Problem 1. [§4.49.1(a)(b)(c)(f)] Apply the Cauchy-Goursat theorem to show that
\[\int_C f(z) \, dz = 0 \]
when the contour C is the unit circle \(|z| = 1 \) in either direction, and when

a. \(f(z) = \frac{z^2}{z - 3} \);

b. \(f(z) = ze^{-z} \);

c. \(f(z) = \frac{1}{z^2 + 2z + 2} \);

f. \(f(z) = \log(z + 2) \).

Solution.

a. Notice that the given function is analytic everywhere except at \(z = 3 \), since the denominator vanishes there. Hence the function is analytic in an open disc containing the closed unit disc (for example the open disc of radius 2 around 0). Thus by Cauchy-Goursat, the given integral is 0.

b. The given function is entire, since it is the product of two entire functions. Thus by Cauchy-Goursat, the given integral is 0.

c. By the quadratic formula, the polynomial \(z^2 + 2z + 2 \) has roots \(1 \pm i \). Thus the given function is analytic everywhere except at these two points. Since these points are at distance \(\sqrt{2} \) from 0, the function is analytic in the open disc of radius \(\sqrt{2} \) around 0 and thus the given integral is 0.

f. Notice that \(\log w \) has a branch cut along the negative real axis (including 0). Let the complement of this ray be \(D \). Suppose \(w = g(z) = z + 2 \), which is entire. Thus \(\log(z + 2) \) is analytic in the domain \(g^{-1}(D) \), which is the complement of the ray starting at \(z = -2 \) and traveling along the negative real axis. Since the given contour is contained in \(D \), by Cauchy-Goursat, the given integral is 0.

Problem 2. [§4.49.3] If \(C_0 \) denotes a positively oriented circle \(|z - z_0| = R \), then
\[\int_{C_0} (z - z_0)^{n-1} \, dz = \begin{cases} 0 & \text{when } n = \pm 1, \pm 2, \ldots, \\ 2\pi & \text{when } n = 0. \end{cases} \]
according to Exercise 10(b), Sec. 42. Use that result and the corollary in Sec. 49 to show that if \(C \) is the boundary of the rectangle \(0 \leq x \leq 3, 0 \leq y \leq 2 \), described in the positive sense, then

\[
\int_C (z - 2 - i)^{n-1} \, dz = \begin{cases}
0 & \text{when } n = \pm 1, \pm 2, \ldots, \\
2\pi i & \text{when } n = 0.
\end{cases}
\]

Solution. Let \(f(z) = (z - (2 + i))^{n-1} \). Then notice that \(f(z) \) is analytic everywhere except (if \(n < 1 \)) at \(2 + i \) (if \(n \geq 1 \), the function \(f(z) \) is entire). Notice that \(C \) is contained in this region. Also notice that the maximum distance from \(2 + i \), of any point on \(C \) is strictly less than 10 (I chose 10 here as a large enough number - you could choose a smaller number that works, but as you will see, for the given result, it will not matter). Hence \(f(z) \) is analytic in the closed region consisting of \(C \) and \(C_{11} \), where \(C_{11} \) is the positively oriented contour of radius 11 around \(2 + i \). Thus by the corollary,

\[
\int_C f(z) \, dz = \int_{C_{11}} f(z) \, dz.
\]

Thus by the result of Exercise 10(b), the result follows.