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Abstract

The strength of entanglement present in a tubular structure consist-
ing of short vortex flow filaments is assessed using a periodic boundary
condition (PBC) model by employing the magnitude of the eigenvalues
of the periodic linking matrix associated to the filamental structure. The
effects of tube radius and of the alignment of the filaments on the strength
of entanglement are shown to suggest that strongly aligned flow systems
exhibit a stronger entanglement than those consisting of randomly aligned
filaments of the same density.

1 Introduction1

The objective of this study is to illuminate the consequences of spatial con-2

straints on a filamental vortex flow structure contained in a long tube, see Fig-3

ure 1. arising from the cross sectional geometry of a tube and from the spatial4

alignment constraints acting on filamental structures of a fluid flow or aligning5

constraint of varying strength. While this study focuses on linear tubes, these6

methods apply to more complex circumstances such as knotted vortex tubes7

[3]. We employ a course grained periodic boundary condition (PBC) polygonal8

simulation model to quantify or characterize the resulting entanglement of the9

flow filaments. The one dimensional periodic boundary constraint tube model10

employs a circular cross-sectional geometry. The radius of the cross-sectional11

disc varies from 1
5 the edge length of the chain to 5 times the persistence length12

of the vortex flow trajectories. In addition to the scale of the tube constraint,13

we apply a varying constraint that causes the spatial alignment of the polygonal14

edges of the modeled conformation to vary from those of a random, disordered,15

filament to those of a chain that is increasingly monotonically aligned to become16

almost parallel to the tube axis.17
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Figure 1: A simulated filamental structure in a tube.

To quantify the spatial extent of the filamental structures, we estimate the18

mean radius of gyration and the mean end-to-end length. The degree of entan-19

glement of the filaments is measured using Panagiotou’s periodic linking number20

and self-linking number [5, 7, 4]. The complexity of the system is quantified by21

using one, two, and finally, three independent filaments to generate the PBC22

system, determine associated periodic linking matrices and the resulting peri-23

odic linking eigenvalues [6]. These define new measures of the entanglement24

that arise as a function of confinement and alignment constraint and illuminate25

the structural transitions.26

2 Confined Fluid Flows via Periodic Boundary27

Condition (PBC) Models28

The underlying structure of the Periodic Boundary Condition, PBC, model29

employed in this study consists of solid right cylinder whose x length is one and30

whose y and z coordinates lie within a disc of radius a > 0 and containing a31

collection of arcs whose endpoints either lie in the interior or intersect the x = 032

or x = 1 faces under the constraint that the pattern on both faces is identical.33

The later condition allows one to create and infinite structure by taking the34

union of integer translates of the cells and taking the unions of the resulting35

chains to define a collection of one dimensional chains. As, in general, these36

chains may be non-compact, we will require that each chain has precisely the37

same number of edges, N , thereby imposing an aspect of homogeneity. Due to38

the PBC structure, there is also a large scale homogeneity in the collection of39

chains that we interpret as encoding flow lines in a fluid flow or, if one wishes,40

a collection of macromolecules. One can understand, in the later case, the edge41

length as representing a Kuhn length, [2], of the macromolecule. The radius42

of the cross-sectional disc should be understood in terms of this Kuhn length,43

or persistence length, and influencing the character of the flow or the gel being44

modeled. We are also interested in the consequences of increased alignment of45

the incremental structural segments and, therefore, will study these structures46

as they are subjected to a wide range of alignment constraints ranging from47

none, random alignment, to very strong influences resulting in a monotone,48

but not constant, directional orientation of the filaments. In one case, the49

structure is quite chaotic while, in other cases, the structure is elongated. In all50

cases, however, one observes a quantifiable degree of entanglement between the51

substructures. In the next section, we will describe how we propose to quantify52
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the degree of entanglement.53

3 Periodic Linking Entanglement in Confined54

Structures Modeled using Periodic Boundary55

Conditions56

The linking number between two oriented chains, l1 and l2, is defined using57

parameterizations of the chains, γ1(t) and γ2(s), via the Gauss linking integral:58

Definition 3.1. The Gauss linking number of two disjoint (closed or open)59

oriented curves l1 and l2, whose arc-length parameterizations are γ1(t), γ2(s)60

respectively, is defined as a double integral over l1 and l2 [1]:61

L(l1, l2) =
1

4π

∫
[0,1]

∫
[0,1]

(γ̇1(t), γ̇2(s), γ1(t)− γ2(s))

||γ1(t)− γ2(s)||3
dtds, (1)

where (γ̇1(t), γ̇2(s), γ1(t)−γ2(s)) is the triple product of γ̇1(t), γ̇2(s) and γ1(t)−62

γ2(s).63

In a PBC model, each chain is translated to give an infinite collection copies64

of itself, see Equation 2. As a consequence, one is faced with quantifying the65

linking of one chain, l0, with infinitely many translation copies of itself, lv, or66

with infinitely many copies of another chain. This is achieved by employing67

Panagioutou’s [4] periodic linking and self-linking numbers described next.68

lv = l0 + v⃗. (2)

3.1 The periodic linking number69

In a periodic system we define linking at the level of free chains, i.e. the col-70

lections of translation copies of chains, l0 or J0. See [4] for a discussion of the71

motivation for the following definition. The underlying idea is to calculate the72

linking between the generating chain in one with all the chains in the other free73

chain.74

Definition 3.2 (Periodic linking number). Let I and J denote two (closed,75

open or infinite) free chains in a periodic system. Suppose that I0 is an image76

of the free chain I in the periodic system. The periodic linking number, LKP ,77

between two free chains I and J is defined as:78

LKP (I, J) =
∑
v⃗ ̸=0⃗

L(I0, J0 + v⃗), (3)

where the sum is taken over all the images of the free chain J in the periodic79

system.80
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The periodic linking number has the following properties with respect to the81

structure of the cell, see [4], which follow directly by its definition:82

(i) The infinite sum defining LKP converges, i.e. LKP makes sense mathemat-83

ically.84

(i) LKP captures all the linking that all the images of a free chain impose to an85

image of the other.86

(ii) LKP is independent of the choice of the image I0 of the free chain l in the87

periodic system.88

(iii) LKP is independent of the choice, the size and the shape of the generating89

cell.90

(iv) LKP is symmetric.91

3.2 The periodic self-linking number92

The quantification of the linking of a free chain with itself is a bit special and93

requires a bit more care as there are two contributing cases, the linking of a94

chain with itself and the linking of a chain with translations of itself. As a95

consequence, one is lead to the following definitions [4]:96

Definition 3.3 (Self-linking number). Let l denote a chain, parameterized by97

γ(t), then the self-linking number of l is defined as:98

Sl (l) = 1
4π

∫
[0,1]∗

∫
[0,1]∗

(γ̇(t),γ̇(s),γ(t)−γ(s))
||γ(t)−γ(s)||3 dtds

+ 1
2π

∫
[0,1]

(γ′(t)×γ′′(t))·γ′′′(t)
||γ′(t)×γ′′(t)||2 dt. (4)

The self-linking number consists of two terms, the first being the Gauss99

integral and the second being the total torsion of the curve.100

Definition 3.4 (Periodic self-linking number). Let l denote a free chain in a101

periodic system and let lu be an image of l, then the periodic self-linking number102

of l is defined as:103

SLP (l) = Sl(lu) +
∑
v ̸=u

L(lu, lv), (5)

where the index v runs over all the images of l, except lu, in the periodic system.104

As with the periodic linking number, the mathematical proof of its existence105

of this quantity and its properties are proved in [4].106

3.3 The periodic linking matrix107

In order to analyze the linking entanglement present in our PBC system, L,108

consisting of a finite number of free chains, l1, l2, ..., ln, we employ an n x n109

real symmetric matrix, LM, the periodic linking matrix [6] whose i, jth entry is110

defined by equation111
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LMi,i = SLP (li)

LMi,j = LKP (li, lj)
(6)

In the case of a single generating chain, I, the periodic linking matrix consists112

of a single entry, the periodic self-linking number, SLP (I). From the definition,113

there are two contributing factors, the self-linking given by the equation 5 and114

the linking between distinct copies, reflecting distinct features of periodic self-115

linking.116

For systems with two independent chain types, the periodic linking ma-117

trix adds entanglement information due to the linking between the two distinct118

chains. Associated to the periodic linking matrix are two real eigenvalues, e1(L)119

and e2(L), given in decreasing order. The larger of these, e1(L) is proposed as120

the dominant characterization of the linking entanglement of the PBC system.121

The set of eigenvalues is the periodic linking spectrum of the system.122

Similarly, for systems with n independent chain types, one defines the pe-123

riodic linking matrix, LM. The associated ordered collection of eigenvalues,124

e1(L), ..., en(L) define the spectrum of the PBC system.125

4 Simulation of One Dimensional PBC Systems126

In this study we generate polygonal chains having a variety of spatial character-127

istics. These chains have unit length edges and are required to lie within tubes128

with disc cross-sections of radius varying from 0.1 to 5. The initial end of the129

segment is chosen, randomly, to lie in the generating cell and edges are sequen-130

tially selected to construct a chain of length 25 to lie within the tube according131

to physical characteristics of the model. These generating chains, in collections132

of an individual chain, two independent chains, or three independent chains are133

then extended by integral translations to determine the one dimensional PBC134

conformation.135

The physical models considered here are136

(1) In the random model, edges are randomly selected subject to the constraint137

of lying within the tube. (2) In the parameterized alignment model, edges are138

selected to lie within a parameterized cone of alignment directions subject to139

the constraint of lying within the tube and with increasing probability of lying140

in the positive direction cone.141

In both cases, the intersections of the chain with the positive and negative142

faces of the cell are identical, the being the PBC requirement that allows the143

continuation of the chain to adjacent cells.144

4.1 Polygonal Chains145

The desired filamental structure is modeled using polygonal chains of unit edge146

length in a PBC system. The diameter of a chain is the maximum distance147

between vertices of a connected component of the system. The squared radius148
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Figure 2: The mean squared radius of gyration and diameter of 25 step chains
as a function of the tube radius and alignment constraint

of gyration, srgn(C), of a chain, C with n + 1 vertices {v1, . . . , vn+1} of a149

connected component of the system is defied as follows:150

cm(C) =

∑n+1
i=1 vi
n+ 1

(7)

srgn(C) =

∑n+1
i=1 (vi − cm(C))2

n+ 1
(8)

4.2 An Example151

In Figure 4 we show a simple example of a single length 25 chain contained in a152

PBC tube whose cross-sectional disc of radius 1 under an alignment constraint153

scaled to 0.00 and to 0.50. For this filamental structure, we systematically154

study a range of lengths, tube cross-sections, and scaled alignment constraints155

6



Figure 3: Absolute self-linking, torsion and Gaussian writhe components of
single 25 step chains as a function of alignment and constraint
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Figure 4: PBC Examples: unit radius disc cross-section, single chain of length
25. Left, 0.00 alignment constraint (random) and, second, 0.50 alignment con-
straint.

to estimate how the fundamental parameters of shape and entanglement depend156

upon them.157

4.2.1 Effect of Tube Cross-Section Variation158

To visually illustrate the effect of the radius of the disc cross-section, we consider159

a family of length 25 chains subjected to an alignment bias of 0.25 having radii160

of 0.25, 0.5, 0.75, 1.0, 5.0, and 10.0, see Figure 5. In these, one can observe161

the increasing freedom of spatial exploration that is provided by increasing the162

radius of the tube.163

4.2.2 Effect of Scaled Alignment Constraint164

The scaled alignment constraint varies from 0.00, corresponding to a uniform165

random distribution, to 1.00 corresponding constant direction aligned to the166

tube axis giving a straight ‘rod like’ result. The consequence of the variation is167

illustrated, Figure 6, for a tube of radius 0.25 with alignment constraint 0.00,168

0.25, 0.50, 0.75 and, 0.95. In these, one can see the strong consequence of an169

alignment preference as the chain evolves from a random one to one that is170

visually approaching that of a straight rod.171

4.2.3 Shape and Entanglement Effects172

For example, for a sample size of 500 of such random, i.e. 0.0 alignment, chains,173

we find a mean diameter of 7.86 units with a mean radius of gyration of 3.57.174

The mean absolute self-linking is 1.09. As a measure of entanglement, we find175

the mean maximal, medial, minimal absolute eigenvalues of the linking matrix to176

be 1.18, 1.01 and, 0.46 respectively. In contrast, for a sample with an alignment177

bias of 0.50, one has a mean diameter of 18.35 with a radius of gyration of178

22.77 and a mean absolute self-linking of 1.34. The absolute eigenvalues have179

means of 2.20, 1.27, and 0.57 respectively. The increased level of entanglement180

found in aligned systems compared to a fully random system will be one of the181

foci of our analysis the filamental structure’s dependence upon cross-sectional182

constraints and alignment.183
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Figure 5: Effect of tubular constraint on length 25 chains (alignment constraint
0.25; tube radius: 0.25, 0.50, 0.75, and 1.00.

Figure 6: Effect of alignment on length 25 chains in a tube of radius 0.25;
alignment scale 0.00, 0.25, 0.50 and, 0.75.
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5 Entanglement Effects due to Alignment Con-184

straints and Tube Confinements185

The mean individual chain characteristics considered are the radius of gyration,186

the chain diameter, the self-linking number, and the chain torsion that have187

been discussed in the previous section. For systems of two or more indepen-188

dent chains, a more complex form of entanglement can occur measured by the189

mean absolute value of the eigenvalues of the periodic linking matrix ordered190

by decreasing magnitude.191

5.1 Diameter and Mean Squared Radius of Gyration192

In Figure 2 we show the effect of the tube radius and alignment constraint on193

the size of the filament as measured by its mean squared radius of gyration and194

diameter. Here, one observes that increasing the alignment constraint causes a195

resulting increase in length of the filament by both measures. Interestingly, the196

increased tube radius initially causes the scale of the filament to decrease slightly197

until radius about 1.5 at which point the scale appears to stabilize despite the198

increase in radius of the tube.199

5.2 Linking and Self-linking Numbers200

As the chains are piecewise linear, the Gauss integral and the total torsion are201

determined using extensions of the smooth chain definitions to these chains.202

With respect to the self-linking of a single chain segment with itself, the mean203

absolute value of the self-linking number appears to be, up to statistical varia-204

tion, relatively constant for each alignment value as a function of the radius of205

the enclosing tube with, perhaps, a slight increase with increasing radius, see206

Figure 4. The value is smallest for random chains and somewhat larger as the207

alignment increases. To understand why this is the case, we first consider the208

total torsion. In our data one observes that this is roughly independent of the209

radius of the cross-sectional disc with, perhaps, a slight increase with increas-210

ing tube radius. The value of the torsion increases with increasing alignment.211

This is due to the fact that, in the polygonal context, the total torsion is the212

sum of the angles between two adjacent planes defined by a sequence of three213

edges in the chain, the first two determine the first plane, the last two determine214

the second plane. The variation of these angles should be about the same for215

random chains as it is for strongly aligned chains, but there is an increase with216

increasing torsion with increasing alignment. Can one explain this? When the217

alignment constraint is 1.00, the structure is a straight rod and, therefore, with218

zero torsion. One expects that for any value very close to 1.00, the total torsion219

will be roughly that shown for 0.75 and 0.95. Why then, is the total torsion220

value smaller for 0.00 and why is there little variation of total torsion over the221

changes in cross sectional radius? For cross sectional radius greater than 1.5,222

we may not expect to see any effects, as it is the case with the diameter and223
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mean squared radius of gyration.224

225

The Gaussian writhe term of the self-linking number shows a decrease with226

increasing tube radius for random polygons as one would expect due to the de-227

creasing confinement of the chain approaching the asymptotic writhe of an un-228

constrained chain. As the alignment increases, one expect and, indeed, observes229

in our data that the Gaussian writhe contribution to the self-linking decreases230

with increasing alignment and approaches 0 at 0.95. Of the random chain, we231

observe that this Gaussian contribution decreases with increasing tube radius232

appearing to approach, asymptotically, the unconstrained chain value.233

These contributing factors determine the evolution of the mean absolute234

self-linking of a single chain. The periodic self-linking adds to this value the235

contributions of the linking of this chain with each of its translates as provided236

in the PBC model.237

5.3 Eigenvalues of the Periodic Linking Matrix as a Func-238

tion of Tube Radius and Alignment Constraint239

In Figure 7 we show the evolution of the absolute values of the three eigenval-240

ues of a PBC system generated by three independent filaments of length 25.241

Here, one observes a decreasing tendency in the magnitude of the eigenvalues242

with increasing tube radius and an increasing tendency with increasing align-243

ment constraint. While one may expect a random system to exhibit a stronger244

degree of entanglement, we have seen that these filaments have smaller diame-245

ter (or squared radius of gyration) thereby offering them a significantly smaller246

opportunity to entangle with nearby filaments whereas filaments subject to an247

alignment constraint have a significantly larger number of adjacent filaments248

with which they may entangle. Thus, we see that the magnitude of the eigen-249

values increase with increasing alignment. In addition, for a fixed alignment250

constraint, the magnitude of the eigenvalues decreases with increasing tube ra-251

dius across the range of radii presented here, i.e. from 0.1 through 5.0 showing252

that the filamental structure widely explores the cylindrical tube leading to a253

decreasing density leading to decreasing entanglement.254

5.3.1 Comparison of Systems Across Cross Sectional Scale255

Consistent with our earlier analysis, we find that a random system displays the256

smallest entanglement as measured by the magnitude of the eigenvalues, see257

Figure 8. In Figure 9 we see that the two eigenvalues of larger magnitudes are258

rather larger than the random system but tend to get smaller with increasing259

tube radius while the smallest is relatively stable in magnitude. Since the char-260

acter of this decrease in the magnitude of the eigenvalues holds across the scale261

of the alignment constraint, we expect that it is an artifact of the decrease in262

density of the filaments with increasing tube radius. Considering, in Figure 10,263

the change in magnitude of the eigenvalues for alignment constraint of 0.85, we264

do not see any meaningful change in magnitude with increasing tube radius as265
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Figure 7: Effect of tube radius and alignment constraint on the mean absolute
eigenvalues of a PBC system generated by three independent filaments of length
25
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Figure 8: Effect of random alignment, fixed at 0.00, on length 25 filament; radial
scale 0.10 to 5.00

Figure 9: Effect of alignment, fixed at 0.50, on length 25 filament; radial scale
0.10 to 5.00

the magnitudes remain roughly constant at the largest eigenvalue measures of266

entanglement.267

5.3.2 Comparison of Systems Across Degrees of Alignment268

We now wish to characterize the consequences of increasing the alignment con-269

straint for a fixed tube radius. For a tube of radius equal to 0.10, 1.00 or 5.00, in270

Figure 11 we see that there is a visible increase in the magnitude of the largest271

eigenvalue as the alignment constraint increases independent of the radius of272

the tube. Indeed, the actual values of the magnitude of the largest eigenvalue273

are quite similar, independent of the radius of the tube though a bit lower for274

the very largest tube.275

6 Discussion and Conclusions276

In this investigation, we have considered short filamental structures confined to277

tubes of varying cross-sectional radius and subject to varying alignment con-278
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Figure 10: Effect of alignment, fixed at 0.85, on length 25 filament; radial scale
0.10 to 5.00

Figure 11: Effect of alignment constraint on the mean largest magnitude eigen-
value for length 25 filaments for tube radii 0.10, 1.00,and 5.00
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straints using a periodic boundary condition model. These may be consider as279

representing vortex flow lines in a fluid or as short polymeric chains in a melt.280

Employing the associated periodic linking matrix as well as its elements, we281

show that entanglement occurs across the entire range of cross-sectional radii.282

We have also shown that entanglement increases with increasing alignment due283

to the increasingly extended nature of the filamental structure with increasing284

alignment constraint. As a consequence, we have observed that a randomly285

aligned structure, according to the eigenvalue measures of the strength of en-286

tanglement, is the least entangled.287
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