Review sheet for final

The topics here should help you focus your studying for the final. There are ample sources to get practice problems. The assigned homework is a good source for practice, and if you want more practice after these ones, just grabbing problems from the book is a good idea.

1. Chapters 1 and 2

Although the final will have a majority of problems from chapter 3, there will be a few from chapter 1 and 2. For topics and practice problems, refer to the review sheet for the midterm. Obvious choices for problems on the final will be questions that a large number of people got wrong on the midterm, or material from the midterm review sheet which did not show up on the midterm.

2. section 3.1

Make sure that you can add matricies, and multiply them be a scalar, or use matrix multiplication. Recall that matrix multiplication is not commutative.

Given a pair of vector, you should be able to find the dot product, and you should be able to find the absolute value of a single vector.

You should be able to take the transpose of a matrix.

You should know the properties of matrices in the blue boxes on page 124-125 of the book.

3. section 3.2

given a system of equations, you should be able to write it as an augmented matrix.

You should be able to row reduce a matrix (this includes identifying whether a matrix is in RREF form)

You should know the elementary row operations

you should be able to use row reduction to solve a system of equations

4. section 3.3

You should be able to find the inverse of a matrix

5. section 3.4

Be able to calculate the determinant of a matrix. If it is a large matrix, look for a lot of zeros and use cofactor expansion be able to use cramers rule to solve a system of equations Know how row operations affect determinant

6. section 3.5

Know the definition of a vector space.

In particular, know the closure properties.

Know the prominent vector spaces: \mathbb{R}^n , \mathbb{P}^n , \mathbb{M}_{mn} , $\mathcal{C}(I)$, $\mathcal{C}^n(I)$

Given a set of vectors, be able to use closure properties determine if it is a vector space.

Given a vector space, be able to find a subspace

7. section 3.6

Be able to find the span of a set of vectors

Be able to identify if a set of vectors spans the vector space

determine if a set of vectors is linearly independent

identify a basis for a vector space

find the dimension of a vector space

Use the wronskian to determine if a set of vectors in a function space is linearly independent.