1. Hints to previous problems

I will accept solutions to these extra credit problems next week as well for half-credit.

Problem 1. Let K be the Cantor set as defined in the notes. Show that the set $K + K = \{ x + y \mid x, y \in K \} = [0, 2]$.

Solution. Notice that for each $x \in K$, x has a ternary representation $(0.x_1, x_2, \ldots)$ where no x_i is 1. If we choose any element of $[0, 2]$, either that element $y \in [0, 1)$ or in $[1, 2]$. If it is in $[0, 1)$, then $y = (0.y_1, y_2, \ldots)$. Try and find a way to add up two cantor set numbers to get y by adding two ternary numbers that contain no 1’s.

Problem 2. In the notes about the Cantor set, we showed that the ‘length’ of the Cantor set is 0. However, it is possible to construct a non-empty closed perfect set that contains no intervals and has positive length. Prove that there exists such a set K' with length $\frac{1}{2}$ [Hint: Construct a Cantor-like set that contains no intervals, but the total length of the removed intervals is $\frac{1}{2}$. Then you know that since the length of Cantor-like set + length of removed stuff = 1, the length of the Cantor-like set must be $\frac{1}{2}$. Knowing the geometric series summation formula will help].

Solution. Search for ‘fat cantor set’ on google and look at the first wikipedia page. I think it’s called the Smith-Voltera set or something like that. Remember to show that your set is closed, perfect, contains no intervals and the sum of the lengths of the removed intervals is $\frac{1}{2}$.

3. New problem

So we will show that not every set can be given a ‘length’ in a two part extra credit. Let $P \subset \mathcal{P}(\mathbb{R})$ s.t.

1. $\emptyset \in P$,
2. if $A \in P$ then $\mathbb{R} \setminus A \in P$,
3. if $\{A_i\}_{i \in \mathbb{N}}$ is a countable collection of elements of P, then for $A = \bigcup_{n \in \mathbb{N}} A_n$, $A \in P$.

Suppose $\ell: P \rightarrow [0, \infty]$ (notice that ∞ is in the range) s.t.

1. $\ell(\emptyset) = 0$,
2. for $\{A_i\}_{i \in \mathbb{N}}$ a countable collection of elements of P, s.t. for $i \neq j$, $A_i \cap A_j = \emptyset$, $\ell(\bigcup_{i \in \mathbb{N}} A_i) = \sum_{i \in \mathbb{N}} \ell(A_i)$ (makes sense since $\bigcup_{i \in \mathbb{N}} A_i \in P$).

Then we call ℓ a ‘length’ or ‘measure’ function. We usually want that for (a, b), the interval (closed, open, half-open - doesn’t matter), $\ell(a, b) = b - a$, i.e. we want the length function to make sense on intervals. So let’s assume that for all $a < b \in \mathbb{R}$, $(a, b) \in P$ and $\ell(a, b) = b - a$. We will show that there exists $X \subset \mathbb{R}$ s.t. $\ell(X) \neq 0$ and $\ell(X) \neq 0$ and thus X is not in the domain of ℓ, i.e. X is a set for which length doesn’t make sense.

First some preliminaries.
Problem 3. Show that every set \{a\} consisting of one point has length 0 (notice that it is the interval \[a, a\]). Then show that every countable set has length 0 (use countable unions).

Let \(\alpha \in \mathbb{R} \setminus \mathbb{Q}\) and let \(Y = [0, 1) \subset \mathbb{R}\). Define \(T : Y \rightarrow Y\) as \(Y(x) = (x + \alpha) - \lfloor (x + \alpha) \rfloor\) (\(x + \alpha\) minus the floor of \(x + \alpha\)). Notice that \(Y(x) \in [0, 1)\). Pick \(x_0 \in [0, 1)\). Let \(T^2(x_0) = T(T(x_0))\) and \(T^3(x_0) = T(T(T(x_0)))\) and thus \(T^n(x_0) = T(T^{n-1}(x_0))\).

Problem 4. Show that the set \(\{x_0, T(x_0), T^2(x_0), \ldots\}\) has length 0 [Hint: the set is countable].

Problem 5. Show that for \(x_0 \in \mathbb{R}\) and \(\alpha \in \mathbb{R} \setminus \mathbb{Q}\), \(T^n(x_0) \neq x_0\) for any \(n \in \mathbb{N}\) [Hint: suppose \(T^n(x_0) = x_0\). Then \((x_0 + n\alpha) - x_0\) is an integer - show why].

Now consider the set \(R_{x_0} = \{\ldots T^{-2}(x_0), T^{-1}(x_0), x_0, T(x_0), T^2(x_0), \ldots\}\).

Problem 6. Show that \(R_{x_0} = R_{x_1}\) if and only if there exists \(z \in \mathbb{Z}\) s.t. \(T^z(x_0) = x_1\) [Hint: \(z \in \mathbb{Z}\) could be negative].

We have thus shown that for any two points \(x_0, x_1 \in [0, 1)\), either \(R_{x_0} \cap R_{x_1} = \emptyset\) or \(R_{x_0} = R_{x_1}\). Thus we can partition \([0, 1)\) into a bunch of sets \(\{R_{x_0} \mid \beta \in J, R_{x_0} \cap R_{x_0'} \neq \emptyset\}\) if and only if \(R_{x_0} = R_{x_0'}\). Let \(X\) be a set that contains exactly one element from each \(R_{x_0}\) in the partition.

Problem 7. Show that the collection \(X \cup T(X) \cup T^2(X) \ldots = [0, 1)\).

We will complete the proof next week. We will show that \(\ell(T(X)) = \ell(X)\). So if \(\ell(X) = 0\), then \(\ell(T^n(X)) = 0\). Since \([0, 1) = \bigcup_{n \in \mathbb{N}} T^n(X)\), \([0, 1)\) will have length 0 if \(X\) has length 0, which is impossible. But if \(\ell(X) = c > 0\), then \(\sum_{n \in \mathbb{N}} \ell(T^n(X)) = \sum_{n \in \mathbb{N}} c = \infty\), which means that \([0, 1)\) has length \(\infty\), which is impossible and thus \(X\) cannot be assigned a length. There are a few more details we have to fill in before we can understand why \(\ell(T(X)) = \ell(X)\).