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Abstract. We give a new proof of the L2 version of Hardy’s uncertainty prin-

ciple based on calculus and on its dynamical version for the heat equation. The

reasonings rely on new log-convexity properties and the derivation of optimal
Gaussian decay bounds for solutions to the heat equation with Gaussian de-

cay at a future time. We extend the result to heat equations with lower order
variable coefficient.

1. Introduction

In this paper we continue the study in [18, 6, 8, 9, 10, 11] related to the Hardy
uncertainty principle and its relation to unique continuation properties for some
evolutions.

One of our motivations came from a well known result due to G. H. Hardy ([14],
[21, pp. 131]), which concerns the decay of a function f and its Fourier transform,

f̂(ξ) = (2π)−
n
2

∫
Rn
e−iξ·xf(x) dx.

If f(x) = O(e−|x|
2/β2

), f̂(ξ) = O(e−4|ξ|
2/α2

) and 1/αβ > 1/4, then f ≡ 0. Also,

if 1/αβ = 1/4, f is a constant multiple of e−|x|
2/β2

.

As far as we know, the known proofs for this result and its variants - before the
one in [18, 6, 9, 10, 11] - use complex analysis (the Phragmén-Lindelöf principle).
There has also been considerable interest in a better understanding of this result
and on extensions of it to other settings: [3], [15], [20], [1] and [2].

The result can be rewritten in terms of the free solution of the Schrödinger
equation

i∂tu+4u = 0, in Rn × (0,+∞),

with initial data f ,

u(x, t) = (4πit)−
n
2

∫
Rn
e
i|x−y|2

4t f(y) dy = (2πit)
−n2 e

i|x|2
4t

̂
e
i| · |2
4t f

( x
2t

)
,

in the following way:

If u(x, 0) = O(e−|x|
2/β2

), u(x, T ) = O(e−|x|
2/α2

) and T/αβ > 1/4, then u ≡ 0.

Also, if T/αβ = 1/4, u has as initial data a constant multiple of e−(1/β2+i/4T)|y|2 .
The corresponding results in terms of L2-norms, established in [4], are the fol-

lowing:
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If e|x|
2/β2

f , e4|ξ|
2/α2

f̂ are in L2(Rn) and 1/αβ ≥ 1/4, then f ≡ 0.

If e|x|
2/β2

u(x, 0), e|x|
2/α2

u(x, T ) are in L2(Rn) and T/αβ ≥ 1/4, then u ≡ 0.
In [10] we proved a uniqueness result in this direction for variable coefficients

Schrödinger evolutions

(1.1) ∂tu = i (4u+ V (x, t)u) , in Rn × [0, T ].

with bounded potentials V verifying, V (x, t) = V1(x)+V2(x, t), with V1 real-valued
and

sup
[0,T ]

‖eT
2|x|2/(αt+β(T−t))2V2(t)‖L∞(Rn) < +∞

or

lim
R→+∞

∫ T

0

‖V (t)‖L∞(Rn\BR) dt = 0.

More precisely, we showed that the only solution u to (1.1) in C([0, T ], L2(Rn)),
which verifies

‖e|x|
2/β2

u(0)‖L2(Rn) + ‖e|x|
2/α2

u(T )‖L2(Rn) < +∞

is the zero solution, when T/αβ > 1/4. When T/αβ = 1/4, we found a complex
valued potential potential V with

|V (x, t)| . 1

1 + |x|2
, in Rn × [0, T ]

and a nonzero smooth solution u in C∞([0, T ], S(Rn)) of (1.1) with

‖e|x|
2/β2

u(0)‖L2(Rn) + ‖e|x|
2/α2

u(T )‖L2(Rn) < +∞.

Thus, we established in [10] that the optimal version of Hardy’s Uncertainty
Principle in terms of L2-norms holds for solutions to (1.1) holds when T/αβ > 1/4
for many general bounded potentials, while it can fail for some complex-valued
potentials in the end-point case, T/αβ = 1/4. Finally, in [11] we showed that the
reasonings in [18, 6, 8, 9, 10, 11] provide the first proof (up to the end-point case)
that we know of Hardy’s uncertainty principle for the Fourier transform without
the use of holomorphic functions.

The Hardy uncertainty principle also has a dynamical version associated to the
heat equation,

∂tu−∆u = 0, in Rn × (0,+∞),

with initial data f ,

u(x, t) = (4πt)−n/2
∫
Rn
e−|x−y|

2/4tf(y) dy, û(ξ, t) = e−t|ξ|
2

f̂(ξ), x, ξ ∈ Rn, t > 0.

In particular, its L∞ and L2 versions yield the following statements:

If u(0) is a finite measure in Rn, u(x, T ) = O(e−|x|
2/δ2) and δ <

√
4T , then

f ≡ 0. Also, if δ =
√

4T , then u(0) is a multiple of the Dirac delta function.

If u(0) is in L2(Rn), ‖e|x|2/δ2u(T )‖L2(Rn) is finite and δ ≤
√

4T , then u ≡ 0.

In [9, Theorem 4] we proved that a dynamical L2-version of Hardy uncertainty
principle holds for solutions u in C([0, T ], L2(Rn)) ∩ L2([0, T ], H1(Rn)) to

(1.2) ∂tu = ∆u+ V (x, t)u, in Rn × [0, T ],
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when V is any bounded complex potential in Rn × [0, T ] and δ <
√
T . Here, we

find the optimal interior Gaussian decay over [0, 1] for solutions to (1.2) with

‖e|x|
2/δ2u(T )‖L2(Rn) < +∞,

when δ >
√

4T and derive from it the full dynamical L2 version of the Hardy
uncertainty principle for solutions to (1.2), reaching the end-point case, δ =

√
4T .

Theorem 1. Assume that u in C([0, T ], L2(Rn))∩L2([0, T ], H1(Rn)) verifies (1.2)
with V in L∞(Rn × [0, T ]). Assume that

(1.3) ‖eT |x|
2/4(T 2+R2)u(T )‖L2(Rn) < +∞

for some R > 0. Then, there is a universal constant N such that

(1.4) sup
[0,T ]

‖et|x|
2/4(t2+R2)u(t)‖L2(Rn)

≤ eN(1+T 2‖V ‖2L∞(Rn×[0,T ]))
[
‖u(0)‖L2(Rn) + ‖eT |x|

2/4(T 2+R2)u(T )‖L2(Rn)

]
.

Moreover, u must be identically zero when ‖e|x|2/4Tu(T )‖L2(Rn) is finite.

Theorem 1 is optimal because

(1.5) uR(x, t) = (t− iR)−
n
2 e−|x|

2/4(t−iR) = (t− iR)−
n
2 e−(t+iR)|x|2/4(t2+R2),

is a solution to the heat equation and for each fixed t > 0, t/4(t2+R2) is decreasing
in the R-variable for R > 0 . Also, observe that t/4(t2 +R2) attains its maximum
value in the interior of [0, T ], when R 6= T ,

Notice that the finiteness condition on condition on ‖e|x|2/4Tu(T )‖L2(Rn) is in-
dependent of the size of the potential or the dimension and that we do not assume
any regularity or strong decay of the potentials.

This improvement of our results in [9, Theorem 4] on the relation between Hardy
uncertainty principle and its dynamical version for parabolic evolutions comes from
a better understanding of the solutions to (1.2) which have Gaussian decay and of
the adaptation to the parabolic context of the same kind of log-convexity arguments
that we used in [10] to derive the dynamical version of the Hardy uncertainty
principle for Schrödinger evolutions.

We have not tried to extend the results in Theorems 1 to parabolic evolutions
with nonzero drift terms

(1.6) ∂tu = ∆u+W (x, t) · ∇u+ V (x, t)u.

We expect that similar methods will yield analogue results for solutions to (1.6)
(See [5] for initial results following the approach initiated in [18] and [6] for the case
of Schr̈odiger evolutions).

In what follows, N denotes a universal constant depending at most on the di-
mension, Na,ξ,... a constant depending on the parameters a, ξ, . . . In section 2 we
give three Lemmas which are necessary for our proof in section 3 of Theorem 1.

2. A few Lemmas

In the sequel

(f, g) =

∫
Rn
fg dx , ‖f‖2 = (f, f) and ‖V ‖∞ = ‖V ‖L∞(Rn×[0,1]).
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In Lemma 1, S and A denote respectively a symmetric and skew-symmetric
bounded linear operators on S(Rn). Both are allowed to depend smoothly on the
time-variable, St = ∂tS and [S,A] is the space commutator of S and A. The reader
can find a proof of Lemma 1 in [10, Lemma 2].

Lemma 1. Let S and A be as above, f lie in C∞([c, d], S(Rn)) and γ : [c, d] −→
(0,+∞) be a smooth function such that

(γ Stf(t) + γ [S,A] f(t) + γ̇ Sf(t), f(t)) ≥ 0, when c ≤ t ≤ d.

Then, if H(t) = ‖f(t)‖2 and ε > 0

H(t) + ε ≤ (H(c) + ε)
θ(t)

(H(d) + ε)
1−θ(t)

eMε(t)+2Nε(t), when c ≤ t ≤ d,

where Mε verifies

∂t (γ ∂tMε) = −γ ‖∂tf − Sf −Af‖2

H + ε
, in [c, d], Mε(c) = Mε(d) = 0,

Nε =

∫ d

c

∣∣∣∣Re
(∂sf(s)− Sf(s)−Af(s), f(s))

H(s) + ε

∣∣∣∣ ds
and

θ(t) =

∫ d
t
ds
γ∫ d

c
ds
γ

.

A calculation (see formulae (2.12), (2.13) and (2.14) in [9] with γ = 1) shows that
given smooth functions a : [0, 1] −→ [0,+∞), b : [0, 1] −→ R and T : [0, 1] −→ R,
and ξ in Rn

ea(t)|x|
2+b(t)x·ξ−T (t)|ξ|2 (∂t −4) e−a(t)|x|

2−b(t)x·ξ+T (t)|ξ|2 = ∂t − S−A,

where S and A are the symmetric and skew-symmetric linear bounded operators
on S(Rn) given by

S = ∆ +
(
a′ + 4a2

)
|x|2 + (b′ + 4ab)x · ξ +

(
b2 − T ′

)
|ξ|2,(2.1)

A = −2 (2ax+ b ξ) · ∇ − 2na.(2.2)

and

(2.3) St + [S,A] = −8a∆ +
(
a′′ + 16aa′ + 32a3

)
|x|2

+
(
b′′ + 8ab′ + 8a′b+ 32a2b

)
x · ξ +

(
8ab2 + 4bb′ − T ′′

)
|ξ|2.

In Lemma 2 we make choices of a, b and T which make non-negative the self-
adjoint operator

e8A (St + [S,A]) +
(
e8A
)′
S,

where A denotes an anti-derivative of a in [0, 1] with A(1) = 0, .

Lemma 2. Let a : [0, 1] −→ R be a smooth function verifying

(2.4)
(
e8Aa

)′′ ≥ 0, in [0, 1],

and let b and T be the solutions to

(2.5)

{(
e8Ab

)′′
= 2

(
e8Aa

)′′
, in [0, 1],

b(0) = b(1) = 0,
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and

(2.6)

{(
e8AT ′

)′
= 2

(
e8Ab2

)′ − (e8Aa)′′ , in [0, 1],

T (0) = T (1) = 0.

Then,(
e8AStf + e8A [S,A] f +

(
e8A
)′
Sf, f

)
≥ 0, when f ∈ S(Rn) and 0 ≤ t ≤ 1.

Proof. From (2.1), (2.3), the identities(
e8Aa

)′′
= e8A

(
a′′ + 24aa′ + 64a3

)
.(

e8Ab
)′′

= e8A
(
b′′ + 16ab′ + 8a′b+ 64a2b

)
.(

e8Ab2
)′

= e8A
(
8ab2 + 2bb′

)
,

and the definitions of b and T , we have

e8A (St + [S,A]) +
(
e8A
)′
S

=
(
e8Aa

)′′ |x|2 +
(
e8Ab

)′′
x · ξ +

(
2
(
e8Ab2

)′ − (e8AT ′)′) |ξ|2
=
(
e8Aa

)′′ (|x|2 + 2x · ξ + |ξ|2
)

=
(
e8Aa

)′′ |x+ ξ|2.

The later and (2.4) implies Lemma 2. �

In the next Lemma we assume that u in C([0, 1], L2(Rn)) ∩ L2([0, 1], H1(Rn))
verifies (1.2) in Rn × (0, 1] and

‖e|x|
2/δ2u(1)‖ < +∞.

Lemma 3. Let a : [0, 1] −→ [0,+∞) be a smooth function with a(0) = 0, a(1) =

1/δ2,
(
e8Aa

)′′
> 0 in [0, 1] and

sup
[0,1]

‖e(a(t)−ε)|x|
2

u(t)‖ < +∞, when 0 < ε ≤ 1.

Then, there is a universal constant N such that for b and T as in (2.5) and (2.6),

‖ea(t)|x|
2+b(t)x·ξ−T (t)|ξ|2u(t)‖ ≤ eN(1+‖V ‖2∞)

(
‖u(0)‖+ ‖e|x|

2/δ2u(1)‖
)
,

when ξ is in Rn and 0 ≤ t ≤ 1.

Proof. For ξ in Rn and ε > 0, set

fε(x, t) = eaε|x|
2+bεx·ξ−Tε|ξ|2u(x, t),

with aε = a−ε, Aε = A+ε(1−t), and with bε and Tε as in Lemma 2 but with a and
A replaced by aε and Aε respectively. The local Schauder estimates for solutions
to (1.2) show that

r|∇u(x, t)|+ r2

(
—

∫
Br(x)×(t−r2,t]

|∂su|p + |D2u|p dyds

) 1
p

≤ Np
(
1 + r2‖V ‖L∞(Rn×[0,1])

)
—

∫
B2r(x)×(t−4r2,t]

|u| dyds
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for 1 < p < ∞, 0 < r ≤
√
t/2, 0 < t ≤ 1. Thus, fε is in W 2,1

2 (Rn × [%, 1]) and
verifies

sup
[0,1]

‖fε(t)‖ ≤ Na,ε,ξ sup
[0,1]

‖e(a−
ε
2 )|x|2u(t)‖,

sup
[%,1]

‖∇fε(t)‖ ≤ Na,ε,ξ,% sup
[0,1]

‖e(a−
ε
2 )|x|2u(t)‖

(2.7)

for 0 < % ≤ 1
2 and

(2.8) ∂tfε − Sεfε −Aεfε = V (x, t)fε, in Rn × (0, 1],

where Sε and Aε are the operators defined in (2.1) and (2.2) with a, A, b and T
replaced by aε, Aε, bε and Tε respectively. Also, (2.7), the equation (2.8) verified
by fε and [22, Lemma 1.2] show that fε is in C((0, 1], L2(Rn)).

Extend fε as zero outside Rn × [0, 1] and let θ in C∞(Rn+1) be a mollifier
supported in the unit ball of Rn+1. For 0 < ρ ≤ 1

4 , set fε,ρ = fε ∗ θρ and

θx,tρ (y, s) = ρ−n−1θ(x−yρ , t−sρ ).

Then, fε,ρ is in C∞([0, 1], S(Rn)) and for x in Rn and ρ ≤ t ≤ 1− ρ,

(∂tfε,ρ − Sεfε,ρ −Aεfε,ρ) (x, t) = (V fε) ∗ θρ(x, t)

+

∫
fε (qε(y, s, ξ)− qε(x, t, ξ)) θx,tρ dyds

+

∫
∇yfε · [(aε(t)x+ 2bε(t)ξ)− (aε(s)y + 2bε(s)ξ)] θ

x,t
ρ dyds,

(2.9)

with

qε(x, t, ξ) =
(
a′ε(t) + 4a2ε(t)

)
|x|2

+ (b′ε(t) + 4aε(t)bε(t))x · ξ +
(
b2ε(t)− T ′ε(t)

)
|ξ|2 − 2naε(t).

The last identity gives,

(∂tfε,ρ − Sεfε,ρ −Aεfε,ρ) (x, t) = (V fε) ∗ θρ(x, t) +Aε,ρ(x, t),

in Rn × [ρ, 1− ρ], where Aε,ρ denotes the sum of the second and third integrals in
the right hand side of (2.9). Moreover, from (2.7) there is Na,ε,ξ,% such that for
0 < % < 1

2 and 0 < ρ ≤ %,

sup
[%,1−%]

‖Aε,ρ(t)‖L2(Rn) ≤ ρNa,ε,ξ,% sup
[−1,1]

‖e(a(t)−
ε
2 )|x|2u(t)‖.

Also,
(
e8Aεaε

)′′
> 0 in [0, 1], when 0 < ε ≤ εa, and from Lemma 2 we can apply to

Sε, Aε and fε,ρ, the conclusions of Lemma 1 with [c, d] = [%, 1 − %], γ = e8Aε and
Hε,ρ(t) = ‖fε,ρ(t)‖2. Thus,

(2.10) Hε,ρ(t) ≤ (Hε,ρ(%) +Hε,ρ(1− %) + 2ε) eMε,ρ(t)+2Nε,ρ , when % ≤ t ≤ 1− %,
where Mε,ρ verifies{

∂t
(
e8Aε∂tMε,ρ

)
= −e8Aε ‖∂tfε,ρ−Sεfε,ρ−Aεfε,ρ‖

2

Hε,ρ+ε
, in [%, 1− %],

Mε,ρ(%) = Mε,ρ(1− %) = 0,

and

Nε,ρ =

∫ 1−%

%

‖∂sfε,ρ(s)− Sεfε,ρ(s)−Aεfε,ρ(s)‖√
Hε,ρ(s) + ε

ds.
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We can now pass to the limit in (2.10), when ρ tends to zero and derive that for
Hε(t) = ‖fε(t)‖2, 0 < % ≤ 1

2 and 0 < ε ≤ εa, we have

(2.11) Hε(t) ≤ [Hε(%) +Hε(1− %) + 2ε] eMε(t)+2‖V ‖∞ , in [%, 1− %],

with

(2.12)

{
∂t
(
e8Aε∂tMε

)
= − e8Aε ‖∂tfε−Sεfε−Aεfε‖

2

Hε
, in [0, 1].

Mε(0) = Mε(1) = 0,

By writing an explicit formula for the solution to (2.12), it follows from the
monotonicity of A; i.e. A′ ≥ 0 in [0, 1] and (2.8) that

Mε(t) ≤ N
(
1 + ‖V ‖2∞

)
.

Also, there is Na > 0 such that |b′ε| + |T ′ε | ≤ Na, when 0 < ε ≤ εa. The later,
the continuity of fε in C((0, 1], L2(Rn)) and the fact that a(0) = bε(0) = Tε(0) = 0
show, that for each fixed ξ ∈ Rn and all 0 < ε < εa, there is %ε with limε→0+ %ε = 0
such that Hε(1 − %ε) ≤ Hε(1) + ε and Hε(%ε) ≤ sup[0,1] ‖u(t)‖. Thus, after taking

% = %ε in (2.11), we get

‖eaε(t)|x|
2+bε(t)x·ξ−Tε(t)|ξ|2u(t)‖ ≤ eN(1+‖V ‖2∞)

[
sup
[0,1]

‖u(t)‖+ ‖e|x|
2/δ2u(1)‖+ 3ε

]
,

for %ε ≤ t ≤ 1 − %ε. Then, let ε → 0+ and recall the L2 energy inequality verified
by solutions to (1.2). �

3. Proof of Theorem 1

Proof. By scaling it suffices to prove Theorem 1 when T = 1. Assume first that u
in C([0, 1], L2(Rn)) ∩ L2([0, 1], H1(Rn)) verifies (1.2) in Rn × (0, 1] and

‖e|x|
2/δ2u(1)‖ < +∞

for some δ > 2. Following [9, Theorem 4], for α = 1 and β = 1 + 2
δ , define

ũ(x, t) =
( √

αβ
α(1−t)+βt

)n
2

u(
√
αβx

α(1−t)+βt ,
βt

α(1−t)+βt )e
(α−β)|x|2

4(α(1−t)+βt) .

Then, ũ is in C([0, 1], L2(Rn)) ∩ L2([0, 1], H1(Rn)) and from [9, Lemma 5] with
A+ iB = 1

∂tũ = ∆ũ+ Ṽ (x, t)ũ, in Rn × (0, 1],

with
Ṽ (x, t) = αβ

(α(1−t)+βt)2V (
√
αβx

α(1−t)+βt ,
βt

α(1−t)+βt ).

Also, for γ = 1
2δ

‖eγ|x|
2

ũ(0)‖ = ‖u(0)‖ and ‖eγ|x|
2

ũ(1)‖ = ‖e|x|
2/δ2u(1)‖.

From the log-convexity property of ‖eγ|x|2 ũ(t)‖ established in [9, Lemma 3], we
know that

(3.1) sup
[0,1]

‖eγ|x|
2

ũ(t)‖ ≤ eN(1+‖Ṽ ‖2L∞(Rn×[0,1]))
(
‖eγ|x|

2

ũ(0)‖+ ‖eγ|x|
2

ũ(1)‖
)
.

The last claim in [9, Lemma 5] shows that with s = βt
α(1−t)+βt ,

(3.2) ‖eγ|x|
2

ũ(t)‖ = ‖e

[
γαβ

(αs+β(1−s))2 +
α−β

4(αs+β(1−s))

]
|y|2

u(s)‖, for 0 ≤ t ≤ 1.
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From (3.1) and (3.2), we find that

(3.3) sup
[0,1]

‖e
t|x|2

(δ+2−2t)2 u(t)‖ ≤ eN(1+‖V ‖2∞)
[
‖u(0)‖+ ‖e|x|

2/δ2u(1)‖
]
.

We then begin an inductive procedure where at the kth step we have constructed
k smooth functions, aj : [0, 1] −→ [0,+∞) verifying

(3.4) 0 < a1 < a2 < · · · < ak < · · · ≤
1

δ2 − 4
, in (0, 1),

(3.5) aj(0) = 0, aj(1) = 1/δ2,
(
e8Ajaj

)′′
> 0, in [0, 1],

(3.6) sup
[0,1]

‖eaj(t)|x|
2

u(t)‖ ≤ eN(1+‖V ‖2∞)
[
‖u(0)‖+ ‖e|x|

2/δ2u(1)‖
]
,

when j = 1, . . . , k, with A′j = aj , Aj(1) = 0. The case k = 1 follows from (3.3)

with a1(t) = t/ (δ + 2− 2t)
2
. Assume now that a1, . . . , ak have been constructed

and let bk and Tk be the functions defined in Lemma 3 for a = ak. Then,

(3.7) ‖eak(t)|x|
2+bk(t)x·ξ−Tk(t)|ξ|2u(t)‖2

≤ e2N(1+‖V ‖2∞)
(
‖u(0)‖+ ‖e|x|

2/δ2u(1)‖
)2
,

for 0 ≤ t ≤ 1 and all ξ ∈ Rn. Observe that (3.7) and the existence of the solutions
uR defined in (1.5) imply that Tk > 0 in (0, 1), when δ > 2. Otherwise, (3.7) implies

that uR ≡ 0, when 2
√

1 +R2 < δ.

For ε > 0, multiply (3.7) by e−2εTk(t)|ξ|
2

and integrate the new inequality with
respect to ξ in Rn. It gives,

sup
[0,1]

‖ea
ε
k+1(t)|x|

2

u(t)‖ ≤
(
1 + 1

ε

)n
4 eN(1+‖V ‖2∞)

(
‖u(0)‖+ ‖e|x|

2/δ2u(1)‖
)
,

with

aεk+1 = ak +
b2k

4 (1 + ε)Tk
.

On the other hand, e8Akbk is strictly convex and bk < 0 in [0, 1],

(3.8) bk(t) = 2
(
ak(t)− te−8Ak(t)δ−2

)
and

Tk(t) = 2

∫ t

0

b2k(s) ds− ak(t)− 8

∫ t

0

a2k(s) ds− αk
∫ t

0

e−8Ak(s) ds,

with

αk =

(
2

∫ 1

0

b2k(s) ds− 1

δ2
− 8

∫ 1

0

a2k(s) ds

)(∫ 1

0

e−8Ak(s) ds

)−1
.

The last two formulae and (3.4) show that there is Nδ ≥ 1, independent of k ≥ 1,
such that

(3.9) Tk(t) ≤ 2

(∫ t

0

b2k(s) ds+Nδ

)
and Nδ +

bk
2
≥ 1, in [0, 1].
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Also,
((
a′k + 4a2k

)
e16Ak

)′
= e8Ak

(
e8Akak

)′′
,
(
a′k + 4a2k

)
e16Ak is non decreasing in

[0, 1] and

(3.10) a′k + 4a2k ≥ 0 in [0, 1].

Set then,

(3.11) ak+1(t) = ak(t) +
b2k(t)

8
(∫ t

0
b2k(s) ds+Nδ

) .
We have, ak < ak+1 in (0, 1), ak+1(0) = 0, ak+1(1) = 1

δ2 ,

(3.12) Ak+1 = Ak +
1

8
log

(∫ t

0

b2k(s) ds+Nδ

)
− 1

8
log

(∫ 1

0

b2k(s) ds+Nδ

)
,

and
sup
[0,1]

‖e(ak+1(t)−ε)|x|2u(t)‖ < +∞, for all ε > 0.

The identity
(
e8A
)′′′

= 8
(
e8Aa

)′′
and (3.12) show that

(
e8Ak+1ak+1

)′′
is a positive

multiple of(
e8Ak

(∫ t

0

b2k(s) ds+Nδ

))′′′
=
(
e8Ak

)′′′(∫ t

0

b2k(s) ds+Nδ

)
+ 3

(
e8Ak

)′′
b2k + 6

(
e8Ak

)′
bkb
′
k + 2e8Ak

(
b′′kbk + b′2k

)
The equation verified by bk shows that the last sum is equal to(

e8Ak
)′′′(∫ t

0

b2k(s) ds+Nδ +
bk
2

)
+ 8

(
a′k + 8a2k

)
e8Akb2k + 2e8Akb′2k + 16e8Akakbkb

′
k.

From (3.9) and (3.10), the above sum is bounded from below by(
e8Ak

)′′′
+ 2e8Ak (4akbk + b′k)

2
> 0, in [0, 1].

The later and Lemma 3 show that (3.6) holds up to j = k + 1. Finally, because
(3.10) holds with k replaced by k + 1,

−
(

1

ak+1

)′
+ 4 ≥ 0, in (0, 1],

and the integration of this identity over [t, 1] shows that ak+1(t) ≤ 1
δ2−4 in (0, 1).

Thus, there exists a(t) = limk→+∞ ak(t) and from (3.11), limk→+∞ bk(t) = 0.
This and (3.8) show that

(3.13) ae8A = tδ−2, in [0, 1].

Write a(1) = 1/δ2 as 1/4
(
1 +R2

)
, for some R > 0. Then, a(t) = t/4

(
t2 +R2

)
follows from the integration of (3.13) and (1.4) from (3.6) after letting j → +∞.
Finally, when δ = 2, we have

sup
[0,1]

‖et|x|
2/4(t2+R2)u(t)‖ ≤ eN(1+‖V ‖2∞)

[
‖u(0)‖L2(Rn) + ‖e|x|

2/4u(1)‖
]
,

for all R > 0. Letting R→ 0+, we get

sup
[0,1]

‖e|x|
2/4tu(t)‖ ≤ eN(1+‖V ‖2∞)

[
‖u(0)‖L2(Rn) + ‖e|x|

2/4u(1)‖
]
,
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and it implies, u ≡ 0. �

Remark 1. Theorem 1 holds when (1.3) and (1.4) are replaced respectively by

‖eTx
2
1/4(T

2+R2)u(T )‖L2(Rn) < +∞

and

sup
[0,T ]

‖etx
2
1/4(t

2+R2)u(t)‖L2(Rn)

≤ eN(1+T 2‖V ‖2L∞(Rn×[0,T ]))
[
‖u(0)‖L2(Rn) + ‖eTx

2
1/4(T

2+R2)u(T )‖L2(Rn)

]
.
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