Problem 1. \([\S 16.1]\)

Solution.

a. False. Let \(s_n = (-1)^n\). Then \(s_1 = s_3\).

b. True. By definition of \(s_n \to s\).

c. False. Let \(s_n = \frac{1}{n}\) and \(t_n = -\frac{1}{n}\). Then \(s_n \to 0\) and \(t_n \to 0\) but \(s_n \neq t_n\).

d. True. Suppose \(s_n \to s\). Then for \(\epsilon = 1\), there exists \(N\) s.t. for all \(n > N\),
\[
|s_n - s| < \epsilon = 1.
\]
Thus \(s_1 < s_n < s + 1\) for all \(n > N\). Let \(a = \min\{s_1, \ldots, s_N, s - 1\}\) and let \(b = \max\{s_1, \ldots, s_N, s + 1\}\). Notice that \(a - 1 < s_n < b + 1\) for all \(n \in \mathbb{N}\).

Problem 2. \([\S 16.2]\)

Solution.

a. True. Since \(s_n \to 0\), for all \(\epsilon > 0\), there exists \(N\) s.t. \(n > N \Rightarrow |s_n - 0| < \epsilon\) and thus \(s_n < \epsilon\).

b. False. Let \(s_n = -1\).

c. False. Let \(s_n = a_n = 1\), let \(s = 0.5\) and let \(k = 1\). Then \(|s_n - 0.5| = |1 - 0.5| = 0.5 \leq 1|a_n| = 1\). However, \(s_n \not\to 0\).

d. True. If \(s \neq t\), then \(|s - t| > 2\epsilon > 0\). However, there exists \(N\) s.t. for all \(n > N\), \(|s_n - s| < \epsilon\). By the triangle inequality, \(|s_n - t| = |s_n - s + s - t| \geq |s - t| - |s_n - s| \geq |s - t| - \epsilon = 2\epsilon - \epsilon = \epsilon\). Thus \(s_n \not\to t\).

Problem 3. \([\S 16.7]\)

Solution.

d. Notice that \(0 < \frac{\sqrt{n}}{n+1} \leq \frac{\sqrt{n}}{n} = \frac{1}{\sqrt{n}} \to 0\). Thus by the squeeze theorem, \(\frac{\sqrt{n}}{n+1} \to 0\).

e. Notice that \(0 < \frac{x^2}{n^2} = \frac{n^2}{(n-1)!} \leq \frac{n}{(n-1)!} = \frac{1}{(n-2)!} \leq \frac{1}{n-2} \to 0\). Thus by the squeeze theorem, \(\frac{x^2}{n^2} \to 0\).

f. Choose \(\epsilon > 0\). Let \(|x| < 1\). Notice that \(\log |x| < 0\). Choose \(N > \frac{\log x}{\log |x|}\) by the archimedean property. Then for all \(n > N\), \(n \log |x| < N \log |x| < \log \epsilon \Rightarrow |x|^n < \epsilon\) (where the first inequality holds since \(\log |x| < 0\)). Thus \(|x|^n \to 0\).
Problem 4. [§16.8]

Solution.

a. Notice that \(a_n = 2n \) is unbounded and thus cannot converge.

b. We will first prove that \(x_n \) takes only finitely many values \(\{ s_1, \ldots, s_k \} \) and if \(x_n \) converges, then \(\lim_{n \to \infty} x_n \in \{ s_1, \ldots, s_k \} \). We know that for some \(i \leq k \) (and this \(i \) need not be unique \textit{a priori}) there exist infinitely many \(n \in \mathbb{N} \) s.t. \(x_n = s_i \). Now suppose \(x_n \) converges to \(t \neq s_i \). Since \(t \neq s_i \), \(|s_i - t| > 2 \varepsilon > 0 \). However, there exists \(N \) s.t. for all \(n > N \), \(|x_n - s_i| < \varepsilon \). By the triangle inequality, \(|x_n - t| = |x_n - s_i + s_i - t| \geq |s_i - t| - |x_n - s_i| \geq |s_i - t| - \varepsilon = 2 \varepsilon - \varepsilon = \varepsilon \). Thus, \(x_n \not\to t \) and thus since \(x_n \) converges and cannot converge to any point \(t \neq s_i \), \(x_n \to s_i \).

Since \(b_n = (-1)^n \), if \(b_n \) converged, it would have to converge to either \(-1\) or \(1\) (since \(b_n \) only takes on the values \(-1, 1\)). However, for all \(N \in \mathbb{N}, \) there exists \(n > N \) s.t. \(|b_n - 1| > \frac{1}{2} \) and there exists \(m > N \) s.t. \(|b_m + 1| > \frac{1}{2} \) and thus \(b_n \) does not converge.

c. As above, if \(c_n \) converged it would have to converge to one of \(\{1, \frac{1}{2}, -\frac{1}{2}, -1\} \). However, as above \(\cos(\frac{n\pi}{4}) \) does not converge to any of the points in that set.

d. \(d_n = (-n)^2 = n^2 \), which is not bounded and thus doesn’t converge.

\(\square \)

Problem 5. [§16.12]

Solution.

a. Suppose that \(t_n \) is bounded. Then there exists \(M > 0 \) s.t. \(|t_n| < M \). Then \(|s_nt_n| = |s_n||t_n| < M|s_n| \). Since \(s_n \to 0 \), by the squeeze theorem, \(s_nt_n \to 0 \).

b. Let \(s_n = \frac{1}{n} \) and let \(t_n = n \). Then \(s_nt_n = 1 \to 1 \), but \(s_n \to 0 \).

\(\square \)

Problem 6. [§16.15]

Solution.

a. \(\Rightarrow \) Suppose \(x \) is an accumulation points of \(S \). Then for all \(\varepsilon > 0 \), \(N^{\ast}(x, \varepsilon) \cap S \neq \emptyset \). Let \(\varepsilon = \frac{1}{n} \) and choose \(x_n \in N^{\ast}(x, \frac{1}{n}) \cap S \). Thus \(x_n \) is a sequence contained in \(S \setminus \{x\} \) s.t. \(0 < |x_n - x| < \frac{1}{n} \to 0 \). Thus there exists a sequence \(\{x_n \mid n \in \mathbb{N}\} \subset S \setminus \{x\} \) s.t. \(x_n \to x \).

\(\Leftarrow \) Suppose there exists \(\{s_n \mid n \in \mathbb{N}\} \subset S \setminus \{x\} \) s.t. \(s_n \to x \). Then for all \(\varepsilon > 0 \), there exists \(N \in \mathbb{N} \) s.t. \(n > N \Rightarrow |s_n - x| < \varepsilon \) and thus \(s_n \in N(x, \varepsilon) \). Since for \(n > N, s_n \in S \setminus \{x\} \) and \(s_n \in N(x, \varepsilon) \), we have that \(s_n \in N^{\ast}(x, \varepsilon) \cap S \) and thus \(N^{\ast}(x, \varepsilon) \cap S \neq \emptyset \) and thus \(x \) is an accumulation points of \(S \).

b. \(\Rightarrow \) Suppose \(S \) is closed. Let \(\{s_n \mid n \in \mathbb{N}\} \subset S \) s.t. \(s_n \to s \). Suppose that for some \(n \in \mathbb{N}, s_n = x \). Then since \(s_n \in S, s \in S \). Else, for all \(n \in \mathbb{N}, s_n \neq s \). Thus \(\{s_n \mid n \in \mathbb{N}\} \subset S \setminus \{x\} \). By part a, we have that \(s \) is a limit point of \(S \). Since \(S \) is closed, \(s \in S \).
‘⇐’ Suppose that whenever \(\{ s_n \mid n \in \mathbb{N} \} \subset S \) is a convergent sequence, then \(\lim_{n \to \infty} s_n = s \in S \). Let \(s \in S' \).

Then by part a, there exists a sequence \(s_n \) s.t. \(s_n \in S \setminus \{ x \} \) and \(s_n \to s \). Thus \(s_n \in S \). By assumption, \(s = \lim_{n \to \infty} s_n \in S \) and thus \(S' \subset S \) and \(S \) is closed.

\(\square \)