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Notice that in the case of n chains in a system with 1 PBC the periodic211

linking matrix is no longer a circulant matrix and its eigenvalues are not known.212

However, the eigenvalues of its block matrices are known. More precisely, LMmC213

can be expressed as214

LMmC = ΣM + ΛM (18)

where ΣM,ΛM are m × m block matrices. ΣM is a diagonal block matrix,215

whose blocks represent the linking of a chain Hi with its own images and are216

symmetric centrosymmetric. ΛM is a block matrix whose diagonal matrices217

are zero and its off-diagonal matrices represent the linking between different218

generating chains, and are symmetric circulant matrices219

The following Proposition shows that some of the eigenvalues of the periodic220

linking matrix are invariant of cell-size, m.221

Proposition 3.9. Let LMC be the periodic linking matrix of a periodic system222

generated by the cell C with one PBC, which contains n chains. Then any other223

periodic linking matrix LMmC of the same periodic system generated by the cell224

mC is of the form225

LMmC =

[
LMC E

0 F

]
(19)

where E has size 1× (m− 1) and F has size (m− 1)× (m− 1).226

Remark 3.10. From Proposition 3.9 it follows that the eigenvalues of LMC227

are among the eigenvalues of LMmC , for all m.228

3.2 Olympic Systems229

Olympic systems are collections of small ring polymers whose aggregate prop-230

erties are largely characterized by the extent (or absence) of topological linking231

in contrast with the topological entanglement arising from physical movement232

constraints associated with excluded volume contacts or arising from chemical233

bonds. These were first discussed by de Gennes [3] and have been of interest234

ever since due to their particular properties and their occurrence in natural235

organisms, for example as intermediates in the replication of circular DNA in236

the mitochondria of malignant cells or in the kinetoplast DNA networks of try-237

panosomes [2, 10, 11, 4, 5, 1, 6]. In this project, we studied systems that have238

an intrinsic one, two, or three dimensional character and consist of large col-239

lections of ring polymers modeled using periodic boundary conditions. In this240

report we will focus on the one-dimensional facets of these structures, see Figure241

4. We identified and discussed the evolution of the dimensional character of the242

large scale topological linking as a function of density. We identified the criti-243

cal densities at which infinite linked subsystems arise, the onset of percolation,244

in the periodic boundary condition systems. We showed that, with increasing245

density, the topological entanglement of these systems increases in complexity,246

dimension, and probability.247

10



Figure 4: 1D PBC Systems: Unlinked and Saturated
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Figure 5: The mean absolute linking of two chains and the mean total absolute
linking per chain as a function of density for 1PBC saturated systems.

3.2.1 Analysis of One-Dimensional PBC Olympic Systems248

The mean absolute linking number in saturated systems in 1 PBC becomes249

greater than zero at density ρ ≈ 0.08, when the mean valence and the probabil-250

ity of percolation become non-zero, see Figure 5. It is interesting to notice that251

the mean absolute linking number exceeds one, showing that, even though the252

polygons are not knotted and are just close enough to link, there exist polygons253

with absolute linking greater than one. At the critical density the mean abso-254

lute linking becomes 1.3, indicating the presence of many pairs of polygons with255

absolute linking number greater than one. The mean absolute linking number256

continues to increase with density, approaching the value 2. This suggests that257

at high densities unknotted polygons can have high linking numbers, a conclu-258

sion supported by the growth of the total absolute linking as a function of the259

density.260

3.2.2 Percolation Analysis261

For PBC Olympic systems, we proposed the following relationship between the
probability of total saturation as a function of the density of the system:

p(ρ) =
1

1 + ρ−αe−kρ

11



Figure 6: The observed probability of saturation in a one dimensional PBC
System as a function of density plotted against its fitting curve p(ρ)

262

as inspired by the logistic equation where ρ is the density, α = n + 1
2 , n is the263

dimension of the PBC system, and k is a constant.264

Note that a polygon can link with one of its translations when the size of265

the simulation box is similar to the size of the chain. On average, a polygon will266

link with its own image when the length of the simulation cell is l ≈ 2〈R2
g〉1/2 ≈267

2 ·3.23 = 9.12, which corresponds to a density of ρ = 1
6.45 = 0.15 for rings. More268

precisely, in a system with one, two, or three PBC, when the length of the cell is269

l < 2λn.This implies that we should expect linking to occur when l ≤ 2λ1 givine270

a critical density of ρC1 >
1

11.94 = 0.0837521 for a one-dimensional system.271

In a one dimensional PBC system, see Figure 6, we notice that the proba-272

bility of saturation becomes greater than 0 at ρ ≈ 0.12, in agreement with our273

analysis. In a one dimensional PBC system, more than half of the conforma-274

tions are fully saturated once the density has exceeded 0.28. Using Matlab’s275

non-linear fitting, we find k = 7.032 with an R2 = 0.9918, see Figure 6. This276

suggests that the probability of linking between two translations of a polygon277

as a function of density is:278

p(ρ) =
1

1 + ρ−1.5e−7.032ρ

to be compared with the probability of linking between two random unknotted279

polygons provided in [8].280

3.2.3 Analysis of Valence, |V |281

In this section we discuss the mean valence, |V |, of a polygon in a percolated
system, i.e. the average number of polygons with which an individual polygon
may link. Recalling that the typical enveloping ellipsoid has characteristic radii
of λ1 = 5.97, λ2 = 4.09, and λ3 = 2.9 [14], let us denote by I0 a random polygon
of N unit length edges in a system with n =1, 2, or 3 PBC and defined by
its generating cell of dimensions lx, ly, lz. We propose that I0 may link any

12



Figure 7: Mean valence of the total 1PBC system superimposed with the ana-
lytical model. We notice that < |V | >1PBC ≤ 16.28ρ, as expected.

of its own translations if the enveloping ellipsoid of the translation intersects
the enveloping ellipsoid of I0. To obtain an estimate of the valence, we first
consider the enveloping ellipsoid of I0 and form a shell around it by adding
a thickness proportional to the characteristic radii in the nearest direction ie.

λn
<Rg2>1/2

λ1
. The respective radii defining this shell are then (λ1 +λ1

<Rg2>1/2

λ1
),

(λ2 + λ2
<Rg2>1/2

λ1
), (λ3 + λ3

<Rg2>1/2

λ1
). We estimate the valence by counting

the number of images whose center of gravity are contained within this volume
by dividing by the volume of the generating cell. Setting the static dimensions
of the generating cell equal to 2 ∗ λn, we find the following estimates for mean
valence in an n-PBC system:

< |V | >n−PBC ≤
4
3πλ1λ2λ3(1 + <Rg2>1/2

λ1
)ρn

(2λn+1)(3−n)

.282

Using the appropriate values of n, we bound the mean valence in each system
of PBC’s by:

< |V | >1PBC ≤ 16.28ρ

< |V | >2PBC ≤ 296.61ρ2

< |V | >3PBC ≤ 1089.03ρ3

We expect these to be upper bound estimates, especially at higher densities,283

due to the over counting of some portion of cells whose centers are not within284

the shell. However, the combined volume of those on the boundary of the shell285

could add to this count.286

The mean valence of a saturated system in 1 PBC becomes non-zero at 2287

for ρ ≥ 0.12 corresponding with the critical density for filamental percolation288

ρC1 > 0.0836. The mean valence continues to increase non-monotonically there-289

after, see Figure 7. Notice that, at the saturation density of ρ = 0.28, we have290

a mean valence of approximately 2.53, indicating that at least a fourth of the291

linked polygons link with their second order neighbors. This saturation density292
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Figure 8: PBC Examples: unit radius disc cross-section, single chain of length
25. Left, 0.00 alignment constraint (random) and, second, 0.50 alignment con-
straint.

corresponds to an edge length of l ≈ 3.57 < 2λ1, which explains why the mean293

valence becomes greater than two.294

3.3 Vortex Flow in Tubular Systems295

In Figure 8 we show a simple example of a length 25 chains contained in a296

tube whose cross-sectional disc of radius 1 under an alignment constraint scaled297

to 0.00 and 0.50. We interpret these chains as representing short vortex flow298

lines in a tubular system and will focus on the case in which there are three299

independent PBC families of chains generating the structure representing the300

flow lines, see Figure 8.301

For these filamental structures, we systematically studied a range of lengths,302

tube cross-sections, and scaled alignment conditions in order to estimate how303

these fundamental parameters influenced the shape and entanglement that de-304

pend upon them. For example, for a sample size of 500, the random chains in305

the unit radius tube have an average tube length of 7.86 units with an average306

radius of gyration of 3.57, see Figure 9. The average absolute self-linking is307

1.09, see Figure 10. As a measure of entanglement, we find the average max-308

imal, medial, minimal absolute eigenvalues of the linking matrix to be 1.18,309
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Figure 9: The mean squared radius of gyration and diameter of 25 step chains
as a function of the tube radius and alignment constraint

1.01 and, 0.46 respectively. In contrast, for an alignment condition of 0.50, one310

has an average tube length of 18, 35 with a radius of gyration of 22.77 and an311

average absolute self-linking of 1.34. The absolute eigenvalues have averages of312

2.20, 1.27, and 0.57 respectively. The increased level of entanglement found in313

aligned systems compared to a fully random system is a key result of our analy-314

sis of the filamental structure’s dependence upon cross-sectional constraints and315

alignment.316

In Figure 11 we show the evolution of the absolute values of the three eigen-317

values of a PBC system generated by three independent filaments of length 25.318

Here, one observes a decreasing tendency in the magnitude of the eigenvalues319

with increasing tube radius and an increasing tendency with increasing align-320

ment constraint. While one may expect a random system to exhibit a stronger321

degree of entanglement, we have seen that these filaments have smaller diame-322

ter (or squared radius of gyration) thereby offering them a significantly smaller323
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Figure 10: Absolute self-linking of single 25 step chains as a function of align-
ment constraint and tubular radius

opportunity to entangle with nearby filaments whereas filaments subject to an324

alignment constraint have a significantly larger number of adjacent filaments325

with which they may entangle. Thus, we see that the magnitude of the eigen-326

values increase with increasing alignment. In addition, for a fixed alignment327

constraint, the magnitude of the eigenvalues decreases with increasing tube ra-328

dius across the range of radii presented here, i.e. from 0.1 through 5.0 showing329

that the filamental structure widely explores the cylindrical tube leading to a330

decreasing density leading to decreasing entanglement.331

Consistent with our earlier analysis, we find that a random system displays332

the smallest entanglement as measured by the magnitude of the eigenvalues, see333

Figure 12. In Figure 13 we see that the two eigenvalues of larger magnitudes334

are rather larger than the random system but tend to get smaller with increas-335

ing tube radius while the smallest is relatively stable in magnitude. Since the336

character of this decrease in the magnitude of the eigenvalues holds across the337

scale of the alignment constraint, we expect that it is an artifact of the decrease338

in density of the filaments with increasing tube radius. Considering, in Figure339

14, the change in magnitude of the eigenvalues for alignment constraint of 0.85,340

we do not see any meaningful change in magnitude with increasing tube radius341

as the magnitudes remain roughly constant at the largest eigenvalue measures342

of entanglement.343

We now wish to characterize the consequences of increasing the alignment344

constraint for a fixed tube radius. For a tube of radius equal to 0.10, 1.00 or345

5.00, in Figure 15 we see that there is a visible increase in the magnitude of346

the largest eigenvalue as the alignment constraint increases independent of the347

radius of the tube. Indeed, the actual values of the magnitude of the largest348

eigenvalue are quite similar, independent of the radius of the tube though a bit349

lower for the very largest tube.350
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Figure 11: Effect of tube radius and alignment constraint on the mean absolute
eigenvalues of a PBC system generated by three independent filaments of length
25
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Figure 12: Effect of random alignment, fixed at 0.00, on length 25 filament;
radial scale 0.10 to 5.00

Figure 13: Effect of alignment constraint, fixed at 0.50, on length 25 filament;
radial scale 0.10 to 5.00

Figure 14: Effect of alignment constraint, fixed at 0.85, on length 25 filament;
radial scale 0.10 to 5.00
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Figure 15: Effect of alignment constraint on the mean largest magnitude eigen-
value for length 25 filaments for tube radii 0.10, 1.00,and 5.00

4 Conclusions351

The entanglement in polymer melts, Olympic gels, and systems of vortex flow352

lines is fundamentally a many body problem. Our goal is to describe its principal353

properties with a measure of entanglement that takes into consideration the354

overall conformation of the system. For this purpose we defined the linking355

matrix. For systems employing PBC, we then defined the periodic linking matrix356

using the periodic linking and self-linking measures. In the simulation of a357

polymer system, the size of the cell may vary. It is necessary to know how the358

data obtained from different cell sizes are related. By focusing on an arbitrary359

fixed periodic system simulated by a varying cell-size simulation box with one360

PBC, we proved that some of the eigenvalues of the periodic linking matrix361

are invariant of cell size. This information can be used to characterize such a362

one dimensional periodic system. This lead to results concerning the evolution363

of these structural measures as the size of the basic cell changes [13]. The364

analysis of one dimensional PBC systems was applied to Olympic systems and365

to tubular systems to give the results reported here [9, 12] giving new insight366

into the structure of these systems.367
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