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Preface 

This book grew out of lecture notes written for a graduate topics course 
taught at the University of Notre Dame in the spring of 2012. The goal is 
to quickly introduce graduate students to ideas surrounding recent devel­
opments on extremal Kahler metrics. We make an effort to introduce the 
main ideas from Kahler geometry and analysis that are required, but the 
parts of the book on geometric invariant theory and K-stability would be 
difficult to follow without more background in complex algebraic geometry. 
A reader with a background in Riemannian geometry and graduate level 
analysis should be able to follow the rest of the book. 

I would like to thank Tamas Darvas, Yueh-Ju Lin, and Valentino Tosatti 
for helpful comments about the manuscript. 

Gabor Szekelyhidi 
Notre Dame, 2014 
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Introduction 

A basic problem in differential geometry is to find canonical, or best, metrics 
on a given manifold. There are many different incarnations of this, perhaps 
the most well known being the classical uniformization theorem for Riemann 
surfaces. The study of extremal metrics is an attempt at finding a higher­
dimensional generalization of this result in the setting of Kahler geometry. 
Extremal metrics were introduced by Calabi in the 1980s as an attempt to 
find canonical Kahler metrics on Kahler manifolds as critical points of a 
natural energy functional. The energy functional is simply the £ 2-norm of 
the curvature of a metric. The most important examples of extremal metrics 
are Kahler-Einstein metrics and constant scalar curvature Kahler (or cscK) 
metrics. 

It turns out that extremal metrics do not always exist, and the question 
of their existence is particularly interesting on projective manifolds. In this 
case, by works of Yau, Tian, and Donaldson, it was realized that the exis­
tence of extremal metrics is related to the stability of the manifold in an 
algebro-geometric sense, and obtaining a necessary and sufficient condition 
of this form for existence is the central problem in the field. Our goal in 
this book is to introduce the reader to some of the basic ideas on both the 
analytic and the algebraic sides of this problem. One concrete goal is to give 
a fairly complete proof of the following result. 

Theorem. If M admits a cscK metric in c1(L) for an ample line bundle 
L--+ M and if M has no non-trivial holomorphic vector fields, then the pair 
(M, L) is K-stable. 

The converse of this result, i.e. the existence of cscK metrics on K-stable 
manifolds, is the central conjecture in the field. 

-xiii 



xiv Introduction 

We will now give a brief description of the contents of the book. The 
first two chapters give a quick review of some of the background material 
that is needed. The first chapter contains the basic definitions in Kahler 
geometry, with a focus on calculations in local coordinates. The second 
chapter focuses on some of the analytic background required, in particular 
the Schauder estimates for elliptic operators, which we prove using a blow-up 
argument due to L. Simon. 

The topic of Chapter 3 is Kahler-Einstein metrics, which are a special 
case of extremal metrics. We give a proof of Yau's celebrated theorem on 
the solution of the complex Monge-Ampere equation, leading to existence 
results for Kahler-Einstein metrics with zero or negative Ricci curvature. 
The case of positive Ricci curvature has only been understood very recently 
through the work of Chen, Donaldson, and Sun. The details of this are 
beyond the scope of this book, and we only give a very brief discussion in 
Section 3.5. 

The study of general extremal metrics begins in Chapter 4. Follow­
ing Calabi, we introduce extremal metrics as critical points of the Calabi 
functional, which is the £ 2-norm of the scalar curvature: 

w 1-7 JM S(w)2wn, 

defined for metrics w in a fixed Kahler class. An important discovery is 
that extremal metrics have an alternative variational characterization, as 
critical points of the (modified) Mabuchi functional. This is convex along 
geodesics in the space of Kahler metrics with respect to a natural, infinite­
dimensional, Riemannian structure. Moreover the variation of the Mabuchi 
functional is closely related to the Futaki invariant, which plays a prominent 
role in the definition of K-stability. After giving the basic definitions, we 
construct an explicit family of extremal metrics on a ruled surface due to 
T!llnnesen-Friedman in Section 4.4. This example illustrates how a sequence 
of extremal metrics can degenerate, and we return to it again in Section 6.5. 
In Section 4.5 we give an introduction to the study of extremal metrics on 
toric manifolds. Torie manifolds provide a very useful setting in which to 
study extremal metrics and stability, and while in the two-dimensional case 
the basic existence question is understood through the works of Donald­
son and of Chen, Li, and Sheng, the higher-dimensional case remains an 
important problem to study. 

In Chapter 5 we give an introduction to the relation between symplectic 
and algebraic quotients-the Kempf-Ness theorem-which, at least on a 
heuristic level, underpins many of the ideas that have to do with extremal 
metrics. The general setting is a compact group K acting by Hamiltonian 
isometries on a Kahler manifold M, with a moment map µ : M -+ t*. The 
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Kempf-Ness theorem characterizes those orbits of the complexified group 
Kc which contain zeros of the moment map. The reason why this is relevant 
is that the scalar curvature of a Kahler metric, or rather the map w i--+ 

S(w) - S where S is the average scalar curvature, can be realized as a 
moment map for a suitable infinite-dimensional Hamiltonian action. At the 
same time, orbits of Kc can be thought of as metrics in a given Kahler class, 
so an infinite-dimensional analog of the Kempf-Ness theorem would describe 
Kahler classes that contain cscK metrics. In Section 5.5 we will describe a 
suitable extension of the Kempf-Ness theorem dealing with critical points 
of the norm squared of a moment map, which in the infinite-dimensional 
setting are simply extremal metrics. 

The notion of K-stability is studied in Chapter 6. It is defined in anal­
ogy with the Hilbert-Mumford criterion in geometric invariant theory by 
requiring that a certain weight-the Donaldson-Futaki invariant-is posi­
tive for all C* -equivariant degenerations of the manifold. These degenera­
tions are called test-configurations. In analogy with the finite-dimensional 
setting of the Kempf-Ness theorem, the Donaldson-Futaki invariant of a 
test-configuration can be seen as an attempt at encoding the asymptotics 
of the Mabuchi functional "at infinity", with the positivity of the weights 
ensuring that the functional is proper. In Section 6.6 we will describe test­
configurations from the point of view of filtrations of the homogeneous coor­
dinate ring of the manifold. It is likely that the notion of K-stability needs to 
be strengthened to ensure the existence of a cscK metric, and filtrations al­
low for a natural way to enlarge the class of degenerations that we consider. 
In the case of toric varieties, passing from test-configurations to filtrations 
amounts to passing from rational piecewise linear convex functions to all 
continuous convex functions, as we will discuss in Section 6.7. 

The basic tool in relating the differential geometric and algebraic aspects 
of the problem is the Bergman kernel, which we discuss in Chapter 7. We 
first give a proof of a simple version of the asymptotic expansion of the 
Bergman kernel going back to Tian, based on the idea of constructing peaked 
sections of a sufficiently high power of a positive line bundle. Then, following 
Donaldson, we use this to show that a projective manifold which admits a 
cscK metric must be K-semistable. This is a weaker statement than the 
theorem stated above. The Bergman kernel also plays a key role in the 
recent developments on Kahler-Einstein metrics, through the partial C0-

estimate conjectured by Tian. We will discuss this briefly in Section 7.6. 

In the final chapter, Chapter 8, the main result is a perturbative exis­
tence result for cscK metrics due to Arezzo and Pacard. Starting with a cscK 
metric w on M and assuming that M has no non-zero holomorphic vector 
fields, we show that the blow-up of Mat any point admits cscK metrics in 
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suitable Kahler classes. The gluing technique used together with analysis in 
weighted HOlder spaces has many applications in geometric analysis. Apart 
from giving many new examples of cscK manifolds, this existence result is 
crucial in the final step of proving the theorem stated above, namely to 
improve. the conclusion from K-semistability (obtained in Chapter 7) to K­
stability. The idea due to Stoppa is to show that if M admits a cscK metric 
and is not K-stable, then a suitable blow-up of Mis not even K-semistable. 
Since the blow-up admits a cscK metric, this is a contradiction. 

There are several important topics that are missing from this book. We 
make almost no mention of parabolic equations such as the Calabi flow 
and the Kahler-Ricci flow. We also do not discuss in detail the existence 
theory for constant scalar curvature metrics on toric surfaces and for Kahler­
Einstein metrics on Fano manifolds since each of these topics could take up 
an entire book. It is our hope that after studying this book the reader will 
be eager and ready to tackle these more advanced topics. 



Chapter 1 

Kahler Geometry 

In this chapter we cover some of the background from Kahler geometry that 
we will need. Rather than formally setting up the theory, we will focus on 
how to do calculations with covariant derivatives and the curvature tensor on 
Kahler manifolds in local coordinates. For a much more thorough treatment 
of the subject good references are Griffiths-Harris [59] and Demailly [39]. 

1.1. Complex manifolds 

A complex manifold M can be thought of as a smooth manifold on which 
we have a well-defined notion of holomorphic function. More precisely, for 
an integer n > 0 (the complex dimension), Mis covered by open sets Uco 
together with homeomorphisms 

'P0t.: UO!. -t VO!. c en, 
such that the "transition maps" 'P0t. o cp{/ are holomorphic wherever they 
are defined. A function f : M -t C is then holomorphic if the composi­
tion f o cp~ 1 is holomorphic on VO!., for all a. Using these charts, near any 
point p E M there exists a holomorphic coordinate system z1, ... , zn, con­
sisting of complex-valued functions with zi(p) = 0 for each i. Moreover if 
w1, ... , wn form a different holomorphic coordinate system, then each wi is 
a holomorphic function of the z1, ... , zn. 

Example 1.1 (The Riemann sphere). We let M = 8 2, and we think of 
8 2 c R 3 as the unit sphere. Identify the xy-plane in R 3 with C. We 
define two charts. Let U1 be the complement of the "north pole", i.e. U1 = 
8 2 \ {(O, 0, 1)}, and define 

-1 
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A 

D 

B 

Figure 1.1. A cross-section of the stereographic projections. 

to be the stereographic projection from the north pole to the xy-plane. 
Similarly let U2 = 82 \ {(O, 0, -1)} be the complement of the south pole, 
and let 

'l/J: U2--+ C 

be the composition of the stereographic projection to the xy-plane from the 
south pole, with complex conjugation. One can then compute that 

(1.1) 
1 

'l/J o cp-1(z) = - for z E C \ {O}. 
z 

Indeed, in Figure 1.1 the points C and D are the stereographic projec­
tions of E from the south and north poles, respectively. The triangles OBC 
and ODA are similar, from which it follows that IOCI · IODI = 1, i.e. the 
two stereographic projections are related by inversion in the unit circle. In­
version in the unit circle is the transformation z i---+ :z-1, so when we compose 
with complex conjugation, we obtain the transition function {1.1). 

Since this transition function is holomorphic, our two charts give 82 the 
structure of a complex manifold. Note that if we do not compose the projec­
tion with complex conjugation when defining 'l/J, then even the orientations 
defined by cp and 'l/J would not match, although the two charts would still 
give 82 the structure of a smooth manifold. 

Example 1.2 (Complex projective space). The complex projective space 
cpn is defined to be the space of complex lines in cn+i. In other words, 
points of cpn are (n + 1)-tuples [Zo : · · · : Zn], where not every entry is 
zero, and we identify 

[Zo: .. ·:Zn]= [AZo: .. ·: AZn] 
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for all .X E C \ {O}. As a topological space, cpn inherits the quotient 
topology from cn+i \ {(O, ... , O)} under this equivalence relation. We call 
the Zo, ... , Zn homogeneous coordinates. To define the complex structure 
we will use n + 1 charts. For i E {O, 1, ... , n}, let 

ui = { [Zo : ... : Zn] I zi :f 0} 

and 
'Pi : ui ---+ en 

[ l ( Zo "Z; Zn) 
Zo : ... : Zn i--t zi ' ... ' zi ' ... ' zi ' 

where the ~: term is omitted. It is then easy to check that the transition 

functions are holomorphic. For example, using coordinates w1, ... , wn on 
en we have 

( 1 2 n) -1 1 n W W 
'Pl 0 'Po ( w ' · · · 'w ) = -1 ' -1 ' · .. ' -1 · w w w 

(1.2) 

In the case n = 1 we obtain two charts with the same transition function as 
in the previous example, so CP1 = 8 2 as complex manifolds. 

Topologically cpn can be seen as a quotient 8 2n+l / 8 1 , where 8 2n+l c 
cn+l is the unit sphere, and 8 1 acts as multiplication by unit length complex 
numbers. It follows that cpn is compact. 

Example 1.3 (Projective manifolds). Suppose that Ji, ... , fk are homoge­
neous polynomials in Zo, ... , Zn. Even though the fi are not well-defined 
functions on cpn (we will later see that they are sections of line bundles), 
their zero sets are well-defined. Let V c cpn be their common zero set 

V = { [Zo : ... : Zn] I fi(Zo, ... , Zn) = 0 for i = 1, ... , k}. 

If V is a smooth submanifold, then it is a complex manifold and charts can 
be constructed using the implicit function theorem. Being closed subsets of 
a compact space, projective manifolds are compact. 

These projective manifolds are general enough that in this book they 
are essentially the only complex manifolds with which we will be concerned. 
They lie at the intersection of complex differential geometry and algebraic 
geometry and we will require tools from both fields. In particular the basic 
question we will ask is differential geometric in nature, about the existence 
of certain special metrics on projective manifolds. In studying this question, 
however, one is naturally led to consider the behavior of projective mani­
folds in families and their degenerations to possibly singular limiting spaces. 
Algebraic geometry will provide a powerful tool to study such problems. 
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1.2. Almost complex structures 

An alternative way to introduce complex manifolds is through almost com­
plex structures. 

Definition 1.4. An almost complex structure on a smooth manifold M is 
an endomorphism J : TM --t TM of the tangent bundle such that J 2 = -Id, 
where Id is the identity map. 

In other words an almost complex structure equips the tangent space 
at each point with a linear map which behaves like multiplication by yCI. 
The dimension of M must then be even, since any endomorphism of an odd­
dimensional vector space has a real eigenvalue, which could not square to 
-1. 

Example 1.5. If M is a complex manifold, then the holomorphic charts 
identify each tangent space TpM with en, so we can define J(v) =Av for 
v E TpM, giving an almost complex structure. The fact that the transition 
functions are holomorphic means precisely that multiplication by A is 
compatible under the different identifications of TpM with en using different 
charts. 

If z1, ... , zn are holomorphic coordinates and zi = xi + J=Iyi for real 
functions xi, yi, then we can also write 

J (8~i) = 8:i' J (8:i) = - 8~i· 
Definition 1.6. An almost complex structure is called integrable if it arises 
from holomorphic charts as in the previous example. We will use the term 
"complex structure" to mean an integrable almost complex structure. 

On complex manifolds it is convenient to work with the complexified 
tangent bundle 

TcM=TM®Re. 

In terms of local holomorphic coordinates it is convenient to use the basis 

(1.3) { 8~1' .. · ' 8~n' 8~1' .. · ' ! } ' 
where in terms of the real and imaginary parts zi =xi+ J=Iyi we have 

(l.4) 8~i = ~ (8~i -R8:i) and 8~ = ~ (8~i +R8:i) · 

The endomorphism J extends to a complex linear endomorphism of Tc M 
and induces a decomposition of this bundle pointwise into the A and 
-A eigenspaces 

Tc M = T 1•0 M E9 T 0•1 M. 
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In terms of local holomorphic coordinates, T 1•0 M is spanned by the 0°. zi 

while T°·1 M is spanned by the ;, . 

Similarly we can complexify the cotangent bundle to obtain OhM, which 
is decomposed according to the eigenvalues of the endomorphism dual to J 
(which we will still denote by J) into 

OhM = 0 1•0 M E9 n°·1 M. 

In terms of coordinates, 0 1•0 is spanned by dz1, ... , dzn, while n°·1 is spanned 
by az1, ... , azn, where 

di = dxi + Hdyi and azi = dxi - Hdyi. 

Moreover {dz1, ... ,dzn,az1, ... ,azn} is the basis dual to (1.3). 

The decomposition extends to higher-degree forms 

ncM = EB np,q M, 
p+q=r 

where np,q M is locally spanned by 

dzi1 " ••• " diP " azii " ... " aziq. 
On a complex manifold the decomposition of forms gives rise to a decompo­
sition of the exterior derivative as d = o + 8, where 

o: np,qM---+ np+i,qM, 

lJ : np,q M ---+ np,q+ 1 M 

are two projections of d. A useful observation is that Ba= oa for any form 
a. 

Example 1.7. A function f: M---+ C is holomorphic if and only if Bf= 0, 
since 

- of 1 of 
of=-az +···+-azn, az1 azn 

and: are the Cauchy-Riemann equations. 

Example 1.8. For a function f : M ---+ R, the form A.olJ f is a real 
(1, 1)-form, a kind of complex Hessian off. In particular if f: C---+ R, then 

AolJf =A(~ of) dz/\ az ozfrz 

=- --A- -+A- (dx+Hdy)/\(dx-Hdy) A (a o )(of of) 
4 ox oy ox oy 

1 (02f 02f) 
= 2 ox2 + oy2 dx /\ dy. 
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1.3. Hermitian and Kahler metrics 

Let M be a complex manifold with complex structure J. We will be inter­
ested in Riemannian metrics on M which are compatible with the complex 
structure in a particularly nice way. Recall that a Riemannian metric is a 
positive definite symmetric bilinear form on each tangent space. 

Definition 1.9. A Riemannian metric g on Mis Hermitian if g(JX, JY) = 
g(X, Y) for any tangent vectors X, Y. In other words we require J to be an 
orthogonal transformation on each tangent space. 

Given a Hermitian metric g, we define w(X, Y) = g(JX, Y) for any 
X, Y. Then w is antisymmetric in X, Y and one can check that in this way 
w defines a real 2-form of type (1, 1). 

Definition 1.10. A Hermitian metric g is Kahler if the associated 2-form 
w is closed, i.e. dw = 0. Then w is called the Kahler form, but often we will 
call w the Kahler metric and make no mention of g. 

In local coordinates z1, ... , zn a Hermitian metric is determined by the 
components 9fii: where 

9jk = g ( {j~i , {j~k) , 

and we are extending g to complex tangent vectors by complex linearity in 
both entries. The Hermitian condition implies that for any j, k we have 

g ( {j~i, {j~k) = g ( {j~j, {j~k) = 0. 

In terms of the components 9jk we can therefore write 

g = L9i1c(dzi ® dzk + dzk ® dzi). 
j,k 

Note that the bar on k in the components 9jk is used to remember the 
distinction between holomorphic and antiholomorphic components. 

The symmetry of g implies that 9jk = Yk]i and the positivity of g means 
that 9jk is a positive definite Hermitian matrix at each point. The associated 
2-form w can be written as 

w = HLYikdzi /\ dzk, 
j,k 

and finally g is Kahler if for all i, j, k we have 

{} {} 

{)zi9ik = {)zi9ik· 
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Exercise 1.11. Show that on a Kahler manifold (M,w) of complex dimen-
n 

sion n, the Riemannian volume form is given by ;, where wn = w A··· Aw. 
n. 

Example 1.12 (Fubini-Study metric). The complex projective space cpn 
has a natural Kahler metric wps called the Fubini-Study metric. To con­
struct it, recall the projection map 7r: cn+i \ {O}--+ CPn. A sections over 
an open set u c cpn is a holomorphic map s : u --+ cn+l such that 7r 0 s 
is the identity. Given such a section, we define 

To check that this is well-defined, note that if s' is another section over an 
open set V, then on the intersection Un V we have s' = f s for a holomorphic 
function f: Un V--+ C \ {O} and 

v'=Ia8log II/ sll 2 = v'=I88log llsll 2 + v'=Ia8log f + v'=I88log J 
= v'=I88log llsll 2 • 

Since sections exist over small open sets U, we obtain a well-defined, closed 
(1, 1)-form on CPn. The form wps is U(n + 1)-invariant, and U(n + 1) 
acts transitively on cpn so it is enough to check that the corresponding 
Hermitian matrix is positive definite at a single point. At the point [1 : 0 : 
· · · : OJ let us use local holomorphic coordinates 

. zi 
zi = Zo for i = 1, ... , n 

on the chart Uo. A section is then given by 

s(z1, ... , zn) = (1, z1, ... , zn), 

so 

(1.5) 

At the origin this equals v'=I L dzi A dzi. The corresponding Hermitian 
i 

matrix is the identity, which is positive definite. 

Example 1.13. If V C cpn is a projective manifold, then WFS restricted 
to V gives a Kahler metric on V since the exterior derivative commutes with 
pulling back differential forms. 

Since the Kahler form w is a closed real form, it defines a cohomology 
class [w] in H 2(M, R). A fundamental result is the 88-lemma, which shows 
that on a compact manifold, Kahler metrics in a fixed cohomology class can 
be parametrized by real-valued functions. 
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Lemma 1.14 (88-lemma). Let M be a compact Kahler manifold. If wand 
T/ are two real (1, 1)-forms in the same cohomology class, then there is a 
function f : M ---+ R such that 

ry=w+R88f. 

Proof. The proof of this result requires some ideas from Hodge theory on 
Kahler manifolds, which we have not discussed. Because of the fundamental 
nature of the result, we give the proof in any case. 

Let g be a Kahler metric on M. Since [ry] = [w] and ry,w are real forms, 
there exists a real 1-form a such that 

T/ = w + da. 

Let us decompose a = a 1•0 + a 0•1 into its (1,0) and (0, 1) parts, where 
a 0•1 = al,O since a is real. Since ry,w are (1,1)-forms, we have 

(1.6) T/ = w + 8a1•0 + 8a0•1 

and 8a1•0 = 8a0•1 = 0. The function 8*a1•0 defined by 

8*a1,o = -gik:vk:a; 

has zero integral on M, so using Theorem 2.12 there is a function f such 
that 

8* al,O = !:Ji.f = -8* 8 f. 
Then 

8(a1•0 + 81) = 0 and 8*(a1•0 + 81) = O, 

so a 1•0 + 8f is a 8-harmonic form. Since g is Kahler, the form is also 
8-harmonic, so in particular it is 8-closed (see Exercise 1.15), so 

Bal,O = -88 f. 

From (1.6) we then have 

T/ -w = -88f - 88! = 88(! - f) = 2H88Im(f), 

where Im(/) is the imaginary part of f. D 

Exercise 1.15. In the proof of the 88-lemma above we used the fact that 
on a compact Kahler manifold if a (1, 0)-form a satisfies 8a = 8*a = 0, then 
also Ba= 0. Verify this statement by showing that under these assumptions 
gklvk Vzai = 0 and then integrating by parts. The generalization of this 
statement is that on a Kahler manifold the 8- and 8-Laplacians coincide 
(see [59, p. 115]). 

The next result shows that if we have a Kahler metric, then we can 
choose particularly nice holomorphic coordinates near any point. This will 
be very useful in computations later on. 
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Proposition 1.16 (Normal coordinates). If g is a Kahler metric, then 
around any point p E M we can choose holomorphic coordinates z1, ... , zn 
such that the components of g at the point p satisfy 

8 8 
(1.7) 9fii:(P) = Ojk and Bzi9ik:(P) = Bzi9ik:(P) = 0, 

where Ojk is the identity matrix, i.e. Ojk = 0 if j f:. k, and Ojk = 1 if j = k. 

Proof. It is equivalent to (1.7) to require that the Kahler form satisfies 

(1.8) w = HL (oik + O(lzl2)) dzi /\ dzk, 
j,k 

where O(lzl2) denotes terms which are at least quadratic in the zi, zi. 

First we choose coordinates wi such that 

(1.9) w = HL (oik + L(aiklwl + aikflii) + O(lwl2)) dwi /\du}. 
j,k l 

Next we define new coordinates zi in a smaller neighborhood of the origin 
which satisfy 

.. 1"" 'k wi = zi - 2 L.....J bijkZ3 z 
j,k 

for some coefficients bijk such that bijk = bikj· Then 

so we can compute 

dwi = di - L biikzi dzk, 
j,k 

w = HL (oik + L(aiklzl + aiklzl - bklizl - bilkzl) + O(lzl 2) )dzi /\ dzk. 
j,k l 

If w is Kahler, then from (1.9) we know that ajkl = alkj> so we can define 
bklj = ajkl. Then we have 

aikl = ak3l = bilk, 

so all the linear terms cancel. D 

In Riemannian geometry we can always choose normal coordinates in 
which the first derivatives of the metric vanish at a given point, and of course 
this result also applies to any Hermitian metric. The point of the previous 
result is that if the metric is Kahler, then we can even find a holomorphic 
coordinate system in which the first derivatives of the metric vanish at a 
point. Conversely it is clear from expression (1.8) that if such holomorphic 
normal coordinates exist, then dw = 0, so the metric is Kahler. 
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1.4. Covariant derivatives and curvature 

Given a Kahler manifold (M,w), we use the Levi-Civita connection '\J to 
differentiate tensor fields. By definition this satisfies '\Jg = 0. In holomorphic 
normal coordinates the complex structure J is constant, so we obtain '\J J = 
O, and since w(X, Y) = g(JX, Y), we also have '\Jw = 0. In terms of local 
holomorphic coordinates z1, ... , zn, we will use the following notation for 
the different derivatives: 

Since 

{) 
8'=-a .. zi 

J ( Vj a~k) = '1jJ ( a~k) = Avj a~k, 
the vector field '\J j /z,. has type ( 1, 0), and so we can define the Christoffel 
symbols r;k by 

For the same reason Vi/z,. also has type (1,0), while VkcJi. has type (0, 1). 
However, since the connection is torsion free, 

{) {) 

'\Ji{) zk = '\J k [Jzi- ' 

so both vector fields have to vanish. In addition '\JiT = '\JiT for any tensor 
T, so the connection is determined completely by the coefficients r;k. Note 
that 

r i -ri d ri -ri jk - kj an 3li: - jk' 
Covariant derivatives of tensor fields can be computed using the product 
rule for derivatives, remembering that on functions the covariant derivatives 
coincide with the usual partial derivatives. 

Example 1.1 7. To find the covariant derivatives of the form dzk, we dif­
ferentiate the relation 

dzk ( {)~i) = oj, 

where oj is the identity matrix. We get 

('\Jidzk) {)~i + dzk ('\Ji {)~i) = 0, 

from which we can calculate that 

k {) k 
('\Jidz ) {)zi = -rii' 
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and similarly (Y'idzk) 8~i = 0. It follows that 

Y'idzk = - L:rf;dzi. 
j 

11 

From now on we will start using the summation convention, which means 
that we sum over repeated indices. If we are consistent, then each repeated 
index should appear once on top and once on the bottom. Usually we will 
write a tensor such as a{3dzi ® dzi (summing over i,j) as just aiJ· Note 
however that r;k is not a tensor since it does not transform in the right way 
under changes of coordinates. 

Example 1.18. We compute covariant derivatives of a tensor ai3dzi ® dzi 
using the product rule, namely 

Y'p(ai3dzi ® dzi) =(8pai3)dzi ® dzi + ai3(Y'pdi) ® dzi + ai3dzi ® (Y'pdzi) 

-(!l -)d i '°' d-j -d i '°' ('.:7 ..J-l) - upaij z '<Y z - aij z '<Y .L j;ZUZ 

- (!l - r 1 -) d i '°' d-i - upaij - p)ail z '<Y z . 

We can write this formula more concisely as 

V' pail = 8paiJ - r~Jaif, 
and similar formulas for more general tensors can readily be derived. 

Lemma 1.19. In terms of the metric 9;k: the Christoffel symbols are given 
by 

i if r;k = g 8;9kf, 

where gil is the matrix inverse to Bil· 

Proof. The Levi-Civita connection satisfies V' g = 0. In coordinates this 
means 

so 
if8 . __ rP _ if_ rP ~i _ ri 

9 J9kl - jk9pl9 - jkuP - jk• D 

Covariant derivatives do not commute in general, and the failure to 
commute is measured by the curvature. The curvature is a 4-tensor R/kf' 
where we will often raise or lower indices using the metric, for example 
Ri]kf = 9pJRtkf (note that the position of the indices is important). The 
curvature is defined by 

8 . 8 
(V'kV'z-V'fV'k)-8 · = R.3kl--8 ., zi i z3 

while V'k commutes with Y'1 and V'k: commutes with V'z. 
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Exercise 1.20. Verify the following commutation relations for a (0,1)-vector 
field v'P and (0,1)-form a-p: 

(\7 k \71- \71\7 k)vP = -R'Pqklvif, 

(\7k\71- \71\7k)a-p = R~k~if· 

In terms of the Christoffel symbols we can compute 

R/kl = -qr{i, 
from which we find that in terms of the metric 

Ri]kl = -8k8r9i] + gPif(8k9iq)(&[gp3). 

In terms of normal coordinates around a point p we have Ri]kl = -8k8r9i] 
at p. In other words the curvature tensor of a Kahler metric is the obstruc­
tion to finding holomorphic coordinates in which the metric agrees with the 
Euclidean metric up to second order. It turns out that if we write out the 
Taylor expansion of the metric in normal coordinates, then each coefficient 
will only depend on covariant derivatives of the curvature. In particular if 
the curvature vanishes in a neighborhood of a point, then in normal coordi­
nates the metric is just given by the Euclidean metric. 

Exercise 1.21. Verify the following identities for the curvature of a Kahler 
metric: 

Ri]kl = RilkJ = Rk]il = RkliJ1 

\7pRi]kl = \7iRpJkl· 

Compare these to the identities satisfied by the curvature tensor of a Rie­
mannian metric, in particular the first and second Bianchi identities. 

The Ricci curvature is defined to be the contraction 

~J = gkl Ri]kl1 

and the scalar curvature is 
R = gii~J­

Lemma 1.22. In local coordinates 

~J = -8iB] logdet(gpq)· 

Proof. Using the formulas above, we have 

-B]8i log det(gpq) = -B](gPif{)igpq) 

=-&r~ 3 ip 

=RP . ., 
p i3 

-~j· D 
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As a consequence the Ricci form Ric( w) defined by 

Ric(w) = HRijdzi /\ dzi = -R.88logdet(g) 

in local coordinates is a closed real (1, 1)-form. Moreover if h is another 

Kahler metric on M, then :::~;~ is a globally defined function, so the 

difference of Ricci forms 

Ric(h) - Ric(g) = -R.88log :::~;~ 
is an exact form. The cohomology class [Ric(g) J is therefore independent of 
the choice of Kahler metric. The first Chern class of M is defined to be the 
cohomology class 

c1(M) = 2~[Ric(g)J E H 2(M,R). 

It turns out that with this normalization c1 (M) is actually an integral co­
homology class. 

Exercise 1.23. Show that for the Fubini-Study metric WFS in Example 1.12, 
the Ricci form satisfies Ric(wFs) = (n + l)wFs, i.e. that WFS is a Kahler­
Einstein metric. 

The fundamental result about the Ricci curvature of Kahler manifolds 
is Yau's solution of the Calabi conjecture. 

Theorem 1.24 (Calabi-Yau theorem). Let (M,w) be a compact Kahler 
manifold, and let a be a real (1, 1)-form representing c1(M). Then there 
exists a unique Kahler metric 'f/ on M with ['fJ] = [w] such that Ric('fJ) = 27ra. 

In particular if c1(M) = O, then every Kahler class contains a unique 
Ricci fl.at metric. This provides our first example of a canonical Kahler 
metric, and it is a very special instance of an extremal metric. We will 
discuss the proof of this theorem in Section 3.4. 

1.5. Vector bundles 

A holomorphic vector bundle E over a complex manifold M is a holomorphic 
family of complex vector spaces parametrized by M. Eis itself a complex 
manifold, together with a holomorphic projection 7r : E ---+ M, and the 
family is locally trivial so M has an open cover { U °'} such that we have 
biholomorphisms (trivializations) 

(1.10) 'Pa: 7r-1(Ua)---+ Ua x er, 
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for some integer r > 0 called the rank of E. Under the trivialization cp00 

7r corresponds to projection onto Ua. The trivializations are related by 
holomorphic transition maps 

{1.11) 
cp13 o cp;_1 : (Ua n U13) x er -+ (Ua n U13) x er 

(p,v) i--+ (p,cp13a(p)v), 

which at each point p E Ua n U13 gives a linear isomorphism 'Pf3a(p) from 
er to er. The matrix-valued functions 'Pf3a satisfy the compatibility (or 
cocycle) condition 

(1.12) 

Conversely any set of holomorphic matrix-valued functions 'Pf3a satisfying 
the cocycle conditions defines a vector bundle. 

A holomorphic section of a vector bundle E is a holomorphic map s : 
M -+ E such that 7r o s is the identity map. A local trivialization 'Pa as 
in (1.10) gives rise to local holomorphic sections corresponding to constant 
functions on Ua. In particular a basis of er gives rise to local holomorphic 
sections s1, ... , Sr which we call a local holomorphic frame. The values of 
the Si span the fiber Ep = 7r-1 (p) at each point p E Ua. All other local 
holomorphic sections over U a can be written as 

r 

1 =Lisi, 
i=l 

where each Ji is a holomorphic function on Ua. We write the space of 
global holomorphic sections as H 0(M, E) since this forms the first term in a 
sequence of cohomology spaces Hi(M, E). Although they are fundamental 
objects, we will not be using these spaces for i > 0. An important property 
which we will discuss later is that H0(M, E) is finite dimensional if M is 
compact. 

Example 1.25. The (1, 0) part of the cotangent bundle 0 1•0 M is a rank 
n holomorphic vector bundle over M, where dime M = n. In a local chart 
with holomorphic coordinates z1, ... , zn a trivialization is given by the holo­
morphic frame dz1, ... , dzn. The transition map to a different chart is de­
termined by the Jacobian matrix of the coordinate transformation. This 
bundle is the holomorphic cotangent bundle. 

Natural operations on vector spaces can be extended to vector bundles, 
such as taking tensor products, direct sums, duals, etc. 

Example 1.26. On a complex manifold of dimension n we can form the 
n-th exterior power of the holomorphic cotangent bundle. This is a line 
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bundle (rank 1 vector bundle) denoted by KM and is called the canonical 
bundle of M: 

n 

KM = /\ n1•0 M = nn,O M. 

In local holomorphic coordinates a frame is given by dz1 /\ • • • /\ dzn, and the 
transition functions are given by Jacobian determinants. 

Exercise 1.27. Show that the canonical line bundle of cpn is Kcpn = 
0(-n-l). 

Exercise 1.28. Let M be a complex manifold, and suppose that D c M is 
a complex submanifold with (complex) codimension 1. The normal bundle 
Nn of D in M is defined to be the quotient bundle (TMln)/TD, where 
TM ID is the restriction of the holomorphic tangent bundle of M to D. 
Show that the canonical bundles of D and M are related by 

Kn= (KMln) ® Nn, 

where KMID is the restriction of the canonical bundle of M to D. This is 
called the adjunction formula. 

Example 1.29 (Line bundles over CPn). Since cpn is the space of complex 
lines in cn+l, we can construct a line bundle denoted by 0( -1) over cpn 
by assigning to each point the line it parametrizes. A natural way to think 
of 0( -1) is as a sub bundle of the trivial bundle cpn x cn+i. Recall the 
charts Ui from Example 1.2. It is a good exercise to work out that under 
suitable trivializations the transition functions correponding to these charts 
are given by 

(1.13) 
zk 

<pk3([Zo : · · · : Zn]) = Z.' 
3 

in terms of homogeneous coordinates. Note that while Z3, Zk are not well­
defined functions on U3 n Uk, their quotient is well-defined. 

Since 0( -1) is a sub bundle of the trivial bundle, any global holomorphic 
section of 0( -1) gives rise to a holomorphic map s : cpn -+ cn+i. The 
components of s are holomorphic functions on a compact complex manifold, 
so they are constant. Therefore s itself is a constant map. It is easy to 
check that non-zero constant maps do not give rise to sections of 0(-1), so 
H 0(cPn, 0(-1)) = {O}. 

The dual of 0(-1) is denoted by 0(1), and by taking tensor powers we 

obtain line bundles O(l) for all integers l. The transition functions <p~] of 
O(l) are given similarly to (1.13) by 

(1.14) <p~]([Zo: .. ·:Zn])= (;~y, 
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and the global sections of O(l) for l ~ 0 can be thought of as homogeneous 
polynomials in Zo, ... , Zn of degree l. In terms of local trivializations, if f 
is a homogeneous polynomial of degree l, then over the chart Uj we have 
a holomorphic function Zj1 f. Over different charts these functions patch 
together using the transition functions (1.14), so they give rise to a global 
section of O(l). It turns out that on cpn every line bundle is given by O(l) 
for some l E Z. 

Exercise 1.30. Suppose that L is a line bundle over a complex manifold 
M and s is a global holomorphic section of L such that the zero set s-1(0) 
is a smooth submanifold D c M. Show that 

Nn=Lln, 

where Lin is the restriction of L to D and Nn is the normal bundle of D. 

Exercise 1.31. Suppose that M C pn is a smooth hypersurface of degree 
d, i.e. M is defined by the vanishing of a section of O(d). Show that if 
d > n + 1, then c1(M) < 0, i.e. -c1(M) is represented by a Kahler metric. 

. More generally, suppose that M c pn is a smooth complex submanifold 
of codimension r, defined by the intersection of r hypersurfaces of degrees 
di, ... , dr. If di+···+ dr > n + 1, then show that c1(M) < 0. 

1.6. Connections and curvature of line bundles 

The Levi-Civita connection that we used before is a canonical connection 
on the tangent bundle of a Riemannian manifold. Analogously there is a 
canonical connection on an arbitrary holomorphic vector bundle equipped 
with a Hermitian metric, called the Chern connection. 

A Hermitian metric h on a complex vector bundle is a smooth family 
of Hermitian inner products on the fibers. In other words for any two local 
sections (not necessarily holomorphic) s1, s2, we obtain a function (s1, s2)h 
which satisfies (s2, s1)h = (s1, s2)h· We can think of the inner product as a 
section of E* ® E*. The Chern connection on a holomorphic vector bundle 
is then the unique connection on E such that the derivative of the inner 
product is zero and 'V~s = 0 for any local holomorphic section of E. The 
derivative of the inner product his zero if and only if 

Ok( (si, s2)h) = ('Vksi, s2)h + (s1, 'Vks2)h, 

and a similar formula holds for ok. Just as before, covariant derivatives do 
not commute in general, and the curvature Fkf is defined by 

Fkf = 'Vk'Vr- 'Vr'Vk· 

The Fkf are the components of an endomorphism-valued (1, 1)-form. 
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Exercise 1.32. Show that if (E, hE) and (F, hF) are Hermitian holomor­
phic bundles whose curvature forms are RE and RF, respectively, then the 
curvature of the tensor product (E ® F, hE ® hF) is the sum 

RE ® ldF + ldE ®RF, 

where ldE and ldF are the identity endomorphisms of E, F. 

Note that on a complex manifold M with a Hermitian metric, the holo­
morphic tangent bundle T 1•0 M has two natural connections. Identifying 
T 1•0 M with the real tangent bundle TM, there is the Levi-Ci vita connec­
tion that we were concerned with in Section 1.4, and there is also the Chern 
connection. 

Exercise 1.33. Show that a Hermitian metric is Kahler if and only if the 
Levi-Ci vita and Chern connections coincide on T 1•0 M. In this case the 
curvature tensor R/kf defined earlier is the same as the curvature Fkf of the 
Chern connection on T 1•0 except that in the latter the endomorphism part 
is suppressed in the notation. 

Let us focus now on the case of line bundles since in this book we will 
mainly be concerned with those. On a line bundle a Hermitian metric at 
any point is determined by the norm of any given non-vanishing section at 
that point. Let s be a local non-vanishing holomorphic section of L, and 
write 

h(s) = (s, s)h· 

Then locally any other section of L can be written as f s for some function 
f, and the norm offs is If si~ = lfl 2h(s). In particular we have functions 
Ak (analogous to the earlier Christoffel symbols) defined by 

\lks = Aks. 

Then the curvature is determined by (remembering that s is holomorphic) 

so Fkf = -qAk. To determine Ak we use the defining properties of the 
Chern connection to get 

8kh(s) = (\lks, s)h = Akh(s), 

so Ak = h(s)-18kh(s). It follows that 

Fkf = -q(h(s)-18kh(s)) = -8z8k log h(s). 

We can summarize these calculations as follows. 
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Lemma 1.34. The curvature of the Chem connection of a holomorphic line 
bundle equipped with a Hermitian metric is given by 

Fkz = -8kqlog h(s), 

where h(s) = (s, s)h for a local holomorphic sections. 

Note the similarity with Lemma 1.22 dealing with the Ricci curvature. 
The relationship between the two results is that as we remarked above, 
the Levi-Civita connection of a Kahler metric coincides with the Chern 
connection on its holomorphic tangent bundle. The determinant of the 
metric defines a Hermitian metric on the top exterior power /\ T 1•0 , and 
the Ricci curvature is the curvature of the induced connection on this line 
bundle. 

Just as in the case of the Ricci curvature, Lemma 1.34 implies that the 
form locally defined by 

F(h) = HFkzdzk f\dzl = -R.88logh(s) 

is a closed real (1, 1)-form. Any other Hermitian metric can be written as 
e-I h for a globally defined function f, and we can check that 

(1.15) F(e-1 h) - F(h) = H88f, 

so if we choose a different Hermitian metric on L, then F(h) changes by an 
exact form. This allows us to define the first Chern class of the line bundle 
L to be 

1 
c1(L) = 211'[F(h)] E H 2(M,R). 

The 88-lemma and (1.15) imply that every real (1,1)-form in c1(L) is the 
curvature of some Hermitian metric on L. 

Remark 1.35. The normalizing factor of 211' is chosen because it turns out 
that this way c1(L) is an integral cohomology class. We will not need this, 
but it is an important fact about characteristic classes. See [59, p. 139]. 

For us the most important property that a line bundle can have is the 
positivity of its curvature. 

Definition 1.36. Let us call a real (1,1)-form positive if the symmetric 
bilinear form (X, Y) i---+ a(X, JY) defined for real tangent vectors X, Y is 
positive definite. For instance the Kahler form of a Kahler metric is positive. 

A cohomology class in H 2(M, R) is called positive if it can be represented 
by a closed positive (1,1)-form. Finally we call a line bundle positive if its 
first Chern class is positive. Equivalently a line bundle is positive if for a 
suitable Hermitian metric h the curvature form F(h) is a Kahler form. 
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Example 1.37. The 0(-1) bundle over cpn has a natural Hermitian 
metric h since it is a subbundle of the trivial bundle cpn x cn+l on which 
we can use the standard Hermitian metric of cn+i. On the open set Uo if 

we use coordinates zi = :~ for i = 1, ... , n, then a holomorphic section of 

0(-1) over Uo is given by 

. ( 1 n) (1 1 n) cn+l s. z , ... ,z i--+ ,z , ... ,z E 

since (z1, ... , zn) E Uo corresponds to the point [1 : z1 : · · · : zn] in homoge­
neous coordinates. By Lemma 1.34 the curvature form of his then 

F(h) = -H8Blogh(s) = -H8Blog(l + lz112 + · · · + lznl2), 

so F(h) = -wps in terms of the Fubini-Study metric of Example 1.12. 

The metric h induces a metric on the dual bundle 0(1), whose curvature 
form will then be WFS· Since this is a Kahler form, 0(1) is a positive line 
bundle. 

In this book, just as we will restrict our attention to compact complex 
manifolds which are submanifolds of projective space, we will generally also 
restrict our attention to Kahler metrics whose Kahler class is the first Chern 
class of a line bundle. The Kodaira embedding theorem in the next section 
states that if a compact complex manifold admits such a Kahler metric, then 
it is automatically a projective manifold. 

1. 7. Line bundles and projective embeddings 

Suppose that L --+ M is a holomorphic line bundle over a complex manifold 
M. If so, ... , Sk are sections of L, then over the set Uc M where at least 
one Si is non-zero, we obtain a holomorphic map 

U-+ cpk 

pi--+ [so(p) : · · ·: sk(p)]. 
(1.16) 

Definition 1.38. A line bundle L over M is very ample if for suitable 
sections so, ... , sk of L the map (1.16) defines an embedding of M into 
cpk. A line bundle L is ample if for a suitable integer r > 0 the tensor 
power Lr is very ample. 

Example 1.39. The bundle 0(1) over cpn is very ample, and the sections 
Zo, ... , Zn from Example 1.29 define the identity map from cpn to itself. 
More generally for any projective manifold V c CPn, the restriction of 0(1) 
to V is a very ample line bundle. Conversely if L is a very ample line bundle 
over V, then Lis isomorphic to the restriction of the 0(1) bundle under a 
projective embedding furnished by sections of L. 
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The following is a fundamental result relating the curvature of a line 
bundle to ampleness. 

Theorem 1.40 (Kodaira embedding theorem). Let L be a line bundle over 
a compact complex manifold M. Then L is ample if and only if the first 
Chem class c1 ( L) is positive. 

The difficult implication is that a line bundle with positive first Chern 
class is ample. The proof requires showing that a sufficiently high power 
of the line bundle admits enough holomorphic sections to give rise to an 
embedding of the manifold, but it is already non-trivial to show that there 
is at least one non-zero holomorphic section. One way to proceed is through 
Kodaira's vanishing theorem for cohomology (see [59, p. 189]). Another 
approach is through studying the Bergman kernel for large powers of the line 
bundle L, which we will discuss in Chapter 7. See in particular Exercise 7.10. 

Example 1.41. Let L be the trivial line bundle over en, so holomorphic 
sections of L are simply holomorphic functions on en. Write 1 for the section 
given by the constant function 1. For k > 0 let us define the Hermitian 
metric h so that h(l) = e-klzl2 • Then by Lemma 1.34, 

n 

F(h) = kHLdzi /\di. 
i=l 

When k is very large, then on the one hand the section 1 decays very rapidly 
as we move away from the origin, and on the other hand the curvature of 
the line bundle is very large. The idea of Tian's argument [110] which we 
will explain in Section 7.2 is that if the curvature of a line bundle L at 
a point p is very large, then using a suitable cutoff function, we can glue 
the rapidly decaying holomorphic section 1 into a neighborhood around p. 
Because of the cutoff function this will no longer be holomorphic, but the 
error is sufficiently small so that it can be corrected to obtain a holomorphic 
section of L, which is "peaked" at p. If the curvature of the line bundle is 
large everywhere, then this construction will give rise to enough holomorphic 
sections to embed the manifold into projective space. 

A much simpler result is that if the line bundle L over a compact Kahler 
manifold is negative, i.e. -c1(L) is a positive class, then there are no non­
zero holomorphic sections at all. To see this, choose a Hermitian metric on 
L whose curvature form Fkr is negative definite. From the definition of the 
curvature, the Chern connection satisfies 

\J k \Jr= \Jf'\l k + Fkf. 

Ifs is a global holomorphic section of Lover M, then we have 

0 = (gkr\Jk \!rs, s)h = (ykr\Jr\Jks, s)h + gkf Fkflsl~ ~ (ykr\Jr\Jks, s)h - cJsl~ 
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for some constant c > 0 since Fkf is negative definite. Integrating this over 
M and integrating by parts we get 

(1.17) 0 ~ - JM l'Vsl~®hdV - c JM lsl~dV. 
Here dV is the volume form of the metric g, and we are writing g ® h for the 
natural Hermitian metric on T1·0 ® L, which in coordinates can be written 
as 

2 kl -l'Vsl9®h = g h'Vks'Vls. 
From the inequality (1.17) it is clear that we must have s = 0. 

It is perhaps instructive to work out the integration by parts carefully 
to familiarize oneself with the notation. Note first of all that using the 
Levi-Civita connection together with the Chern connection of L, we obtain 
natural connections on any vector bundle related to T1·0 M and L, and their 
tensor products, direct sums, etc. Now let us define the vector field v1 by 

vf = gkfh('Vks)s. 

Note that gik is a section of T 1•0M@T0•1M, his a section of L* ®L*, 'Vks 
is a section of 0 1·0 M ® L, and s is a section of L. The section v1 of T0•1 M is 
obtained by taking the tensor product of these four sections and performing 
various contractions between pairwise dual spaces. The function 'Vzv1 is the 
divergence of a vector field, so it has integral zero (it is the exterior derivative 
d(t.vdV) of the contraction of the volume form with v, so we can use Stokes's 
theorem). Using the product rule, we have 

'Vzv1 = ('Vmk1)h('Vks)s + l 1('Vrh)('Vks)s + l 1h('Vr'Vks)s + l 1h('Vks)('Vrs), 

where each time the covariant derivative of the appropriate bundle is used. 
By the defining properties of the Levi-Civita and Chern connections, we 
have \lg= 0 and 'Vh = 0, so 

'Vzv1 = l 1h('Vz'Vks)s + gk1h('Vks)('Vrs). 

Integrating this equation gives the integration by parts formula: 

f gkfh('Vr'Vks)sdV = - f l 1h('Vks)('Vrs)dV. JM JM 
Exercise 1.42. Let L be a holomorphic line bundle on a connected compact 
Kahler manifold with c1(L) = 0. Show that if Lis not the trivial line bundle, 
then it has no non-zero global holomorphic sections. 

Exercise 1.43. A holomorphic vector field is a section vi of T1•0 M such 
that 'Vkvi = 0. Show that on a compact Kahler manifold with negative 
definite Ricci form there are no non-zero holomorphic vector fields. 





Chapter 2 

Analytic Preliminaries 

In this section we collect some fundamental results about elliptic operators 
on manifolds, which we will need later on. The most important results for 
us will be the Schauder estimates theorem (Theorem 2.10) and the solution 
of linear elliptic equations on compact manifolds (Theorem 2.13). The basic 
reference for elliptic equations of second order is Gilbarg-Trudinger [58]. For 
analysis on manifolds Aubin [10] gives an overview and Donaldson [41] is 
also a good resource. 

2.1. Harmonic functions on Rn 

Let Uc Rn be an open set. A function f: U--+ R is called harmonic if 

a21 a21 
i),.j := axiaxl + ... + axnaxn = 0 on u. 

For any x E Rn let us write Br(x) for the open r-ball around x. For short 
we will write Br = Br(O). The most basic property of harmonic functions 
is the following. 

Theorem 2.1 (Mean value theorem). If f: U--+ R is harmonic, x EU, 
and the r-ball Br(x) c U, then 

f(x) = Vi l(~B ) { f(y) dy. 
O r JaBr(x) 

Proof. For p ~ r let us define 

F(p) = { f(x + py) dy. 
las1 -23 



24 2. Analytic Preliminaries 

Then 

F'(p) = { \lf(x + py) · ydy 
JaB1 

= { tl.f(x + py) dy = O, 
JB1 

where we used Green's theorem. This means that Fis constant, but also 
by changing variables 

Vol(8B1) la 
F(r) = Vi l(8B ) f(y) dy, 

0 r 8Br(:c) 

while lim F(p) = Vol(8B1)f(x). 
p--+0 

D 

By averaging the mean value property over spheres of different radii, we 
obtain the following. 

Corollary 2.2. Let fl: Rn -t R be smooth, radially symmetric, supported 
in Bi, and let J fl= 1. If f: B2 -t R is harmonic, then for all x E B1 we 
have 

f(x) = { f(x - Y)T/(Y) dy = { f(Y)fl(X -y) dy. Jan Jan 
An important consequence is that the £ 1-norm of a harmonic function 

on B2 controls all the derivatives of the function on the smaller ball B1. 

Corollary 2.3. There are constants Ck such that if f : B2 -t R is har­
monic, then 

sup IVk fl ~ ck { lf(y)I dy. 
B1 JB2 

In particular even if f is only assumed to be twice differentiable, it follows 
that f is smooth on B1. 

Proof. For any x E B1 we can use the previous corollary and differentiate 
under the integral sign to get 

so 

\lk f(x) = { f(y)\lkfl(X - y) dy, Jan 

IVk f(x)I ~ (sup IVkf/I) f lf(y)I dy. 
B1 JB2 

The result follows with Ck= sup IVkfll· D 

This interior regularity result together with a scaling argument implies 
the following "rigidity" statement. In the next section we will see that 
conversely this rigidity statement can be used to derive interior regularity 
results. 
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Corollary 2.4 (Liouville's theorem). We say that a function f : Rn ---+ R 
has sublinear growth if 

lim R-1 sup If I = 0. 
R--too BR 

If f is harmonic on Rn and has sublinear growth, then f is constant. 

Proof. For r > 0 let fr ( x) = f ( rx), which is also harmonic. The previous 
corollary implies that 

IV fr(O)I ~ C1 r lfr(x)I dx ~ C' sup lfrl = C' sup lfl, 
Js2 B2 B2r 

for some constant C'. But V fr(O) = rV f(O), so we get 

IV f(O)I ~ C'r-1 sup lfl 
B2r 

for all r > 0. Taking r---+ oo, this implies V f(O) = 0. By translating f, we 
get V f(x) = 0 for all x, so f is constant. D 

An alternative approach to the proof of this result is to expand the 
function f in terms of spherical harmonics, as we will do in the proof of 
Theorem 8.3. Indeed that argument shows that if f: Rn---+ R is harmonic, 
then we can write f = c + h-n, where c is a constant and h-n(x) 
O(lxl2-n). If n > 1, we can then integrate by parts to get 

0 = r h-n(x)t:.h-n(x), dx = - r IV h-nl2(x) dx, }Rn }Rn 
from which it follows that h-n = 0. The advantage of this approach is 
that it also applies to higher-order operators, such as t:. 2 , which can be used 
to obtain Schauder estimates for fourth-order elliptic operators using our 
method of proof in Section 2.3 below. 

Exercise 2.5. Let f: Rn---+ R be a harmonic function such that for some 
constant C we have If ( x) I ~ C ( 1 +Ix I )k for all x. Show that f is a polynomial 
of degree at most k. 

2.2. Elliptic differential operators 

In Riemannian geometry many of the natural differential equations that arise 
are elliptic. We will focus on scalar equations of second order. A general 
linear differential operator of second order is of the form 

n a2f n 8f 
(2.1) L(f) = L ajk 8xi8xk + L bt 8xl +cf, 

j,k=l l=l 

where f,ajk,bt,c: 0---+ Rare all functions on an open set 0 C Rn. This 
operator is elliptic if the matrix ( ajk) is positive definite. 
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From now on we will assume that the ajk, bz, care all smooth functions. 
In addition we will usually work on a compact manifold (in which n is a 
coordinate chart), so we will be able to assume the stronger condition of 
uniform ellipticity: 

n 

Ajvj2 ~ L ajk(x)vivk ~ Alvl 2 for all x En 
j,k=l 

for all vectors v and some constants A, A > 0. 

While we assume the coefficients of our operator to be smooth, in con­
structing solutions to linear equations it is usually easiest to first obtain a 
weak solution. Weak solutions are defined in terms of the formal adjoint L * 
of L, which is the operator 

n a2 n 8 
L*(f) = L 8xi8xk (ajkf) - L oxl (bzf) +cf. 

j,k=l l=l 

We say that a function f which is locally integrable on n is a weak solution 
of the equation L(f) = g if 

Inf L*(<p) dV =In g<pdV 

for all compactly supported smooth functions <p on n, where dV is the usual 
volume measure on Rn. The adjoint is defined so that if f is a weak solution 
of L(f) = g and f is actually smooth, then integration by parts shows that 
L(f) = g in the usual sense. A fundamental property of elliptic operators is 
that weak solutions are automatically smooth. 

Theorem 2.6. Suppose that f is a weak solution of the equation L(f) = g, 
where L is a linear elliptic operator with smooth coefficients and g is a 
smooth function. Then f is also smooth. 

There are many more general regularity statements, but for us this sim­
ple one will suffice. The proof is somewhat involved and requires techniques 
that we will not use in the rest of the book. One approach to the proof is 
to first use convolutions to construct smoothings f e: of f and then derive 
estimates for the fe: in various Sobolev spaces which are independent of c. 
The Sobolev embedding theorem will then ensure that f, which is the limit 
of the fe: as c --+ 0, is smooth. For details of this approach, see for example 
Griffiths-Harris [59, p. 380]. 

2.3. Schauder estimates 

In Section 2.2 we saw that solutions of elliptic equations have very strong 
regularity properties. In this section we will see a more refined version of 
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this idea. We will once again work in a domain n c Rn. More precisely we 
should generally work on a bounded open set with at least C1-boundary, but 
not much is lost by assuming that n is simply an open ball in Rn. Recall 
that for a E (0, 1) the C°' HOlder coefficient of a function f on n is defined 
as 

I/lea= sup 
x,yEQ,x#y 

lf(x) - f(y)I 

Ix -yl°' 

Using this we can define the Ck•°'-norms for k E N and a E (0, 1) as 

11/llck,a = sup 181/(x)I +sup 181/lca, 
IIl:i:;;k,xEn IIl=k 

where I= (li, ... , ln) is a multi-index and 

1 a a 
8=-···-

axli axln 

is the corresponding partial derivative of order III = li + · · · + ln. The space 
Ck•°'(O) is the space of functions on n whose Ck•°'-norm is finite. If k > 
0, then such functions are necessarily k-times continuously differentiable. 
Moreover Ck•°'(O) is complete, i.e. any Cauchy sequence with respect to the 
Ck•°' norm converges in Ck•°'. 

Of crucial importance is the following consequence of the Arzela-Ascoli 
theorem. 

Theorem 2. 7. Suppose that n is a bounded set and Uk : n --+ R is a 
sequence of functions such that llukllck,a < C for some constant C. Then a 
subsequence of the Uk is convergent in cz,(3 for any l, /3 such that l+/3 < k+a. 

Let us suppose again that 

n a21 n at 
L(f) = L a;k ax;axk + L bz axz +cf 

j,k=l l=l 

is a uniformly elliptic second-order differential operator with smooth coeffi­
cients. In particular we have the inequalities 

n 

(2.2) >.lvl2 ::::;; L a;k(x)vjvk::::;; Alvl 2 for all x En 
j,k=l 

for some >.,A > 0. 

Theorem 2.8 (Local Schauder estimates). Let n be a bounded domain, let 
O' c n be a smaller domain with the distance d(O', 80) > 0, and suppose 
that a E (0, 1) and k E N. There is a constant C such that if L(f) = g, 
then we have 

(2.3) 
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MoreoverC only depends on k,a, the domains n,n', the Ck•°'-norms of the 
coefficients of L, and the constants of ellipticity >.,A in (2.2). 

Sketch of proof. There are several approaches to the proof, usually re­
ducing the problem to the case when the coefficients of Lare constant (see 
Gilbarg-Trudinger [58]). We will use an argument by contradiction, using 
Liouville's theorem for harmonic functions (see Simon [96]). This type of 
"blow-up" argument is very common in geometric analysis. 

We will only treat the case k = 0 since the general case can be reduced 
to this by differentiating the equation k times. Moreover we will only treat 
operators L with bz, c = 0 since again the general case can be reduced to 
this one (see [58, Section 6.8]). 

First we show a weaker estimate, namely that under the assumptions of 
the theorem, we have a constant C such that 

(2.4) 

More precisely for any x E 0 we let dx = min{l, d(x, 80)}. We will show 
that for some constant C we have 

(2.5) 

for all x, y En and 81 any second-order partial derivative. 

To argue by contradiction let us fix constants K, >.,A and suppose that 
for arbitrary C there exist functions ajki f, g on n satisfying the equation 

82f 
L ajk 8xi8xk = 9 
j,k 

such that in addition the ajk satisfy llaikllca ~ K, the uniform ellipticity 
condition (2.2) holds, and llullca, llfllc2 ~ 1. Moreover there are points 
p, q E n and a second-order partial derivative 81 such that 

(2.6) min{dp d }°' l81f(p) - 81f(q)I = c 
' q IP- qi°' ' 

and at the same time C is the largest possible value for this expression for 
other choices of the points and I. For these points let us write 

l81f(p) - 81f(q)I = M ~ c 
Ip-qi°' 

and r =Ip-qi. We define the rescaled function f(x) = M- 1r-2-°'f(p+rx) 
and let 

F(x) = f(x) -f(O) - L:xk8kf(O)- ~ '.L:xixk8j8kf(O). 
k j,k 
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Then this function F satisfies the following properties: 

(i) Fis defined on (at least) a ball of radius dp/r around the origin. 

(ii) F(O) = aF(O) = a2 F(O) = 0, where a2 means any second-order 
derivative. 

(iii) On the ball ofradius dp/ ( 2r) around the origin, we have j a2 Fl C"' ~ 
2a. 

(iv) For y = r-1 (q - p) we have IYI = 1 and 

la1F(O) - a1F(y)I = 1. 

( v) F satisfies the equation 

a2 F(x) 
L ajk(P + rx) axiaxk = M-Ir-a(g(p + rx) - g(p)) 
j,k 

+M-1r-a L(ajk(P) - ajk(P + rx)) :;:~:~ · 
j,k 

Now suppose that we can perform this construction for larger and larger 
C, obtaining a sequence of functions p(i) as above, together with a]2, g(i), 

unit vectors y(i), and second-order partial derivatives a1i. After choosing 
a subsequence we can assume that the y(i) converge to a vector y and the 
second-order partial derivatives are all the same a 1. Since we have assumed 
that llfllc2 ~ 1, from (2.6) we see that rd;1 ---+ 0 as C ---+ oo, so the p(i) 

are defined on larger and larger balls. From properties (ii) and (iii) the 
p(i) satisfy uniform C2•a-bounds on fixed balls, so on each fixed ball we 
can extract a convergent subsequence in C2• By a diagonal argument we 
obtain a function G : Rn ---+ R which on each fixed ball is a C2-limit of a 
subsequence of the p(i), and in particular G satisfies the conditions (i)-(iv). 

The "stretched" functions xi-+ aJ2(P + rx) satisfy uniform ca-bounds, 
so by choosing a further subsequence we can assume that they converge to 
functions Ajk, which because of the stretching are actually constant. The 

uniform ca-bounds on the g(i) and a]2, the assumption that llfllc2 ~ 1, 
together with property (v) imply that 

a2G 
L Ajk axi axk = o. 
j,k 

After a linear change of coordinates by a matrix T, we obtain a harmonic 
function H(x) = G(Tx) defined on all of Rn. By Corollary 2.3 or Theo­
rem 2.6 the function H is smooth, and so its second derivatives a 1 H are also 
harmonic. From properties (ii) and (iii) we have la1G(x)I ~ 2alxla, so each 
second derivative of H is a harmonic function with sublinear growth, which 
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is therefore constant by Corollary 2.4. This implies that [JIG is identically 
zero, contradicting property (iv). This proves the estimate (2.4). 

From (2.5) one can deduce the estimate we need (replacing the C2-norm 
off by the c 0-norm) by using another argument by contradiction as follows. 
Still under the same assumptions as in the statement of the theorem, we will 
now show that there is a constant C such that 

d~llif(x)I :::; C(llYllcc•(n) + 11/llco(n)), 

for all x E n and second-order derivative {jl. We use a very similar argument 
to before. Suppose that llYllca, 11/llco :::; 1. Choose p E S1 and a multi-index 
I such that 

d~l81/(p)I = c 
and C is the largest possible value of this expression. Let 

181/(p)I = M;;:: c. 
Define the rescaled function F(x) = M-1d;2 f(p + dpx). Then F satisfies 
the following: 

(i) Fis defined at least on a ball of radius 1 around the origin. 

(ii) On the ball of radius 1/2 around the origin we have llFllc2 :::; K 
for some fixed constant K. 

(iii) l81F(O)I = 1. 

(iv) F satisfies the equation 

~ 82F(x) _1 
L..J ajk(p + dpx) 8xi8xk = M g(p + dpx). 
j,k 

(v) IFI :::; M-1d;211/llco. 

If we have a family of such functions p( i) with larger and larger C, then since 
dp :::; 1 and d~M = C, the coefficients and right-hand sides of the equation 
in property (iv) will satisfy uniform ca-bounds. It follows from our previous 
estimate (2.4) and property (ii) that the functions p{i) satisfy uniform C2·0:­

bounds on the ball ofradius 1/4 around the origin. A subsequence will then 
converge in C2 to a limiting function G on B1; 4 , with l81G(O)I = 1 for some 
second-order partial derivative 81 by property (iii). But property (v) and 
the fact that Jf,M = C -+ oo implies that G is identically zero on B1; 4 , 

which is a contradiction. D 

We- will sometimes need the following strengthening of this estimate. 

Proposition 2.9. Under the same conditions as the previous theorem, we 
actually have a constant C such that 

ll/llck+2,<>(0') :::; C(llL(f)llck,<>(O) + 11111£1(0))· 
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To prove this, one just needs to show that under the conditions of The­
orem 2.8, the c0-norm off is controlled by the L1-norm off together with 
the C°'-norm of Lf. This can be done by using a blow-up argument simi­
lar to what we have used above (a good exercise for the reader), although 
the more standard way is to use similar estimates in Sobolev spaces, to­
gether with the Sobolev embedding theorem. Note that in the special case 
when Lf = O, this estimate generalizes the basic interior estimate corollary 
(Corollary 2.3) for harmonic functions. 

An important point which does not follow from these arguments is that 
we do not need to know a priori that f E Ck+2•°'. In other words if we just 
know that f E C2, so that the equation L(f) = g makes sense, then if the 
coefficients of L and g are in Ck,a, it follows that f E Ck+2•°' and inequality 
(2.3) holds. For this, one needs to work harder; see Gilbarg-Trudinger [58, 
Chapter 6). 

On a smooth manifold M the HOlder spaces can be defined locally in 
coordinate charts. More precisely we cover M with coordinate charts Ui. 
Then any tensor T on M can be written in terms of its components on each 
Ui. The Ck•°'-norm of the tensor T can be defined as the supremum of the 
Ck•°'-norms of the components of T over each coordinate chart. 

This works well if there are finitely many charts, which we can achieve 
if M is compact, for example. It is more natural, however, to work on 
Riemannian manifolds and define the Holder norms relative to the metric. If 
(M, g) is a Riemannian manifold, then we can use parallel translation along 
geodesics with respect to the Levi-Civita connection to compare tensors at 
different points. For a tensor T we can define 

ITlc" =sup IT(x) -T(y)I, 
x,y d(x, y)°' 

where the supremum is taken over those pairs of points x, y which are con­
nected by a unique minimal geodesic. The difference T(x) - T(y) is com­
puted by parallel transporting T(y) to x along this minimal geodesic. We 
then define 

llfllck,<> = sup(lfl +IV fl+···+ IV7k fl)+ IV7k fie<>. 
M 

These Holder norms are uniformly equivalent to the norms defined using 
charts, as long as we only have finitely many charts. 

A linear second-order elliptic operator on a smooth manifold is an opera­
tor which in each local chart can be written as (2.1), where (a;k) is symmetric 
and positive definite. The local Schauder estimates of Theorem 2.8 can eas­
ily be used to deduce global estimates on a compact manifold. In fact if we 
cover the manifold by coordinate charts Ui, then we will get estimates on 
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slightly smaller open sets U:, but we can assume that these still cover the 
manifold. We therefore obtain the following. 

Theorem 2.10 (Schauder estimates). Let (M,g) be a compact Riemannian 
manifold, and let L be a second-order elliptic operator on M. For any k and 
a E (0, 1) there is a constant C such that 

llfllck+2,,.(M} ~ C(llL(f)llck."(M) + llfliL1(M)), 

where C depends on (M, g), k, a, the Ck,oi_norms of the coefficients of L, 
and the constants of ellipticity >..,A in (2.2). As we mentioned above, it 
is enough to assume that f E C2 , and it follows that actually f E Ck+2,oi 

whenever L(f) and the coefficients of L are in Ck,oi. 

This theorem has the important consequence that the solution spaces 
of linear elliptic equations on compact manifolds are finite dimensional. In 
particular the following argument can also be used to show that the space 
of global holomorphic sections H0(M, L) is finite dimensional if Lis a holo­
morphic line bundle over a compact complex manifold M. 

Corollary 2.11. Let L be a second-order elliptic operator on a compact 
Riemannian manifold M. Then the kernel of L 

ker L = {f E L2(M) If is a weak solution of Lf = O} 

is a finite-dimensional space of smooth functions. 

Proof. We know from Theorem 2.6, applied locally in coordinate charts, 
that any weak solution of L f = 0 is actually smooth. To prove that ker L 
is finite dimensional we will prove that the closed unit ball in ker L with 
respect to the L 2 metric is compact. Indeed, let fk E ker L be a sequence 
of functions such that llfkllL2(M) ~ 1. By Holder's inequality we then have 
llfki1L1(M) ~ C1 for some constant C1. Applying the Schauder estimates we 
obtain a constant C2 such that 

1ifk1ic2,,.(M} ~ C2. 

It follows that a subsequence of the fk converge in C2 to a function f. 
Since the convergence is in C2, we have f E ker L and also llfllL2(M} ~ 1. 
This shows that any sequence in the unit ball of ker L has a convergent 
subsequence, so this ball is compact. Thus ker L must be finite dimensional. 

D 

2.4. The Laplace operator on Kahler manifolds 

The Laplace operator is the fundamental second-order differential operator 
on a Riemannian manifold. On Kahler manifolds we will use one-half of 
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the usual Riemannian Laplacian, which can be written in terms of local 
holomorphic coordinates as 

D.f = ll'Vk 'Vlf = gkl8k8-;:f. 

Recall that 'Vk(8/8z1) = O, so the expression using partial derivatives holds 
even if we are not using normal coordinates, in contrast to the Riemannian 
case. Rewriting the operator in local real coordinates, we find that the 
Laplace operator is elliptic. 

A useful way to think of the Laplacian is as the operator D. = -7J*8, 
where 

8*: 0.0•1M ~ C00 (M) 

is the formal adjoint of 8. If our manifold is compact, then this means that 
for any (0, 1)-form a and function f we have 

(2.7) JM (a, Bf) dV =JM (8* a, f) dV, 

where (-, ·) is the natural Hermitian form induced by the metric and dV is 
n 

the Riemannian volume form, so dV = ; . So in local coordinates 
n. 

- kl- kl -(a, of)= g a-;:O;J = g a-;:8kf, 

while (8* a, f) is just the product (8* a)f. An integration by parts shows 
that the relation (2.7) implies that 8* a = -gkl'Vkal, and so -8*8 agrees 
with our operator D.. Note that by using covariant derivatives we do not 
have to worry about differentiating the metric when we integrate by parts, 
and at the same time remember that 8kf = 'V kf. 

The same idea works for arbitrary (p, q) forms, giving rise to the Hodge 
Laplacian D. = -8*8- 88* (the term 88* is zero on functions). We can also 
do the same with 8 instead of 8 and on Kahler manifolds both give rise to 
the same Laplace operator. The following existence result for the Poisson 
equation illustrates a typical method for solving linear elliptic equations. 

Theorem 2.12. Suppose that (M,w) is a compact Kahler manifold, and let 
p : M ~ R be smooth such that 

(2.8) JMpdV=O. 

Then there exists a smooth function f : M ~ R such that D.f = p on M. 
(Condition (2.8) is necessary since an integration by parts shows that D.f 
has zero integral for any f.) 
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Sketch of proof. One approach to the proof is to solve a variational prob­
lem. Namely we look for a function f minimizing the functional 

E(f) =JM (~j''Vfl 2 +pf) dV, 

subject to the constraint JM f dV = 0. Here l\7 !12 = gk1\7kf\7rf. A suitable 
function space to work on is the space L~ of functions which have one weak 
derivative in £ 2• Alternatively L~ is the completion of the space of smooth 
functions on M with respect to the norm 

ilf 11£2 = { (l\7 fl 2 + lfl2) dV 
1 }M 

Using the Poincare inequality one shows that there are constants e, C such 
that 

E(f) ~ eilf llL2 - C 
1 

for all f with zero mean. A minimizing sequence is therefore bounded in 
L~, so a subsequence will be weakly convergent in L~ to a function F. The 
lower semicontinuity of the £~-norm implies that F will be a minimizer of 
E, and the weak convergence shows that JM F dV = 0. Now considering 
the variation of Eat this minimizer F, we find that Fis a weak solution of 
!:l.F = p (condition (2.8) is used here). Finally Theorem 2.6 implies that F 
is actually smooth. D 

With more work and some tools from functional analysis, one can obtain 
the following quite general theorem, which describes the mapping properties 
of linear elliptic operators between Holder spaces on compact manifolds. 

Theorem 2.13. Let L be an elliptic second-order operator with smooth 
coefficients on a compact Riemannian manifold M. Fork~ 0 and a E (0, 1) 
suppose that p E Ck,o.(M) and that p 1- ker L* with respect to the L2-product. 
Then there exists a unique f E Ck+2•0 with f 1- ker L such that Lf = p. In 
other words, L is an isomorphism 

L : (ker L l n ck+2,o. ---+ (ker L *)..L n Ck,o.. 



Kahler-Einstein 
Metrics 

Chapter 3 

Recall that a Riemannian metric is Einstein if its Ricci tensor is proportional 
to the metric. In this section, we are interested in Kahler metrics which are 
also Einstein. In other words we would like to find Kahler metrics w which 
satisfy the equation 

Ric(w) = >..w, 

for some ).. E R. By rescaling the metric, we can assume that we are in one 
of three cases, depending on the sign of >..: 

Ric(w) = -w, Ric(w) = O, or Ric(w) = w. 

As we have seen, the Ricci form of a Kahler metric defines a characteristic 
class of the manifold, namely 

c1(M) = 2~ [Ric(w)], 

which is independent of the Kahler metric won M. It follows that in order 
to find a Kahler-Einstein metric on M, the class c1(M) must either be a 
negative, zero, or positive cohomology class. In addition if c1 (M) is positive 
or negative, then we can only hope to find an Einstein metric in a Kahler 
class proportional to c1 ( M). 

The first main goal in this chapter is to study the case of a compact 
Kahler manifold M with c1(M) < 0. In this case there exists a Kahler­
Einstein metric on M, according to the following theorem of Aubin [8] and 
Yau [122]. 

-35 
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Theorem 3.1. Let M be a compact Kahler manifold with c1(M) < 0. Then 
there is a unique Kahler metric w E -27rc1(M) such that Ric(w) = -w. 

There are lots of manifolds with c1(M) < 0 (see Exercise 1.31), so using 
this theorem, it is possible to construct many examples of Einstein manifolds. 

Next we turn to the case when c1(M) = 0, in which case the Yau-Calabi 
theorem (Theorem 1.24) implies that every Kahler class contains a Kahler­
Einstein metric, which is necessarily Ricci fl.at. Finally we briefly discuss 
the case c1(M) > 0, which has only recently been solved. The algebro­
geometric obstructions that appear in this and the more general case of 
extremal metrics will be our subject of study in the remainder of the book. 

The basic reference for this chapter is Yau [122), but there are many 
places where this material is explained, for instance Siu [97), Tian [113), or 
Blocki [17]. 

3.1. The strategy 

Our goal is to prove Theorem 3.1. First we rewrite the equation in terms of 
Kahler potentials. Let w0 be any Kahler metric in the class -27rc1(M). By 
the 88-lemma there is a smooth function F on M such that 

(3.1) Ric(wo) = -wo + AalJF. 
If w = w0 + AalJcp is another Kahler metric in the same class, then 

Ric(w) = Ric(wo) - AalJlog w:, 
Wo 

so in order to make sure that Ric(w) = -w, we need 
n 

-AalJcp = AalJF - AalJlog ~. wn 
0 

This will certainly be the case if we solve the equation 

(3.2) 

At this point we can deal with the uniqueness statement in Theorem 3.1. 

Lemma 3.2. On a compact Kahler manifold M there exists at most one 
metric w E -27rc1 ( M) such that Ric( w) = -w. 

Proof. This is a simple application of the maximum principle. Suppose that 
Ric(wo) = -wo, so in (3.1) above we can take F = 0. If w = wo + AalJcp 
also satisfies Ric(w) = -w, then from (3.2) we get 

(wo + Aaacpr = e'Pw~. 
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Suppose that cp achieves its maximum at p E M. In local coordinates at p 
we have 

det(g;;c + 8/J;ccp) = e"' det(g;;c), 

but at p the matrix a;a;c<p is negative semidefinite, so 

det(g;;c + 8;8;ccp)(p) ::;; det(g;;c){p). 

It follows that cp(p) ::;; 0. Since we assumed that <p achieves its maximum 
at p, we have cp(x) ::;; 0 for all x. Looking at the minimum point of cp we 
similarly find that cp(x) :;?; 0 for all x, so we must have <p = 0. It follows that 
w=wo. D 

We will solve the equation using the continuity method. This involves 
introducing a family of equations depending on a parameter t, which for 
t = 1 gives the equation we want to solve, but for t = 0 it simplifies to a 
simpler equation. We use the family 

(wo + HaBcpr = etF+cpw~, 

w0 + R.a8cp is a Kahler form 

fort E [O, 1]. The proof of Theorem 3.1 then comprises three steps: 

(1) We can solve (*)o. This is clear since <p = 0 is a solution of (*)o. 

{2) If ( * )t has a solution for some t < 1, then for all sufficiently small 
c > 0 we can also solve ( * )t+e· This will be a consequence of the 
implicit function theorem. 

(3) Iffor some s E {O, 1] we can solve (*)t for all t < s, then we can also 
solve (*)s· This is the heart of the matter, requiring estimates for 
the solutions in HOlder spaces, to ensure that we can take a limit 
along a subsequence as t--+ s. 

Given these three statements, it follows that we can solve (*h, proving 
Theorem 3.1. We now prove statement (2). 

Lemma 3.3. Suppose that ( * )t has a smooth solution for some t < 1. Then 
for all sufficiently small c > 0 we can also find a smooth solution of (*)t+e· 

Proof. Let us define the operator 

F : C3•a(M) x [O, 1] --+ C1•a(M) 

( t) 1 (wo + Aa8cp)n _ _ tF 
<p, ....+ og n <p . 

Wo 

By our assumption we have a smooth function <pt such that F(<pt, t) = 0 
and Wt = wo + AoBcpt is a Kahler form. We use this Kahler metric Wt 
to define the HOlder norms on M. In order to apply the implicit function 
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theorem, we need to compute the derivative of F in the <p direction, at the 
point (<pt, t): 

D D (•'• 0) = nA.88,,P f\ wf-1 - .J, = b.. .J, - .J, 
r(<pt,t) '+'1 n '+' tr '+'1 Wt 

where b..t is the Laplacian with respect to Wt. Let us write L(,,P) = b..t'l/J-'l/J. 
This linear operator has trivial kernel: if b..t'l/J - 'ljJ = O, then necessarily 
'ljJ = 0 since 

JM 1¢12 dvt = JM 'l/Jb..t'l/J dvt = - JM IY''l/JI~ dvt ~ 0, 

where we have put the t subscripts to indicate that everything is computed 
with respect to Wt· The operator L is also selfadjoint, so L* has trivial 
kernel. It follows from Theorem 2.13 that L is an isomorphism 

L: cs,a(M)--+ C1•a(M). 

The implicit function theorem then implies that for s sufficiently close to t 
there exist functions <p8 E cs,a(M) such that F(<p8 , s) = 0. Fors sufficiently 
close to t this <p8 will be close enough to <pt in cs,a to ensure that wo + 
H8B<p8 is a positive form. 

What remains for us to show is that <p8 is actually smooth. We know 
that 

1 (wo + H8B<ps)n F 0 og n - </)s - s = . 
Wo 

In local coordinates, if wo has components Y;li:i then we can write the equa­
tion as 

log det (9/ii: + 8;8/i;<ps) - log det(Y;li:) - <p8 - sF = 0. 

Since we already have <p8 E cs,a, we can differentiate the equation, with 
respect to z1, say. We get 

(g8 )jk (819;/i: + 818;8/i;<fJs) - 81 logdet(Y;li:) - 81<ps - s81F = 0, 

where (g8 )ik is the inverse of the metric (g8 );li: = 9jk + 8;8/i;<ps and we are 
using summation convention. Rewriting this equation, 

~ ~ (gs)3 8;8li;(81<ps) - 81<ps = s81F + 81 logdet(Y;li:) - (gs)3 819;/i:· 

We think of this as a linear elliptic equation E(81<p8 ) = h for the function 
81<ps, where 

'k h = s81F + 81 log det(Y;li:) - (gs)3 819;/i:· 

Since <p8 E cs,a, the coefficients of the operator E are in C 1•a, and h E C1•a. 
It follows that 81<p8 E cs,a. Similarly 8zr.Ps E cs,a so it follows that <p8 E 

C4•a. Repeating the same argument, we get that <p8 E C5•a, and inductively 
we find that <p8 is actually smooth. This technique of linearizing the equation 
and obtaining better and better regularity is called bootstrapping. 
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An alternative approach would be to use the implicit function theorem 
in Gk,oi for larger and larger k, and the uniqueness of the solution will imply 
that the cp8 we obtain is actually smooth. D 

The main difficulty is in step (3) of the strategy, namely that if we can 
solve (*)t for all t < s, then we can take a limit and thereby also solve (*) 8 • 

For this we need the following a priori estimates. 

Proposition 3.4. There exists a constant G > 0 depending only on M, wo, 
and F such that if <pt satisfies (*)t for some t E [O, 1], then 

(g3k + 838/i;cpt) > c-1(g3k;), 

where the 9jk are the components of wo in local coordinates and the inequality 
for matrices means that the difference is positive definite. In addition 

JlcptJlas,a(M) ~ G, 

where the Holder norm is measured with respect to the metric wo. 

We will prove this in the next two sections. For now we will show how 
it implies statement (3) in the strategy. 

Lemma 3.5. Assume Proposition 3.4. Suppose thats E (0, 1] and that we 
can solve ( * )t for all t < s. Then we can also solve ( *) 8 • 

Proof. Take a sequence of numbers ti < s such that lim ti = s. This gives 
rise to a sequence of functions cpi which satisfy 

(3.3) 

Proposition 3.4 implies that the cpi are uniformly bounded in C3•oi, so by 
Theorem 2.7, after choosing a subsequence, we can assume that the cpi con­
verge to a function cp in C3•0/ for some a/ < a. This convergence is strong 
enough that we can take a limit of (3.3), so we obtain 

(wo + A88cpr = esF+cpwQ'. 

In addition Proposition 3.4 implies that the metrics wo + Ff.88cpi are all 
bounded below by a fixed positive definite metric, so the limit wo + Ff.88cp 
is also positive definite. 

Now the same argument as in the proof of Lemma 3.3 can be used to 
prove that cp is actually smooth. Alternatively Proposition 3.4 could be 
strengthened to give uniform bounds on the Ck,oi_norms of <pt for all k, and 
then repeating the previous argument (combined with uniqueness) we would 
obtain a smooth solution. D 
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3.2. The C0- and 0 2-estimates 

What remains is to prove Proposition 3.4. To simplify notation, we will 
write the equation as 

(3.4) 

and we write 9jk for the components of the metric w in local coordinates. 
We will later apply the results with tF replacing F. 

Lemma 3.6. If c.p satisfies equation (3.4), then supM le.pl :::;;; supM IFI· 

Proof. This is essentially the same argument as the uniquenes statement, 
Lemma 3.2. Suppose that c.p achieves its maximum at p EM. Then in local 
coordinates, the matrix 8;8kc.p is negative semidefinite at p, so 

det(B;k + 8;8kc.p) (p) :::;;; det(B;k) (p). 

Using equation (3.4) we get F(p) + c.p(p) :::;;; 0, so c.p(p) :::;;; -F(p). Since c.p is 
maximal at p, this means that 

supc.p:::;;; -F(p):::;;; suplFI. 
M M 

Similarly looking at the minimum point of c.p shows that supM le.pl :::;;; supM IFI· 
D 

Next we would like to find an estimate for the second derivatives of c.p. 
In fact we obtain something weaker, namely an estimate for Ac.p, which will 
imply bounds for the mixed partial derivatives a;ak'P· It will be useful to 
write 

so then 
"k I g3 B;k = n + D.c.p. 

One more useful notation is to write tr9g' = gikg;k and tr91g = g'ikgjk· We 
will also write A' for the Laplacian with respect to the metric g'. The key 
calculation is the following. 

Lemma 3.7. There exists a constant B depending on M and g such that 

gikR'.-
A I 1 I B 3k u ogtr9g ~ - tr91g - / , 

tr9g 

where R;k is the Ricci curvature of g'. 
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Proof. We will compute in normal coordinates for the metric g around a 
point p E M. In addition we can assume that g' is diagonal at p since 
any Hermitian matrix can be diagonalized by a unitary transformation. In 
particular at the point p we have 

trgg' = I: 9~i, 
i 

"" I.-. "" 1 trg'9 = L....tg.1.1 = L....t-,-. 
j j 9f3 

We can then compute that at p 

t::,.' tr 991 = g'Pii 8v8ii (g; Ti: gj Ti) 

= g'Pii(OpOqgik)gjk + g'PiigikOp0q9Jk 

= g'Pii(8p8qgjk)gjk _ g'Piigjk Rjkpij + g'Piigjk91ab(8;g~b)(8kg~q)· 

Using that g' is diagonal, we have 

p,j 

~ - B "" g''PP g' .... L....t JJ 
p,j 

= -B(tr91g)(tr9g'), 

where Bis the largest of the numbers -8p8pgjj (more geometrically-Bis 
a lower bound for the bisectional curvature of g). We also have g'Pii RjkPii = 
Rjk' so 

(3.5) !::,.'tr9g' ~ -B(tr91g)(tr9g') - gik Rjk + L g''PPg'aal8;9~al 2 • 
p,j,a 

Incorporating the logarithm, we have 

(3.6) 

/),.'tr I 
!::,.' log tr g' = 99 

9 tr9g' 
g'Pii ( 8ptr9g')( 8qtr9g') 

(tr9g')2 

g;li:R'.- 1 
~ -Btr '9 - Jk + -- ""g'PPg'aal8·g' -12 9 trg' trg1 L....t Jpa g g p,j,a 

- (trg19')2 L g''PP(8p9~a)(8pg~b). 
p,a,b 
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Now using the Cauchy-Schwarz inequality twice we have 

L g'1'P(8pg~o.)(8pg~;) =LL J?Pfi(8pY~o.hHPP(8pg~r) 
p,a,b a,b p 

It follows that 

1 '"' 'W(f) I )(8 I ) ~ 1 '"' lpp laa1a I 12 
(trgg')2 L..J 9 PYaa PYbii """ trgg' L..J9 9 p9aa 

p,a,b a,p 

~ _1_ '°' g'Wg'ao.18 9'--12 
tr g' L..J P 3a g . a,3,p 

since in the last sum we are simply adding in some non-negative terms. 
Finally, using the Kahler condition Op9jo. = Oj9~o.' we obtain the required 
inequality from (3.6). D 

Lemma 3.8. There is a constant C depending on M, w, supM IFI, and a 
lower bound for !::J..F such that a solution cp of (3.4) satisfies 

c-1(9jk:) < (gjk + 8j8k:cp) < C(gjk:)· 

Proof. Using the notation gjk = 9jk: + 8j8;ccp as before, equation (3.4) im­
plies 

(3.7) -Rj;;. = 8j8k:F + 8j8k:cp- Rjk: = 8j8k:F + gjk: - 9jk: - Rjk:· 

Using Lemma 3.7 we get 

, , tl.F + tr9g' - n - R 
f::J.. logtr9g ~ -Btr91g + / , 

tr9g 

where R is the scalar curvature of g. The Cauchy-Schwarz inequality implies 
that 
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and since we are assuming a bound from below on l:l.F, we have a constant 
C such that 

l:l.' logtr9g';;::: -Btr91g - Ctr91g. 

Now observe that 

Al ljk!l !l ljk( I ) 
L..1 cp = g VjVk,'P = g Bjk. - 9jk = n - tr91g. 

It follows that for A = B + C + 1 we have 

l:l.' (log tr 991 - Acp) ;;::: tr g' g - An. 

Now suppose that logtr9g' - Acp achieves its maximum at p EM. Then 

0;;::: l:l.'(logtr9g' - Acp)(p);;::: tr91g(p) - An, 

so 

(3.8) tr91g(p) ::::;; An. 

Choose normal coordinates for g at p such that g' is diagonal at p. Then 
(3.8) implies that at p we have 

1 .-: 
(3.9) -, = g'ii ::::;; An 

9{f, 

for each i. But from equation (3.4) we know that at p 

n 

(3.10) IT o:i = eF(p)+cp(p) ::::;; C1 
i=l 

for some constant C1 since we are assuming a bound on sup IFI, from which 
Lemma 3.6 implies a bound on sup l'PI· Now (3.9) and (3.10) imply that 
o:i::::;; C2 for each i, for some constant C2. In particular 

tr9 g1(p) ::::;; nC2. 

Since logtr9g' - Acp achieves its maximum at p, we have 

logtr9g'(x) - Acp(x)::::;; logtr9g1(p) - Acp(p)::::;; log(nC2) - Acp(p) 

for any x EM, so since from Lemma 3.6 we can bound sup lcpl, we have 

sup log tr9g1 ::::;; C3 
M 

for some constant C3. Now if at a point x we choose normal coordinates for 
gin which g' is diagonal, then we have an upper bound on o:i(x) for each 
i. Inequality (3.10) holds at x too, so we also obtain a lower bound on each 
o:i(x). These upper and lower bounds on the metric g' are exactly what we 
wanted to prove. D 
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3.3. The C3- and higher-order estimates 

In this section we will derive estimates for the third derivatives of c.p satisfying 
equation (3.4). We will follow the calculation in Phong-Sesum-Sturm [90] 
which is a more streamlined version of the original proofs in [122], [7], 
or rather their parabolic analog. It is also possible to use more general 
techniques to obtain a C2•°'-estimate given the estimate on 8/J;;.c.p in the 
previous section, namely the complex version of Evans-Krylov's theorem 
(see [17] or [97] for this approach). 

It will be convenient to change our notation slightly. We will write Yjk 
for the fixed background metric and 9jk = Yjk + 8j8;:.c.p. We will use the 
equation for the Ricci curvature (3.7), which we will simply write in the 
form 

(3.11) 

where Rjk is the Ricci curvature of the (unknown) metric g and Tjk is a 
fixed tensor. We will use the estimate from Lemma 3.8, so we know that 
there is a constant A such that 

(3.12) 

We would like to estimate the mixed third derivatives of c.p. Since we have 
already bounded the metric, it is equivalent to estimate the Christoffel sym­
bols qk = gi[Oj9k[· It is more natural to work with tensors, however, so we 
will focus on the difference of Christoffel symbols 

(3.13) 

where r;k are the Christoffel symbols of the Levi-Civita connection of g. 
The key calculation now is the following. 

Lemma 3.9. Suppose that g satisfies equation (3.11) and the bound (3.12). 
There is a constant C depending on M, T, g, and A such that 

~1s12 ~ -c1s1 2 - c, 

where ISi is the norm of the tensor S measured with the metric g and~ is 
the g-Laplacian. 

Proof. To simplify the notation we will suppress the metric g. We will be 
computing with the Levi-Ci vita connection of g, so this will not cause any 
problems. For instance we will write 

2 'k ab - -ISi = 93 g 9pqS"jaSkb = S"JaS"Ja, 
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where we are still summing over repeated indices (alternatively we are work­
ing at a point in coordinates such that g is the identity). We have 

(3.14) 

2 .-. 
~ISi = \i'p\i'p(SjkSjk) 

= (\i'p\i'psjk)Sjk + Sjk(Y'p\i'pSjk) 

+ (V' pSjk)(\i' pSjk) + (Y' i>sjk)(V' pSjk) 

~ (\i'p\i'pSjk)Sjk + Sjk(Y'p\i'pSjk) 

since the two terms in the third line are squares. Commuting derivatives, 
we have 

V' p V' Psjk = V' p V' Psjk + R/~s:nk + Rt~S}m - ~ ppS'}k 

= V' p V' Psjk + RT s:nk + Rkm sjm - ~Sjk, 

where RT = gmk Rjk is the Ricci tensor of g with an index raised. By 
equation (3.11) and our assumptions, the Ricci tensor is bounded, so 

(3.15) 

for some constant C1. We also have 

Y' p Y' pS}k = Y' p8p(r~k - f~k) 

= -\i'p(Rjkp - Rjkp) 

= -VkRf + VpRjkp + (Vp - Vp)Rjkt>' 

where we used the Bianchi identity V' pRj kp = V' kR/ Pi> = V' kR/ and V, R 
are the Levi-Civita connection and curvature tensor of g. The difference in 
the connections Y'p - VP is bounded by S from definition (3.13), and so we 
can bound the covariant derivative \i'kRj using equation (3.11). We get 

IV PY' Psjkl ~ C2ISI +Ca, 

for some constants C2, Ca. Combining this with (3.15) and (3.14) we get 

~ISl2 ~ -(C4ISI + Cs)ISI = -C4ISl2 - CslSI, 

from which the required result follows. D 

We are now ready to prove the third-order estimate. 

Lemma 3.10. Suppose that g satisfies equation (3.11) and the bound (3.12). 
Then there is a constant C depending on M, T, g, and A such that ISi ~ C. 

Proof. Inequality (3.5) from our earlier calculation now implies (in our 
changed notation) that 
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for some constants£, C1 > 0, since we are assuming that g and g are uni­
formly equivalent. Using the previous lemma, we can then choose a large 
constant A such that 

~(ISl 2 + Atr9g) ~ ISl2 - C2, 

for some C2. Suppose now that ISl2+Atr9g achieves its maximum at p EM. 
Then 

0 ~ IBl2(p) - C2, 

so ISl 2(p) ~ C2. Then at every other point x EM we have 

ISl2(x) ~ ISl2(x) + Atr9g(x) ~ ISl 2(p) + Atr9g(p) ~ C2 +Ca, 

for some Ca, which is what we wanted to prove. 0 

We can finally prove Proposition 3.4, which completes the proof of Aubin 
and Yau's theorem {Theorem 3.1). We recall the statement. 

Proposition 3.11. There exists a constant C > 0 depending only on M,wo, 
and F (in the application to Theorem 3.1, F is computed from wo) such that 
if <pt satisfies the equation 

(wo + H8B<ptr = etF+<ptw(j 

for some t E [O, 1], then 

(Y;k: + 8/Jk:'Pt) > c-1(u;k:) 

and 
ll'Ptllas,a(M) ~ C, 

where the Holder norm is measured with respect to the metric wo. 

Proof. Lemmas 3.6 and 3.8 together show that 9;k: + 8;8k:<p is uniformly 
equivalent to 9;k:· Then Lemma 3.10 shows that we have an a priori bound 
on the mixed third derivatives 8;8k:8l<p and Bjf%8l<p· In particular this gives 
C 0 -bounds on 8;8k:'P· Now we can use the same argument of differentiating 
the equation and using the Schauder estimates as in Lemma 3.3 to get an a 
priori bound on ll'Pllas,a. 0 

Exercise 3.12. Under the same assumptions as Lemma 3.9 show that there 
is a constant C such that 

~1Rrnl 2 ~ -CIRmla - CjRml + j\7Rml2 + j\7Rrnj2, 

where Rm is the curvature tensor of g, so 

'
Rrnl2 = gip9kr9slg·-Rj _R q _ 

Jq i kl~ "P rs 

and \7Rrn = \7 pR/kl and \7Rrn = \7 pR/kl" Using this, show that there is a 
constant C such that 

~IRrnl ~ -CIRml2 - C, 
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and finally using an argument similar to Lemma 3.10 show that under the 
same assumptions IRml ~ C for some C. 

Exercise 3.13. Generalize the previous exercise to higher-order derivatives 
of the curvature, IVkRml. In this way one can obtain a priori bounds on 
higher derivatives of a solution cp of equation (3.2) without appealing to the 
Schauder estimates. 

3.4. The case c1 (M) = 0 

When the manifold M has vanishing first Chern class, then a Kahler-Einstein 
metric on Mis necessarily Ricci flat. Given any metric won M, the Ricci 
form of w is exact, so by the 88-lemma there is a function F such that 

Ric(w) = Ra8F. 
Arguing as in the beginning of Section 3.1, we see that for w' = w + P.a8cp 
to be Ricci flat, we need to solve the equation 

(w + Aaacpr = eF wn. 

A slight difference from earlier is that for this to be possible, we first need 
to normalize F by adding a constant. In fact by integrating both sides of 
the equation, we have 

JM eF wn =JM (w + Raacpr =JM wn, 

where we used that 
(w + Raacpr - wn = Ra8cp /\ (w'n-1 + w1n-2 /\ w + ... + wn-1) 

= d( Ff8cp /\ (w'n-1 + ... + wn-1)) 

is exact, so the volume of M with respect to the two different metrics is 
equal. The following theorem completely answers the c1 ( M) = 0 case. 

Theorem 3.14 (Yau). Let (M,w) be a compact Kahler manifold, and let 
F : M --+ R be a smooth function such that 

JM eFwn =JM wn. 

Then there is a smooth function cp : M --+ R, unique up to the addition of a 
constant, such that w + P.a8cp is a positive form and 

(w + Raacpr = eF wn. 

The equation looks very similar to equation (3.2) that we had to solve 
when proving Theorem 3.1, but there is one crucial difference. It is now 
not possible to prove an a priori estimate for supM l'PI using the maximum 
principle as we did in Lemma 3.6 since the function cp does not appear on 
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the right-hand side of the equation. Nevertheless one can estimate supM l<pl 
using more sophisticated arguments due to Yau [122]. We will follow the 
exposition of Blocki [17] of Yau's proof, with simplifications due to Kazdan, 
Bourguignon, and Aubin. 

Proposition 3.15. Suppose that F, <p : M ---+ R are smooth functions on a 
compact Kahler manifold (M,w) such that w - ddb<p is positive and 

(w-R.88<pr = eFwn. 

Then there is a constant C depending on (M,w) and supM F such that 

sup<p-inf <p < C. 
M M 

Proof. The proof is based on a technique called Moser iteration, originally 
used in the context of linear equations; see [58, Theorem 8.15]. The method 
is to estimate LP-norms 

for higher and higher p iteratively and then take a limit asp---+ oo. Using 
w - Ff.8B<p instead of w + Ff.8B<p removes several negative signs in the 
arguments below. Modifying <p by a constant and rescaling w, we can assume 
that infM <p = 1 and JM wn = 1. This ensures that ll<pllp ~ ll<pllq for p ~ q. 
We will write C for a constant that may change from line to line but is only 
dependent on (M,w) and supM F. 

The fact that w - Ff.8B<p is positive implies, after we take the trace 
with respect tow, that 

n- D..<p > 0, 

where D.. is the Laplacian of (M,w). Suppose that <p(p) = 1, and let G(x, y) 
be the Green's function of the Laplacian (see [10, Section 2.3]), so 

We can assume that G ~ 0 and also that G(x,p) is integrable with respect 
to x. It follows that 

1 = <p(p) ~JM <pwn - n JM G(x,p)wn(x) ~JM <pwn - C 

for some constant C, so we get II <p II 1 < C. 
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Let us write Wip = w - Ff_88cp. We have 

JM cp(w~ - wn) =JM cp(wip - w) /\ (w~-l + ... + wn) 

= { -cpH8Bcp /\ (wn-1 + ... + wn-1) JM 'P 

=JM Hocp /\ Bcp /\ (w~-1 + ... + wn-1). 

The forms Ff_ocp/\Bcp/\w~/\wn-l-k are all non-negative. This can be seen 
by calculating in coordinates at a point, where both w and Wip are diagonal 
(see also Lemma 4.7). It follows that 

{ cp(wn - wn);;::: { Hocp /\ Bcp /\ wn-1 = ~ { l8cpl2wn, 
JM 'P JM n JM 

where we used Lemma 4. 7. Since w~ - wn = ( eF - 1 )wn, we have 

JM l8cpl2wn < C, 

for some constant C. The Poincare inequality (see [10, Corollary 4.3]) on 
(M,w) implies that 

JM (cp- ll'Pll1)2 Wn ~ C JM l8cpl2wn, 

and so our previous bound on ll'Pll1 now implies that llcpll2 < C. 

A similar calculation gives, for any p ;;::: 2, that 

f cp1'-l(wn -wn) = f -cpP-lyCiaacp /\ (wn-1 + ... + wn-1) 
JM 'P JM 'P 

= JM (p - 1 )yCicp1'-28cp /\ Bcp /\ (w~-1 + ... + wn-1) 

= v-l8cp2 /\ 8cp2 /\ (wn + .. · + wn ) 4(p - 1) 1 t-:; E - E -1 -1 

p2 M 'P 

;;:::4(p-1) { l8cp~l2wn, 
np2 JM 

so we obtain 

ll8cp~ II~ ~ Cpllcpll:=L 
for some constant C which is independent of p. The Sobolev inequality (see 
[10, Theorem 2.20]) for (M,w) says that for any f we have 

11/1122 .. ~Cs (II/II~+ 118/ll~), 
n-1 
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for some constant Cs depending on (M,w). Applying this to f = cp~ we get 

and so 

ll'Pll~ = ll'P~ 11~-~'i ~Cs (llcp~ II~+ ll8cp~ 11~) 

~ Cs (ll'Pll~ + Cpll'Pll:=O 
~ Cpllcpll~, 

Writing Pk= (n~l)kp, we get 

k-1 00 

ll'PllPk ~ (Cpk_i)lfPk-l ll'PllPk-1 ~ ... ~ ll'Pllp II (Cpi)lfPi ~ ll'PllP II (Cpi)lfPi' 
i=O i=O 

where the latter product is finite. Choosing p = 2 and letting k --+ oo, we 
get 

sup cp ~ Cll'Pll2, 
M 

so our bound on the L2-norm of cp implies the required bound on the supre­
mum. 0 

Once we have an estimate for supM jcpj, we can obtain higher-order es­
timates in exactly the same way as was done in Lemmas 3.8 and 3.10. The 
"openness" argument of Lemma 3.3 also goes through with minor changes, 
so the equation in Theorem 3.14 can be solved using the continuity method. 

Exercise 3.16. Suppose that (M,w) is a compact Kahler manifold and 
cp : M --+ R is such that 

Show that cp must be a constant, by using the identity 

and integrating by parts. This proves the uniqueness statement in Theo­
rem 3.14. 

Exercise 3.17. Use Yau's theorem (Theorem 3.14) to prove the Calabi-Yau 
theorem (Theorem 1.24). 
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3.5. The case c1(M) > 0 

The remaining case is when c1(M) > 0. Suppose that w E 27rc1(M) is 
any Kahler metric. We are now seeking a metric w' = w + A.88cp such 
that Ric(w') = w'. Arguing as at the beginning of Section 3.1, this requires 
solving the equation 

In attempting to use the continuity method, the first problem is coming 
up with a family of equations for which we can show openness. Aubin [9] 
introduced the equations 

(3.16) Ric(wcp) = twcp + (1 - t)w, 

where Wcp = w + A.88cp and w is a fixed Ka.her form in 27rc1(M). If we 
write Ric(w) - w = A.88F, then this equation is equivalent to 

(3.17) (w + Raacpr = eF-tcpwn. 

For t = 0 there is a solution to this equation by Yau's theorem (Theo­
rem 1.24). When showing openness at t = 0, a slight technical difficulty 
is that the solution to the equation when t = 0 is not unique since we can 
add a constant to cp. This is reflected in the linearized operator not being 
invertible when t = 0. A simple way to overcome this issue is to fix a point 
p E M and solve the equations 

(3.18) (w + H8Bcp)n = eF-tcp+cp(p)wn 

instead. Then cp- r 1cp(p) will solve (3.17). As in the proof of Lemma 3.3 
we can rewrite this equation as 

wn 
(3.19) log_!!!_+ tcp - cp(p) - F = 0, wn 
and at t = 0 the linearized operator at a solution cp is 

'l/J 1-7 b.w"''l/J -'l/J(p), 

which is an isomorphism 0 3,a(M) --t 0 1,a(M). Indeed if h E 0 1,a(M) and h 
denotes the average of h with respect to wcp, then we can find a 'l/J E 0 3,a(M) 
solving 

b.w"''l/J = h- h. 
We can then simply add a suitable constant to 'ljJ in order to solve 

f:::t.w"''l/J - 'l/J{p) = h. 

The implicit function theorem then implies that we can solve equation (3.19) 
for small t > 0. The openness at t > 0 is due to Aubin [9]. 

Lemma 3.18. Suppose that cp is a solution of equation (3.17) for t = s, 
wheres E (0, 1). Then we can solve (3.17) for any t sufficiently close to s. 
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Proof. To use the implicit function theorem, we simply need to show that 
the linearized operator is invertible. Rewriting {3.17) as 

wn 
log ....J!.. + t<p - F = 0, 

wn 

the linearization of the operator at <p when t = s is given by 

L ( 1/J) = f:l.wlfJ 1/J + s't/J. 

In other words we need to show that the smallest non-zero eigenvalue of 
-f:l.wl{J is at least s, and for this the crucial input is that w"' satisfies 

Ric(wc,o) = swc,o + {1 - s)w, 

i.e. the Ricci curvature of Wc,o is bounded below bys. The result essentially 
follows from the Bochner-Weitzenbock formula 

1:18 = v*v + Ric 

for the 8-Laplacian acting on {O, 1)-forms (see the proof of Lemma 7.7 for 
a generalization). More explicitly, suppose that L('lfJ) = 0. Then we can 
compute {for simplicity we will supress the metric wc,o) 

JM s\lj't/J\131/Jw~ =JM -\lj\lp\lp't/J\131/Jw~ 
= JM(-\! p\l P \lj't/J\131/J + Rq3\l q't/J\131/J) w~ 

= l (\! P \lj't/J\l p\131/J + s\li't/J\131/J + {1 - s)wq3\l q't/J\131/J) w~ 

;;::: JM (s\li't/J\131/J + {1 - s)wq3\l q't/J\131/J) w~, 
where Rq3 is the Ricci curvature of Wc,o and wq3 denotes the components of 
the metric w, with indices raised using Wc,o· This inequality can only hold if 
1/J is a constant, but then L( 1/J) = 0 implies that 1/J = 0. Since L is selfadjoint, 
it follows that it is invertible. D 

As before, what remains is to show that the set of t for which we can 
solve {3.17) is closed, and for this we need a priori estimates. Once again 
we cannot use the maximum principle to obtain an estimate for supM l'PI 
because the sign of <p is reversed. If we had such an estimate, then the 
same arguments as before could be used to solve the equation. It turns 
out, however, that not every manifold with c1 (M) > 0 admits a Kahler­
Einstein metric, so in fact the equation cannot always be solved. The first 
obstructions due to Matsushima [83] and Futaki [55] were based on the au­
tomorphism group of M, and in the case of complex surfaces these turned 
out to be sufficient by the work of Tian [111]. Later a much more sub­
tle obstruction called K-stability was found by Tian [112] motivated by a 
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conjecture due to Yau [123]. In the remainder of this book we will study 
these obstructions, in particular K-stability. Much of the theory applies to 
a larger class of metrics introduced by Calabi [21], called extremal metrics, 
and it is these metrics that we will start to study in the next chapter. 

Very recently, Chen-Donaldson-Sun [31] have shown that in fact K­
stability of a manifold M with c1 ( M) > 0 is sufficient for the existence 
of a Kahler-Einstein metric on M. The proof is significantly more involved 
than the other two cases, and so we will only make a few remarks about it. 
Letting T be the supremum of those t for which there is a solution, one needs 
to understand the behavior of the metrics Wt as t--+ T. It turns out that this 
is easier to do if instead of equation (3.16), one works with a variant, where 
the form a is concentrated along a subvariety D c M. This will be the case 
if we have a metric Wt on M, which is only smooth on M \ D and satisfies 
Ric(wt) = twt there and which has conical singularities along D with cone 
angle 27rt. The advantage of studying these metrics is that they are Kahler­
Einstein away from D, and there are deep results on the limiting behavior 
of families of Einstein metrics. The work of Chen-Donaldson-Sun [32], [33], 
[34] shows that either T = 1 and the Wt converge to a Kahler-Einstein met­
ric on M, or one can contradict the K-stability assumption by studying the 
limiting behavior of the Wt. Roughly speaking, this limit is always a Fano 
manifold with mild singularities, which admits a Kahler-Einstein metric, 
with conical singularities if T < 1. A detailed discussion of these results 
is beyond the scope of this book, but we will make some further remarks 
about them in Section 7.6. 

3.6. Futher reading 

We have seen that prescribing the Ricci curvature of a Kahler metric is 
equivalent to solving the complex Monge-Ampere equation 

(3.20) 

where w is a Kahler metric on an n-dimensional compact Kahler manifold M 
and F : M --+ R is a given positive, smooth function satisfying the equation 

JM Fwn =JM wn. 

Because of the fundamental nature of this equation, it has been studied 
extensively, and it has extensions to many different settings. In this section 
we will give a brief overview of some of the recent work that has been done. 
First of all, the equation can be studied on complex manifolds locally (see for 
instance Caffarelli-Kohn-Nirenberg-Spruck [20] and Bedford-Taylor [13]), 
but we will only mention results on compact manifolds. Note however that 
the work of Bedford-Taylor is crucial even in this case, in order to make sense 
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of the "Monge-Ampere operator" on the left-hand side of equation (3.20) 
when cp is only assumed to be a bounded plurisubharmonic function. 

A first extension is to consider equation (3.20) with a more general right­
hand side, in particular relaxing the positivity of F to F ~ 0 and allowing 
less regularity. While some results in this direction have already been ob­
tained in Yau's original paper [122], perhaps the most important result in 
this direction is the work of Kolodziej [68]. One particular result is that if 
F ~ 0 and FE LP(M,wn) for some p > 1, then equation (3.20) has a con­
tinuous solution. This has been further extended recently by Kolodziej [69] 
to obtain Holder continuity of the solution. 

A further generalization of the problem, studied for instance by Eyssi­
dieux-Guedj-Zeriahi [52], concerns the case when w is not a Kahler form but 
rather is the only semipositive closed (1,1)-form. The result established in 
[52] is that if w is such a semipositive form on a compact Kahler manifold 
M with JMwn > 0 and FE LP(M,wn), then there is a bounded solution to 
(3.20). A further extension of this to "big" cohomology classes was given by 
Boucksom-Eyssidieux-Guedj-Zeriahi [19]. Semipositive forms arise typically 
as pullbacks w = J*TJ of positive forms TJ under a holomorphic map f : 
M --+ N, and in particular f could be a resolution of singularities of a 
singular manifold N. Applying their theory to this setting, in [52] the 
authors establish the existence of certain singular Kahler-Einstein metrics 
on any projective manifold of general type. These are manifolds M for 
which dimH0 (K_t.) grows at a rate of ddimM, which is satisfied for instance 
when c1(M) < 0. This result is thus a generalization of Aubin and Yau's 
theorem (Theorem 3.1). See also Song-Tian [99] for an alternative approach 
to obtaining these singular Kahler-Einstein metrics. For a recent survey of 
these results and more, see Phong-Song-Sturm [91]. 

Leaving the Kahler world, equation (3.20) can be studied on any com­
pact complex manifold, with w being a Hermitian metric. In this case, for 
smooth positive F, Tosatti-Weinkove [117] showed that a solution exists by 
proving the analog of the C0-estimate, Proposition 3.15. The higher-order 
estimates had been established earlier by Cherrier [37]. In a different di­
rection one can study an analog of equation (3.20) on symplectic manifolds, 
roughly speaking, by prescribing the volume form of a symplectic form in a 
fixed cohomology class, compatible with a given almost complex structure. 
This study was initiated by Donaldson [4 7] with potential applications to 
symplectic geometry. In this case the problem of solving the equation is 
still open in general, but substantial progress has been made by Tosatti and 
Weinkove (see [118] for a survey). 
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A final direction that we will discuss is the parabolic version of Equa­
tion (3.20). This is the equation 

(3.21) a<p =lo (w + H88<p)n + F at g wn ' 
where now <pis a function on [O, T) xM for some (possibly infinite) T, and we 
are given the initial condition <p(O, ·). The first results were due to Cao [23], 
showing that a solution to the equation exists for all t, and converges as 
t ---+ oo (up to adding a time dependent constant) to the solution 'I/; of the 
equation 

(w + R.a8'1/;r = e-F+cwn, 

for a suitable constant c, whose existence is guaranteed by Yau's Theo­
rem 3.14. The reason why Equation (3.21) is particularly interesting is that 
on the level of the metrics w + A.a8<p it is closely related to the Ricci fl.ow 

~~ = -Ric(w). 

This equation was introduced by Hamilton [64] and has lead to spectacular 
results in differential geometry, most famously Perelman's proof [89] of the 
Poincare conjecture. In complex geometry the long time behavior of the 
Ricci fl.ow, continued through certain singularities using surgery, has close 
connections with the minimal model program in algebraic geometry. See 
for instance Song-Tian [98] for the case of complex surfaces, and Song­
Weinkove [100] for a survey of recent work in the area. 





Chapter 4 

Extremal Metrics 

Suppose that M is a compact Kahler manifold with a Kahler class n E 

H2(M, R). A natural question is to ask for a particularly nice metric repre­
senting the class n. In the previous section we have seen that if c1 (M) < 0 
and n = -c1(M), then M admits a unique Kahler-Einstein metric, while if 
c1(M) = 0, then any Kahler class on M admits a unique Ricci flat metric. 
Extremal metrics, introduced by Calabi [21], are a natural generalization of 
these to arbitrary Kahler classes on compact Kahler manifolds. When they 
exist, extremal metrics are good candidates for being the "best" metrics in 
a given Kahler class. In this section we will introduce extremal metrics and 
study some of their basic properties, while later on we will study obstructions 
to their existence. 

4.1. The Calabi functional 

As above, suppose that Mis a compact Kahler manifold and n E H2(M, R) 
is a Kahler class. 

Definition 4.1. An extremal metric on M in the class n is a critical point 
of the functional 

Cal(w) =JM S(w)2wn, 

for w E n, where S(w) is the scalar curvature. This functional is called the 
Calabi functional. 

The first important result is understanding the Euler-Lagrange equation 
characterizing extremal metrics. For a function f : M --+ Ron a Kahler 
manifold, let us write grad1•0 f = gik8rcf. This is a section of T 1•0 M, and it 
is (up to a factor of 2), the (1,0)-part of the Riemannian gradient off. -57 
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Theorem 4.2. A metric w on M is extremal if and only if grad1•0S(w) is 
a holomorphic vector field. 

Proof. First let us study the variation of the Calabi functional under vari­
ations of a Kahler metric in a fixed Kahler class. So let Wt = w + tFf_88cp, 
and we will compute the derivative of Cal(wt) at t = 0. We have 

and so 

dd I wf = nH8Bcp /\ wn-l = A.cpwn, 
t t=O 

dd I Ric(wt) = -Ra8A.cp. 
t t=O 

Using that S(wt) = gfi: ~.;;;;,where Rt,jk is the Ricci curvature of Wt, we have 

dd I S(wt) = -giii(apaqcp)gPk R;;c - A.2cp 
t t=O 

= -A.2cp- Rki8;8;ccp. 

Writing S = S(w) for simplicity, it follows that 

dd I Cal(w) = { [-2S(A.2cp + Rkj8;8;;;cp) + S2A.cp]wn 
t t=O JM 

=JM cp[ - 2A.2S - 2Y';Y';c(Rki S) + A.(S2)]wn. 

Using the Bianchi identity Y';;;Rki = gikV;;;S, we have 

dd I Cal(w) = { cp[ - 2A.2S - 2Y';(SgikV;;;S + RkiV;;;S) + A.(S2)]wn 
t t=O JM 

=JM cp[ - 2A.2S - 2V';(RkiV;;;S)]wn. 

In particular if w is an extremal metric, then this variation must vanish for 
every cp, so 

A.28 + Y';(RkiV;;;S) = 0. 
Commuting derivatives, for any function 'If; we have 

A.21/J + Y';(RkiV;c'lf;) = gikgPiiV; Y';c V' P V' q'l/J + Y';(RkiV;c'lf;) 

It follows that if we write 

= gikgPiiV;Y'pY';;;V'q'lf;-gikgPiiV;(R~pkV'm,1/J) 

+ Y';(RkiV;c'lf;) 

= 9;;;; gPiiV P V' i V' kV' ii'l/J· 

'D: C 00 (M, C)--+ 0 00(0°·1 M ® n°·1 M) 

1/J 1-7 V' kV' q'l/J' 
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then 
D,_21/J + "Vj(Rk:i"VK:'l/J) = 'D*'D'l/J, 

where 'D* is the formal adjoint of 'D. In particular if 'D*'DS = 0, then 

0 = JM S'D*'DS wn = JM 1vs12 wn' 

so 'DS = 0. Using the metric to identify n°·1 M ~ T 1•0 M, the operator 'D 
can also be thought of as 

'D('l/J) = "Vk:(giiiVii'l/J) = Vk:(grad1,01/J) = B(grad1,01/J) 

since on the holomorphic tangent bundle T 1•0 M the ( O, 1 )-part of the covari­
ant derivative coincides with the usual antiholomorphic partial derivatives. 
Therefore 'DS = 0 is equivalent to saying that grad1·0S is holomorphic. D 

Definition 4.3. The fourth-order operator that appeared in the previous 
proof, 

'D*'D'l/J = D,.21/J + "Vj(Rk:i"VK:'l/J) 

= D,.21/J + Rki"Vi"Vk:'l/J + gik:VjS"Vk:'l/J, 

is called the Lichnerowicz operator. We saw in the proof that on a compact 
Kahler manifold 'D*'D'l/J = 0 if and only if grad1•01/J is holomorphic. Note 
that in general this is a complex operator unless S is constant. One must 
remember this when using the selfadjointness of 'D*'D. For instance for 
complex-valued functions f, g we have 

l ('D*'D !)g wn = l f'D*'Dg wn. 

From the previous proof we obtain a useful description of the variation 
of the scalar curvature under a variation of the metric. 

Lemma 4.4. Suppose that Wt= w + tA.88cp. Then the scalar curvature 
St of Wt satisfies 

Proof. The first formula follows from the previous proof. The second one 
follows by taking the conjugate and noting that St is real. D 

Example 4.5. The most important examples of extremal metrics are con­
stant scalar curvature Kahler metrics, which we will abbreviate as cscK. In 
fact most compact Kahler manifolds admit no non-zero holomorphic vector 
fields at all, so on such manifolds an extremal metric necessarily has constant 
scalar curvature. 
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In particular Kahler-Einstein metrics have constant scalar curvature, so 
they are examples of extremal metrics. Conversely suppose that w is a cscK 
metric and we are in a Kahler class where a Kahler-Einstein metric could 
exist, i.e. c1(M) = A[w] for some A. Then w is in fact Kahler-Einstein. 
Indeed, if the scalar curvature Sis constant, then 

-* k {) Rik= -gP '\lpRjk = -'\liS = 0, 

so the Ricci form is harmonic. But 211" Aw is also a harmonic form in the 
same class, so we have Rjk = 211" A9jk· 

We will see in Section 4.4 that there are also examples of extremal metrics 
which do not have constant scalar curvature. 

Exercise 4.6. Let w be an extremal metric on a compact Kahler manifold 
M. Use the implicit function theorem to show that there exists an extremal 
metric in every Kahler class on M which is sufficiently close to [w]. This 
is a theorem of LeBrun-Simanca [71]. At first you should assume that M 
has no holomorphic vector fields, which simplifies the problem substantially. 
For the general case it might help to study Section 8.5. 

In the next section we will further study the interplay between holomor­
phic vector fields and extremal metrics. In the remainder of this section 
we will show that in the definition of extremal metrics, instead of taking 
the L 2-norm of the scalar curvature, we could equivalently have taken the 
L 2-norms of the Ricci or Riemannian curvatures. For this we first need the 
following. 

Lemma 4. 7. Let a and /3 be (1, 1)-forms, given in local coordinates by 
a = A.aikdzi /\ dzk and /3 = A/3ikdzi /\ dzk such that ajk and /3jk are 
Hermitian matrices. If w is a Kahler metric with components 9jk' then 

na /\ wn-l = (trwa)wn, 

n(n - l)a /\ /3 /\ wn-2 = [(trwa)(trw/3) - (a, /3)w]wn, 

where trwa = gikajk and (a, f3)w = gikgPiiajq/3pk· 

Proof. We will prove the second equality since the first follows by taking 
/3 = w. We compute in local coordinates at a point where g is the identity 
and a is diagonal. Then 

so 

w = HL9i~dzi /\dzi, 
i 

wn-2 = (Ar-2(n - 2)! L:dz1 /\ dz1 /\ ... /\ d~i 
i<j -/\ .. · /\ dzi /\ dzi /\ .. · /\ dzn /\ dzn, 
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where the hats mean that those terms are omitted. Also 

a /\ f3 = ( H)2 L a{i/3f3dzi /\ dzi /\ dzi /\ dzi 
i#j 

+(terms involving f3jk with j =/:- k) 

since a is diagonal. It follows that 

n(n - l)a /\ f3 /\ wn-2 = ( Rrn! L lt{i/3j3dz1 /\ dz1 /\ .•• /\ dzn /\ dzn 
i'#j 

= (L aiif3jJ) wn 
i'#j 

= (~ aiif3jJ - ~ aii/3ii) wn 
i,3 i 

= [(trwa)(trwf3) - (a, f3)w] wn. 
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D 

We can now compare the different functionals obtained by taking the 
£ 2-norms of the Ricci and Riemannian curvatures. 

Corollary 4.8. There are constants Ci, C2 depending on Mand the Kahler 
class f2 such that if w E 0, then 

JM Swn = 2mrc1(M) U [w]n-l, 

JM IRicl2 wn = JM 8 2 wn + C1, 

JM 1Rml2 wn = JM IRicl2 wn + C2, 

where S, Ric, and Rm are the scalar, Ricci, and Riemannian curvatures of 
w. 

Proof. Let us write p = A.Rikdzi /\ dzk for the Ricci form of wand 9jk: 
for the local components of the metric w. Applying the previous lemma, we 
have 

JM Swn = n JMp/\wn-l = 2mrc1(M) U [w]n-l 

since trwp = S and p is a closed form representing the cohomology class 
27rc1(M). 

For the second identity we again apply the previous lemma: 

JM (S2 - IRicl2)wn = n(n-1) JM p/\p/\wn-2 = 4n(n- l)7r2c1(M)2 U [w]n-2 

since (p, P)w = IRicl2. 
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For the third equation, let us introduce the endomorphism-valued 2-form 
epq defined by 

e: = HRpqjkdzj /\ dzk. 

Applying the previous lemma we have 

n(n -1)0 q /\ 0 P /\ wn-2 = (R qRp - gjbgali: R q .-RP-) wn P q P q p 3k q ab 

= (IRicl2 - 1Rml2) wn. 

The (2,2)-form 0pq /\ 0J' is a closed form whose cohomology class is in­
dependent of the metric (in fact it is the characteristic class 47r2c1(M)2 -
87!"2 c2 ( M)), and therefore 

JM (IRicl2 - 1Rml2) wn = C2. D 

For us the most important point from the previous result is that the 
average scalar curvature 

S = 2n7rc1(M) U [w]n-l 
[w]n 

only depends on M and the Kahler class [w]. Since 

JM S(w)2wn = JM(S(w)- S)2wn +JM 82wn, 

if a cscK metric exists in a Kahler class, then it minimizes the Calabi func­
tional. It turns out that more generally extremal metrics minimize the 
Calabi functional in their respective Kahler classes, but this is much harder 
to prove. See Donaldson [46] and Exercise 7.24 for the case of projective 
manifolds and Chen [30] for Kahler manifolds. 

Remark 4.9. An important consequence of the previous result is that if 
w is an extremal metric, then we have an estimate for the £ 2-norm of the 
curvature of w. This can be exploited to understand how a family of extremal 
metrics could degenerate in certain cases. See for example Chen-LeBrun­
Weber [35] for an existence result based on a careful analysis of the possible 
"blow-up" behaviors. 

4.2. Holomorphic vector fields and the Futaki invariant 

As before, Mis a compact Kahler manifold with Kahler metric w. A holo­
morphic vector field is a holomorphic section of T 1·0 M. We will focus our 
attention on those vector fields which can be written as vi = gjk8li:f for 
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a function f. It is natural to allow complex-valued functions too. Let us 
define 

~ := {holomorphic sections v of T1·0 M 

such that vi = gik8rJ for some f : M --+ C}. 

We have seen that vi = gik~f E ~ if and only if 'D*'Df = 0 and vi deter­
mines f up to the addition of a constant. We call f a holomorphy potential 
for v. We can identify ~ with the functions in ker'D*'D which have integral 
zero. The space ~ is independent of the choice of metric in the Kahler class 
[w] because of the following. 

Lemma 4.10. Let us write 9cp,ik = gik + 8i8k<p for some <p. If v E ~ and 

vi= gik8kf, then 

vi= !l/8k(f + v(cp)), 

where v(cp) = vi8i<p is the derivative of <p along v. 

Proof. We have 
. 'k . 

9cp,ifiv3 = (9iii + 8i8pcp)g3 8kf = 8pf + 8p(v3 8icp), 

where we used that 'Vpvi = 8pvi = 0 since v is holomorphic. Multiplying 
this equation by the inverse of gcp we get the required result. D 

Exercise 4.11. Show that the space~ is closed under the Lie bracket. 

Remark 4.12. It turns out that ~ consists of precisely those holomorphic 
vector fields which have a zero somewhere (see LeBrun-Simanca [72]), so~ 
does not even depend on the choice of Kahler class. We will also see this 
in Exercise 4.15 which gives yet another characterization of~ amongst the 
holomorphic vector fields. 

Exercise 4.13. Show that if c1(M) = 0, then~= {O}. 

Exercise 4.14. Give an example of a compact Kahler manifold Mand a 
holomorphic section v of T1•0 M such that v ¢ ~. 

Exercise 4.15. Let v be a holomorphic vector field. Show that v E ~if and 
only if a(v) = 0 for all holomorphic (1, 0)-forms a. 

Exercise 4.16. Suppose that Mis a Fano manifold, i.e. c1(M) > 0. Show 
that then ~ is the space of all holomorphic vector fields on M. 

Remark 4.17. It is often useful to think of sections of T1·0 Mas real vector 
fields. This can be achieved by identifying T1•0 M with the real tangent 
bundle TM, mapping a vector :field of type (1,0) to its real part. In local 
coordinates zi =xi+ Hyi. In view of equation (1.4), this means that 

8 1 8 8 1 8 
-8 . t--+ -2-8 ., V-I-8 . t--+ -2-8 .. zi xi zi yi 
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We can then calculate that if f = u + Av is the decomposition of f into 
its real and imaginary parts, then 

- 1 
gik[J;cf i---+ 2(grad u + Jgrad v), 

where grad is the usual Riemannian gradient and J is the complex struc­
ture. We will see in Section 5.1 that J grad v is the Hamiltonian vector field 
corresponding to v with respect to the symplectic form w. It follows that 
if v E ~ has a purely imaginary holomorphy potential, then the real part of 
v is a Killing field. Conversely, if the real part of v is a Killing field, then 
vi= gik(J;J for a purely imaginary function f. 

In view of the previous remark, let us denote by t c ~ the vector fields in 
~ which correspond to Killing vector fields under the identification T1•0 M = 
TM. The following is a basic result about the Lie algebra ~ on a cscK 
manifold (see Lichnerowicz [76]). 

Proposition 4.18. Suppose thatw is a cscK metric on M. Then~= fEBJt. 

Proof. Let kero 'D*'D denote the elements in the kernel with zero integral. 
Under the identification 

kero 'D*'D ---=+ ~ 
"k f i---+ i' 8rcf, 

the subspace t corresponds to the purely imaginary functions. On the other 
hand, when w has constant scalar curvature, then 

v*v = f::l.2 + Rrc;\1/vrc 
is a real operator, and so u + Av E ker 'D*'D for real functions u, v if and 
only if u, v E ker 'D*'D. D 

Remark 4.19. Since t generates a compact group of automorphisms, this 
result implies that if M admits a cscK metric, then the Lie algebra ~ is 
reductive. This can be used to give examples of manifolds which do not 
admit a cscK metric. For example if M = BlpCP2 is the blow-up of the 
projective plane at one point, then using Exercise 4.16 and Exercise 8.1, the 
Lie algebra ~ can be identified with the holomorphic vector fields on CP2 

which vanish at p. This latter Lie algebra can be identified with the 3 x 3 
matrices of the form 

( ~: :), 
0 * * 

which is not reductive. It follows that M does not admit cscK metrics in 
any Kahler class. In Exercise 4.32 we will see that M does admit extremal 
metrics in every Kahler class. 
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Remark 4.20. Studying the automorphism group can also be used to find 
manifolds which do not admit extremal metrics in any Kahler class. The 
proposition shows that if M admits a cscK metric and b is non-trivial, then 
the group of holomorphic automorphisms of M must contain a compact sub­
group. The same holds if M admits an extremal metric since then J grad S 
is a holomorphic Killing field. Amongst other examples, Levine [7 4] showed 
that if M is a suitable 4-point blow-up of CP1 x CP1 (blowing up the 
points (p,p), (p, q), (p, r), (q,p) with p, q, r any three points on CP1 ), then 
the identity component of the automorphism group of M is C, and so it has 
no compact subgroup. It follows that M cannot admit an extremal metric 
in any Kahler class. 

The main point in Proposition 4.18 was that when w is a cscK metric, 
then V*V is a real operator. In general we have 

(V*V-V*V)cp = gik(VjSVk:cp - VjcpVk:S). 

If w is an extremal metric, then Vs = gikok:S is holomorphic and if in addition 
Vf = gikok:f E b, then we can compute that 

[vs,vf] = gPifVifgik(Vj<pVkS- VjSVk:cp). 

Denote by bs c b the subalgebra commuting with Vs, and note that elements 
in t commute with Vs since they correspond to Killing fields. Then the same 
proof as in Proposition 4.18 can be used to show that bs = t E9 Jt. A further 
refinement of this result is given in Calabi [22]. 

The following theorem, due to Futaki [55], gives an obstruction to finding 
cscK metrics in a Kahler class. It will turn out to be a first glimpse into the 
obstruction given by K-stability. 

Theorem 4.21. Let (M,w) be a compact Kahler manifold. Let us define 
the functional F : b --+ C, called the Futaki invariant, by 

(4.1) 

where f is a holomorphy potential for v and S is the average of the scalar 
curvature S. This functional is independent of the choice of metric in the 
Kahler class [w]. In particular if [w] admits a cscK metric, then F(v) = 0 
for all v Eb. 

Proof. Suppose that w+A88cp is another Kahler metric in [w], and write 
Wt = w + tA88cp. Let 

Ft(v) =JM ft(St - S)wf, 
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where ft is a holomorphy potential for v with respect to Wt and St is the scalar 
curvature of Wt· Note that by Corollary 4.8 the average Sis independent of 
t. It is enough to show that the derivative of Ft(v) at t = 0 vanishes. By 
Lemma 4.10, we can choose ft so that 

!!_I ft= vi8j<p = gfka,c1aj<p, 
dt t=O 

and from the proofs of Theorem 4.2 and Lemma 4.4 we have 

d I n A n -d Wt = J..J..<pW ' 
t t=O 

!!_I St= -V*V<p + /ii:8j<p8kS. 
dt t=O 

It follows that 

dd I Ft(v) = f [gik8'kf8j<p(S - S) - f(V*V<p - gik8j<p8k:S) 
t t=O jM 

= JM - f'D*V<pwn 

= - JM <p'D*Vfwn, 

+ f (S - S)~<p] wn 

after writing ~<p = gikf)kf)i<p and integrating by parts. Using that f is a 
holomorphy potential, we have V*V f = 0, so the result follows. D 

To compute the Futaki invariant using the defining formula directly is 
impractical if not impossible in all but the simplest cases. Instead, it is pos­
sible to use a localization formula to compute F( v) for a holomorphic vector 
field by studying the zero set of v (see Tian [113]). A third approach, which 
will be fundamental in the later developments, is that if M is a projective 
manifold, then the Futaki invariant can be computed algebra-geometrically. 
We will explain this in Section 7.4. 

A useful corollary to the previous theorem is the following. 

Corollary 4.22. Suppose that w is an extremal metric on a compact Kahler 
manifold M. If the Futaki invariant vanishes (relative to the Kahler class 
[w]), then w has constant scalar curvature. 

Proof. Since w is an extremal metric, the vector field vi = gik[)kS is in ~­
It follows that 

O=F(v)= JMs(S-S)wn= L(S-S)2 wn, 

so we must have S = S, i.e. Sis constant. D 
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4.3. The Mabuchi functional and geodesics 

In this section we will see that cscK metrics have an interesting variational 
characterization, discovered by Mabuchi [80], which is different from being 
critical points of the Calabi functional. Moreover this variational point of 
view gives insight into when we can expect a cscK metric to exist. 

As before, let (M,w) be a compact Kahler manifold. Let us write 

JC = { <p : M--+ RI <p is smooth and w + Aa8<p > O}, 

for the space of Kahler potentials for Kahler metrics in the class [w]. For 
any <p E JC we will write 

w<p = w + Aa8<p 

for the corresponding Kahler metric, and we will put a <p subscript on other 
geometric quantities to indicate that they refer to this metric. The tangent 
space T'PJC at <p can be identified with the smooth real-valued functions 
C00 (M). We can therefore define a 1-form a on JC by letting 

a'P('l/J) =JM 'lfJ(S - S'P) w~. 
We can check that this 1-form is closed. This boils down to differentiating 
a'P('l/J) with respect to <p and showing that the resulting 2-tensor is symmet­
ric. More precisely we need to compute 

! I t=O a<p+t'l/J2 ( 1/J1) 

and show that it is symmetric in 1/J1 and 1/J2. We have 

! I t=O a<p+t'l/J2 ( 1/J1) 

=JM [1/J1('D;'Dcp'l/J2 - g~"k8;Scp8"k'l/J2) + 1/J1(S - Scp)Acp'l/J2] w~ 

=JM [1/J1'D;'Dcp'l/J2 - (S - Scp)gika;'lfJ18"k'lfJ2] w~. 
Switching 1/J1 and 1/J2 amounts to taking the conjugate of the whole expression 
(using selfadjointness of the complex operator 'D*'D). The left-hand side of 
the equation is real, so it follows that the expression is symmetric in 1/J1 and 
1/J2. 

Since a is a closed form and JC is contractible, there exists a function 
M: JC--+ R such that dM =a which we can normalize so that M(O) = 0. 
We could get a more explicit formula by integrating a along straight lines, 
but the variation of M is more transparent. To summarize, we have the 
following. 
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Proposition 4.23. There is a functional M : /(,--+ R such that the varia­
tion of M along a path <pt = cp + ttf; is given by 

(4.2) ddt I M(cpt) = r tf;(S - S<p)w~, 
t=O }M 

where S'P is the scalar curvature of the metric w'P = w + Aa8cp. This is 
called the Mabuchi functional or the K-energy. 

Exercise 4.24. Suppose that we define the Mabuchi functional as follows. 
For any cp E /(, let <pt be a path in /(, such that <po = 0 and <p1 = cp, and 
define 

M(cp) = fo1 L <Pt(S- St)wf dt, 

where Wt= w+AaB<pt and St is the scalar curvature of Wt. Check directly 
that this is well-defined, i.e. the integral is independent of the path <pt that 
we choose connecting 0 and cp. 

Note that since the variation of M in the direction of the constant func­
tions vanishes, M actually descends to a functional on the space of Kahler 
metrics in [w]. Moreover it is clear that critical points of M are given by 
constant scalar curvature metrics. A modification of the Mabuchi functional 
has been introduced by Guan [60] whose critical points are extremal metrics. 

Next we will show that M is a convex function on /(, if we endow /(, 
with a natural Riemannian metric, introduced by Mabuchi [81] (see also 
Semmes [94] and Donaldson [43]). Given two elements t/;1, t/;2 E T'PJ(, in the 
tangent space at cp E /(,, we can define the inner product 

(t/Ji, t/J2)cp = JM t/J1 t/J2 W~. 
This defines a Riemannian metric on the infinite-dimensional space/(,, Let 
us first compute the equation satisfied by geodesics. 

Proposition 4.25. A path <pt E /(, is a (constant speed) geodesic if and only 
if 

<Pt - la<Ptlt =<Pt - g{ii:a;<Pta;c<Pt = o, 
where the dots mean t-derivatives and 9t is the metric w + AaB<pt. 

Proof. A constant speed geodesic is a critical point of the energy of a path. 
The energy of the path <pt fort E [O, 1], say, is 

E(cpt)= f 1 f <Ptwfdt. lo }M 



4.3. The Mabuchi functional and geodesics 69 

Under a variation <pt+ e'lf;t, where 'l/Jt vanishes at t = 0 and t = 1, we have 

dd I E( <pt + e'lf;t) = f 1 { (2<Pt-iPt + <Pt b..t'l/Jt) wf dt e e=O Jo JM 
= 1l JM (2cpt-iPt + b..( cpt)'l/Jt) wf dt 

= fol JM [ - 2,:Pt'l/Jt - 2cpt'l/Jtb..tcpt + b..t( cpt)'l/Jt] wf dt 

=fol JM -2'1/Jt [,:Pt - gfi:ajcpt{)k:cpt] wf dt, 

where we integrated by parts on the manifold and also with respect to t (the 
b..t<Pt term in the third line comes from differentiating wf with respect tot). 
The required expression for the geodesic equation follows. D 

Example 4.26. A useful family of geodesics arises as follows. Suppose that 
v E ~ has holomorphy potential u : M -t R and VR is the real part of 
v, thought of as a section of TM. Then VR = ~gradu, and VR is a real 
holomorphic vector field; i.e. the one-parameter group of diffeomorphisms 
ft : M -t M generated by VR preserves the complex structure of M. We 
can then define the path of metrics 

Wt= ft(w), 

and we can check that 

where 
<Pt= ftu. 

A good exercise is to check that <pt defines a geodesic line in/(,, The deriv­
ative of the Mabuchi functional along this line is given by 

!M(cpt) =JM <Pt(S- St)wf 

=JM ftu (S - f* S(w)) f*(wn) 

=JM u(S- S(w))wn 

= -F(v), 

where F(v) is the Futaki invariant of v. In other words the Mabuchi func­
tional is linear along this geodesic line, with derivative given by the Futaki 
invariant. 

Proposition 4.27. The Mabuchi functional M : }(, -t R is convex along 
geodesics. 



70 4. Extremal Metrics 

Proof. Suppose that 'Pt defines a geodesic and let us compute the second 
derivative of M(c.pt). By definition 

so 

(4.3) 

!M(c.pt) = L <i;t(S- St)wf, 

::2M(c.pt) =JM [<h(S - St)+ <Pt('D;'Dt<Pt - gfk8jStlJrc<Pt) 

+ <Pt(B - St)~t<Pt] wf 

=JM [l'Dt<Ptl~ + (S-St)(<Pt - l8<Ptln] wf 

=JM l'Dt<Ptl~wr ~ o. 

Therefore M is convex along the path 'Pt. D 

From this result a very appealing picture arises. We have a convex 
functional M : JC --+ R whose critical points are the cscK metrics in the 
class [w]. We can therefore at least heuristically expect a cscK metric to 
exist if and only if as we approach the "boundary" of JC, the derivative of 
M becomes positive. Since we are on an infinite-dimensional space, it is 
hard to make this picture rigorous, but we will find that the notion of K­
stability can be seen as an attempt to encode this behavior "at infinity" of 
the functional M. 

Unfortunately it is difficult to construct geodesics in JC, and in fact it is 
possible to construct pairs of potentials in JC on any Kahler manifold which 
are not joined by a smooth geodesic (see Lempert-Vivas [73], Darvas [38]). 
Nevertheless it is possible to show the existence of non-smooth geodesics with 
enough regularity that geometric conclusions can be drawn (see Chen [29], 
Chen-Tian [36]). In particular Chen and Tian showed that extremal metrics, 
if they exist, are unique up to isometry in a Kahler class. 

Exercise 4.28. Suppose that w1, w2 are two cscK metrics in the same Kahler 
class on M. Assuming that there is a geodesic path connecting w1 and w2, 
prove that there is a biholomorphism f: M--+ M such that f*w2 = w1. 

To conclude this section, we briefly mention that when w E c1(M), then 
there is another natural functional on JC whose critical points are Kahler­
Einstein metrics, introduced by Ding [40]. To define it, for any <p E JC define 
the Ricci potential hip by the equation 

Ric(wip) - Wip = H8Bhip, 
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together with the normalization 

{ eh"'wn = { wn. 
JM 'P JM 'P 

The variation of the Ding functional F : /(, --+ R along a path <pt = cp + t'l/J 
is given by 

dd I F(cpt) = f 1/J(eh"' - l)w~. 
t t=O JM 

Exercise 4.29. Show that if JM Jeh"'w~ = 0, then 

JM f 2eh"' w~ ::::; JM IV f l 2eh"'w~. 
Exercise 4.30. Show that a functional F exists with the variational formula 
above and that Fis convex along smooth geodesics in/(,, 

The advantage of the Ding functional F over the Mabuchi functional is 
that it can be defined for metrics with less regularity. In particular the con­
vexity of F can be established along geodesics in /(, with very low regularity, 
and this leads to results on the uniqueness of Kahler-Einstein metrics, even 
ones with certain singularities, as shown by Berndtsson [15]. Note that the 
uniqueness of smooth Kahler-Einstein metrics up to isometry has previously 
been established by Bando-Mabuchi [11] without the use of geodesics. 

4.4. Extremal metrics on a ruled surface 

In this section we will describe the construction of explicit extremal metrics 
on a ruled surface, due to T111nnesen-Friedman [116]. We will only do the 
calculation in a special case, but much more general results along these lines 
can be found in the work of Apostolov-Calderbank-Gauduchon-T111nnesen­
Friedman [2]. 

Let E be a genus 2 curve, and let WE be a Kahler metric on E with 
constant scalar curvature -2. By the Gauss-Bonnet theorem the area of E 
is 271" with this metric. Let L be a degree -1 holomorphic line bundle on 
E (i.e. c1{L)[E] = -1), and let h be a metric on L with curvature form 
F(h) =-WE· 

We will construct metrics on the projectivization X = P(LEBO) over E, 
where 0 is the trivial line bundle. Thus Xis a CP1-bundle over E. We will 
follow the method of Hwang-Singer [65]. First we construct metrics on the 
complement of the zero section in the total space of L and then describe what 
is necessary to complete the metrics across the zero and infinity sections of 
x. 

We will consider metrics of the form 

{4.4) w = p*wE + H88f(s), 
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where p : L -+ E is the projection map, s = log lzl~, and f is a strictly 
convex function which makes w positive definite. Let us compute the metric 
w in local coordinates. Choose a local holomorphic coordinate z on E and 
a fiber coordinate w for L, corresponding to a holomorphic trivialization 
around z. The fiberwise norm is then given by l(z, w)I~ = lwl2h(z) for some 
function h, and so our coordinate s is given by 

s =log lwl2 +log h(z). 

Let us work at a point (zo, wo), in a trivialization such that dlog h(zo) = 0. 
Then at this point 

V-188/(s) = !'(s)H88logh + f"(s)Hd~:i:w 

'( ) * !"( ) . ,---,dw /\ dw = f s p WE+ s v-1 lwl2 , 

(4.5) 

where we used that -A.88 log h is the curvature of L. It follows that 

(4.6) ( '( )) * "( ) . ,---,dw /\ dw w = 1 + f s p WE+ f s v-1 lwl2 , 

and so 
1 

w2 = lwl2 (1 + !'(s))f"(s)p*wE /\ (Hdw /\ dw). 

We can check that if we now use a different trivialization for the line bundle 
in which w = g(z)w for a holomorphic function z, then the same formula 
for w2 holds, so this formula holds at every point. It follows that the Ricci 
form of w is 

p = -V-188log ( l~l 2 (1 + f'(s))!"(s)) + p* PE 

= -V-188log [(1 + f'(s))!"(s)] - 2p*wE, 

(4.7) 

where PE = -2WE is the Ricci form of E. We could at this point compute 
the scalar curvature of w, but it is more convenient to change coordinates. 
From ( 4.6) we know that for w to be positive, f must be strictly convex. We 
can therefore take the Legendre transform of f. The Legendre transform F 
is defined in terms of the variable T = f' ( s) by the formula 

f(s) + F(T) =ST. 

If I c R is the image of f', then F is a strictly convex function defined on 
I. The momentum profile of the metric is defined to be cp: I-+ R, where 

1 
cp(T) = F"(T)' 
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The following relations can be verified: 

s = F'(r), ~; = F"(r), <p(r) = f"(s). 

Using (4.6) and (4.7) we have 

* Hdw/\dw 
w = (1 + r)p WE+ <p(r) lwl2 , 

(4.8) 
p = -v'-Io8log [(1 + r)<p(r)] - 2p*wE. 

A calculation now shows that the scalar curvature is given by 

(4.9) S(r) = --2- - - 1-[(1 + r)<p]", 
l+r l+r 

where the primes mean derivatives with respect to r. 

We still need to understand when we can complete the metric across 
the zero and infinity sections. We will just focus on the metric in the fiber 
directions, which according to (4.6) is given by 

! "( ) Hdw /\ dw 
s lwl2 

Let us writer= lwl, sos= 2logr. The condition that this metric extends 
across w = 0 is that f" has the form 

f"(s) = c2r2 + C3r3 + C4r4 + .... 

Then, since d/ds = ~d/dr, we have 

! "'( ) 2 3 3 2 4 s = c2r + 2c3r + c4r + · · · , 

and since f"(s) = <p(r) and f"'(s) = <p1(r)<p(r), we have 

<p1(r) = 1 + O(r). 

In particular if the range of r is an interval (a, b), then 

lim <p(r) = 0, lim <p1(r) = 1. 
r-ta r-ta 

A similar computation can be done as w --+ oo by changing coordinates to 
w-1, showing that 

lim <p(r) = 0, 
r-tb 

lim <p1(r) = -1. 
r-tb 

Note also that by ( 4.8) the metric will be positive definite as long as 
( 1 + r) and <p( r) are positive on [a, b]. For simplicity we can take the interval 
[O, m] for some m > 0. The value of m determines the Kahler class of the 
resulting metric. Viewing X as a CP1-bundle over I::, the space H2(X, R) is 
generated by Poincare duals of a fiber C and the infinity section 800 , which 
is the image of the subbundle L EB {O} C L EB 0 under the projection map 
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to the projectivization X = P(L EB 0). We have the following intersection 
formulas: 

C · C = 0, B00 • B00 = 1, C · B00 = 1. 

The Kahler class of the metric can then be determined by computing the 
areas of C and B00 • The area of C is given by 

f f"(s) A~~/' dw = 271"( lim f'(s) - lim f'(s)) = 271"m, 
Jc\{O} w s--too s--t-oo 

while the area of the infinity section B00 is 

(1 + m) £. w~ = 271"(1 + m). 

It follows that if we denote by Cm the Poincare dual to the Kahler class of 
w, then 

Cm= 211"(C + mB00 ). 

The final thing to check is when the metric is extremal, i.e. when 
grad1•0B(r) is holomorphic. We can compute that 

{) 
grad1•0B(r) = B'(r)w-

8w' 

which is a holomorphic vector field if and only if B' ( r) is constant. So w is 
extremal if and only if B" ( r) = 0. 

The end result is the following theorem, which follows from the more 
general results in Hwang-Singer [65]. 

Theorem 4.31. Suppose that cp : [O, m] --+ R is a smooth function which is 
positive on (0, m) and satisfies the boundary conditions 

(4.10) cp(O) = cp(m) = 0, cp'(O) = 1, cp'(m) = -1. 

Then by the above construction we obtain a metric on X in the Kahler class 
Poincare dual to Cm= 211"(C + mB00 ) whose scalar curvature is given by 

B(r) = --1 2 - -1 1 [(1 + r)cp]". 
+r +r 

The metric is extremal if and only if S" ( r) = 0. 

We can now construct extremal metrics by solving the ODE B"(r) = 0 
for cp: [O,m]--+ R satisfying the boundary conditions (4.10). The equation 
to be solved is 

-1 ( ") - 2+ [{l+r)cp] =A+Br, 
l+r 
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for some A, B. This equation can easily be integrated using the boundary 
conditions, and we obtain 

r(m-r) [ 2 2 
<,o(r) = m(m2 +Bm+B)(l+r) r (2m+2)+r(-m +4m+6) 

+m2 + 6m+6]. 

This will only give rise to a metric if <,o(r) > 0 for all r E (0, m). This 
happens only if m < ki, where k1 ~ 18.889 is the positive root of m4 -

16m3 - 52m2 - 48m -12. We have therefore constructed extremal metrics 
with non-constant scalar curvature on the CP1-bundle X in the Kahler 
classes Poincare dual to Cm for m < k1. 

4.5 .-------.-----.----.-----r-----r----.----..----.---. 
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Figure 4.1. The momentum profile for the extremal metric when m = 17. 

It is interesting to see what happens as m ~ ki. At m = ki the 
solution <,o(r) acquires a zero in (0, m) (Figure 4.1 shows the graph of <,o when 
m = 17). Geometrically this corresponds to the fiber metrics degenerating 
in such a way that the diameter becomes unbounded but the area remains 
bounded. In other words the fibers break up into two pieces, each with an 
end asymptotic to a hyperbolic cusp. We will see in Section 6.5 that X is 
not relatively K-stable when m ~ ki, and it follows that it does not admit 
an extremal metric for these Kahler classes. 

Exercise 4.32. Show that the blow-up BlpCP2 of the projective plane in 
one point admits an extremal metric in every Kahler class. Use the fact 
that we can write BlpCP2 = P(O(l) EB 0) as a CP1-bundle over CP1, and 
so we can use the method above. An alternative approach is to exploit the 
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fact that BlpCP2 is a toric manifold and use the calculations in the next 
section. This is an example due to Calabi [21]. 

4.5. Torie manifolds 

Torie manifolds are a fertile testing ground for many ideas in algebraic and 
symplectic geometry, and it turns out that the study of extremal metrics 
on them is also very fruitful. The basic Kahler geometry of toric manifolds 
was worked out by Guillemin [61], and the study of extremal metrics on 
them was initiated by Abreu [l]. This was then taken considerably further 
by a sequence of works by Donaldson [44], [45], [48], [49], culminating in a 
general existence result for cscK metrics on K-stable toric surfaces, with a 
further extension to the extremal case by Chen-Li-Sheng [28]. In this section 
we will discuss Kahler metrics on toric manifolds and Abreu's formula for 
their scalar curvature. 

There are many different descriptions of toric manifolds from the point 
of view of algebraic geometry and symplectic geometry. In this section, the 
main point for us is that an n-dimensional toric manifold M contains a dense 
open set biholomorphic to Tc = ( C* r, and the action of this complex torus 
on itself extends in a smooth way to an action on all of M. 

Similarly to what we did in Section 4.4 we will be interested in Kahler 
metrics on M which on (C*)n can be written as 

(4.11) w = P.o8f(x), 

where x E Rn has components xi = log lzil2 for (zi, ... , Zn) E (C*)n. In 
terms of local complex coordinates wi = log zi, we can compute 

11 - 11 02! · · v-J.88f(x) = v-1 8 .8 . dwi A dw1 , 
xi xJ 

(4.12) 

so w is a Kahler metric whenever f : Rn --t R is strictly convex. The 
function f needs to satisfy certain conditions at infinity for this metric to 
extend to M, but as in the previous section, it is useful to first take a 
Legendre transform. We thus introduce the variable 

Y = '\l f(x) 

and define the function u by 

(4.13) f(x) +u(y) = x · y. 

The function u is called the symplectic potential of the metric, and it is a 
convex function on a subset Pc Rn given by the range of '\l f. The set P 
turns out to be the interior of a polytope, and '\l f is a moment map for the 
action of (S1)n; see Example 5.7 for more details. For this reason Pis called 
the moment polytope. The scalar curvature of w has a particularly nice form 
in terms of u due to Abreu [1 J. 
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Proposition 4.33. The scalar curvature of w as a function of the yi is 
given by 

uik 
S(w) = - L 8 i{) k' 

'k y y J, 

where uik is the inverse of the Hessian of u. 

Proof. From expression (4.12), the Ricci form of w in terms of the wi is 
given by 

Rjk = -8j8k log det(f ab) 

a2 
{)xi oxk log det (f ab)' 

where f ab denotes the Hessian of f in the xi variables. From the definition 
of the Legendre transform we have 

0 {)yP 0 
---8xi 8xi {)yP 

and also 

where uab is the inverse of the Hessian of u in the yi variables. It then follows 
that 

= u·kuPJ_ u qu -u b ·8(kab8) 
J {)yP {)ya q 

{) {) ak ----u - {)yk {)ya ' 

where we sum over repeated indices. This formula is what we wanted to 
prove. D 

In order to decide when w is an extremal metric, we need to know when 
grad l,O h is holomorphic for a function h of the variables yi. 

Lemma 4.34. The vector field grad1•0h(y) is holomorphic if and only if h 
is an affine linear function of y. 
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Proof. Suppose that vi = gikoreh in terms of the variables wi. Then 

OpVj = Op(gikoreh) 

= _!__ (ijk oh ) 
oxP oxk 

= upq_!_ (u·kukl oh) 
oyq J oyl 

_ pq o2h 
- u oyqoyi" 

It follows that vi is holomorphic if and only if his affine linear. D 

We will now briefly discuss the question of when the metric w extends 
to M from Tc. The points in M \Tc have non-trivial stabilizer, and we 
can classify them according to the dimension of the stabilizer. Let us focus 
on a fixed point p EM of the torus action, where the stabilizer is the whole 
n-dimensional torus. We can choose local coordinates zi centered at p such 
that the action of Tc is given by componentwise multiplication. Suppose 
for simplicity that w is given by 

w = RL:dzi "a:zi 
j 

in a neighborhood of p. In terms of the wi and xi we have 

w = J=I L e2Rewi dwi /\ d7iJP 
j 

= RL:exidwi /\dWi, 
j 

and so up to the addition of an affine linear function we have 

Taking the Legendre transform we obtain 

(4.14) u(y) = L (yi lnyi -yi), 
j 

where yi = exi . The point p corresponds to yi = O, and the domain of u is a 
neighborhood of the origin in the positive orthant. Modifying f by an affine 
linear function amounts to a translation in the y variables, while choosing a 
different integral basis for the torus transforms the x and y variables by an 
element of SL(n, Z). 
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More generally we can work at a point p EM where the stabilizer is a 
k-dimensional torus. We can then choose coordinates zi in which 

k n-k 

p=(~'~' 
and the torus action is still given by componentwise multiplication. Still 
using the Euclidean metric as above, if we take the Legendre transform, 
then we obtain the function u as in (4.14), but now p corresponds to the 
pointy= (0, ... ,0, 1, ... , 1). The domain of u will be a neighborhood of 
this point inside the positive orthant and once again different choices of 
coordinates, and modifying f by a linear function amounts to an SL(n, Z) 
transformation and a translation. 

From expression (4.12) for the metric in terms off we can see that if g 
is an (81 r-invariant function on Tc which extends smoothly to M, then in 
terms of the x variables we have 'V g ---+ 0 at infinity. It follows that the image 
of 'V f, i.e. the domain of y, does not change when we modify our metric 
w by a globally defined Kahler potential. This means that the information 
that we obtained above about the possible domains of y near points in 
M \Tc applies even if we do not use the Euclidean metric. Piecing this 
information together we see that the domain of y is the interior of a convex 
polytope PC Rn and a neighborhood of each vertex of Pis equivalent to a 
neighborhood of the origin in the positive orthant, under a translation and 
the action of SL(n, Z). This means that P satisfies the following Delzant 
condition. 

Definition 4.35. Let P c Rn be a convex polytope defined by a set of 
inequalities 

(4.15) 

where the li are linear functions with coprime integral coefficients and Ci E 

R. We say that P satisfies the Delzant condition if n faces meet at each 
vertex p E P, given by equations 

where the li generate the dual space (Zn)* over Z. 

Based on the observations above, one has the following result (see Abreu 
[1] for details of the proof). 

Theorem 4.36. Let (M,w) be a toric Kahler manifold with moment poly­
tope P c Rn defined by inequalities (4.15). Then every (S1r-invariant 
Kahler metric in the class [w] has a symplectic potential u : P---+ R of the 
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form 

(4.16) 
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j 

where v is smooth up to the boundary of P, while u is strictly convex on the 
interior of P and its restriction to each facet of P is strictly convex on the 
interior of that facet. 

Let us denote by S the set of functions u : P--+ R of the form (4.16) 
satisfying the conditions in the theorem. In summary we see that to find a 
torus invariant extremal metric on M in a given Kahler class, we need to 
find u ES such that S(u) is affine linear, where 

fJ2uik 
S(u) = - L 8 i8 k' 

'k y y 3, 

To conclude this section we will examine what the Futaki invariant, 
the Mabuchi functional, and geodesics correspond to in terms of symplectic 
potentials. The following basic integration by parts formula can be found 
in Donaldson [44]. 

Lemma 4.37. Suppose that u E S, and let g : P --+ R be a continuous 
convex function that is smooth on the interior of P. Then 

f uik9jkdµ= f gdu- { gS(u)dµ, 
}p laP }p 

where dµ is the Lebesgue measure on P, while du is a positive measure on 
the boundary 8P normalized so that on a face defined by li(Y) = Ci as in 
(4.15) we have du/\ dli = ±dµ. In addition uik and 9jk are the inverse 
Hessian of u and the Hessian of g, respectively. 

Note that in terms of the variables xi, ()i, where Wi = !xi+ A,Oi, the 
volume form of the metric win (4.11) is 

n 
; = det(fjk)dx1 /\ d()1 /\ · · · /\ dxn /\ d()n, 
n. 

which after transforming to the yi variables becomes 
wn 
-, = dyl /\ d()l /\ ... /\ dyn /\ d()n. 
n. 

It follows that the integral of a function g(y) on (M, w) is simply the integral 
of g on Pup to a factor of (27r)n. Applied tog= 1, Lemma 4.37 then implies 
that the average of the scalar curvature S(u) is the constant 

fp S(u) dµ Vol(8P, du) 
a- ------ fp dµ - Vol(P, dµ) . 
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We have already seen that the holomorphy potentials on (M,w) correspond 
to affine linear functions hon P. Formula (4.1) defining the Futaki invariant 
then gives 

(27r)-nF(h) = L h(S(u)- a)dµ 

= r h dO' - a r h dµ. 
laP lP 

The Futaki invariant vanishes for all vector fields in ~ when F(h) = 0 for 
all affine linear functions h. This is equivalent to saying that the center of 
mass of ( P, adµ) equals the center of mass of ( 8 P, dO'). 

Note that Lemma 4.37 implies a simple necessary condition for the ex­
istence of a symplectic potential u ES with constant scalar curvature. In­
deed, if S(u) is constant, then necessarily S(u) =a, and so for every convex 
smooth function g on P which is not affine linear, we have 

r gdO' - a r gdµ = r uikgjkdµ > 0. 
lap lP lP 

More generally, if S(u) = A for an affine linear function A, then the same 
argument implies that 

(4.17) r gdO' _ r Agdµ > o, 
lap lP 

for all non-affine linear convex functions g. We will relate this condition to 
stability in Section 6.7. 

Let us turn now to the Mabuchi functional. We have the following from 
[44). 

Proposition 4.38. With a suitable normalization by adding a constant, the 
Mabuchi functional evaluated at u ES is given, up to a factor of (27rr, by 

(4.18) M(u) = - r logdet(Uab) dµ + r udO' - a r udµ. h kP h 
Proof. To see this, it is enough to check that the variation of the functional 
given by (4.18) matches up with the definition of the Mabuchi functional in 
(4.2). If Ut = u + tv ES, then we have 

dd I M(ut) = - r uabVabdµ + r vdO' - a r vdµ 
t t=O lP lap lp 

= L v(S(u) - a) dµ. 

(4.19) 
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At the same time, if the ft(x) are the Legendre transforms of Ut(y), then 
differentiating formula ( 4.13) we get 

!I ft(X)=-!I Ut(y). 
t=O t=O 

It follows that the variation of M in (4.18) matches up with the variation 
of the Mabuchi functional in (4.2). D 

We now turn to geodesics of toric Kahler metrics. 

Proposition 4.39. A family ut E S of symplectic potentials corresponds to 

a (constant speed) geodesic of Kahler metrics if and only if !:ut = 0. 

Proof. Rather than rewriting the geodesic equation from Proposition 4.25 
in terms of symplectic potentials, we will derive the equation again from 
the energy of a path. The key point is that in terms of the y variables the 
volume form is fixed. The energy of the path ut, fort E [O, 1], say, is 

E(ut)= fo 1 lu~dµdt, 
so given a variation Ut + €Vt with vo = v1 = 0, we have 

~I E(ut +€Vt)= f 1 
{ 2utilt dµdt 

ue e=O Jo }p 

= fo1
l-2UtVtdµdt. 

It follows that critical points of E satisfy Ut = 0. D 

In particular any two symplectic potentials uo, u1 can be joined by a 
smooth geodesic using linear interpolation. The following uniqueness result 
is a simple consequence of this. 

Proposition 4.40. Suppose that S(uo) = S(u1) =a for symplectic poten­
tials uo, u1 ES. Then uo - u1 is an affine linear function. 

Proof. Consider the geodesic Ut = uo + tv, where v = u1 - uo. We have 

!M(ut) = l v(S(ut) - a) dµ, 

so by our assumption the derivative of M(ut) vanishes fort= 0 and t = 1. 
At the same time, from Proposition 4.27 we know that M(ut) is convex. 
It follows that M(ut) must be a constant and so from equation (4.3) we 
see that v = u1 - uo must be a holomorphy potential, i.e. an affine linear 
function. D 
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We conclude this section with an example. 

Example 4.41. Let M = CP2 with homogeneous coordinates [zo : Z1 : 
Z2J. The points [1 : z1 : z2J for (z1, z2 ) E (C*) define a dense complex torus, 
and the natural multiplication action extends as 

(z1,z2). [zo: zl: z2J = [zo: z1z1: z2Z2J. 

This action has three fixed points, [1 : 0 : O], [O : 1 : OJ, and [O : 0 : lJ, 
corresponding to vertices Po, Pl, P2 of the moment polytope P. We can work 
out what the moment polytope looks like near these fixed points as follows. 
Near the point [1 : 0: OJ the action is standard, relative to the coordinates 

zl - zl z2 - z2 
- zo' - zo' 

so a neighborhood of Po is a translation of a neighborhood of the origin in 
the first quadrant. Near [O : 1 : OJ and [O : 0 : lJ we have the following 
coordinates: 

Z 2 z2 z0 1 
near [O : 1 : OJ : z1 - zl , z1 - zl , 

z0 1 Z 1 z1 

near [O: 0: lJ : z2 = z2, z2 = z2. 

These are related to the basis z1, z2 of the torus by the SL(2, Z) matrices 

which transform the "standard corner" spanned by the vectors (1, 0), (0, 1) 
into corners spanned by (-1, 1), (-1, 0) and (0, -1), (1, -1). It follows that 
P is a right triangle with two equal sides parallel to the x and y axes. The 
size of the triangle is determined by the Kahler class, while its location in the 
plane is determined by the choice of normalization for the Kahler potential 
on Tc, or equivalently a choice of moment map for the (81 r-action. 

Suppose that our Kahler class is chosen in such a way that P has vertices 
(0, 0), (1, 0), and (0, 1). Then a symplectic potential on P is given by 

u = x ln x + y ln y + (1 - x - y) ln(l - x - y). 

A straightforward although tedious calculation shows that S(u) = 6, so u 
corresponds to a cscK metric. In fact it is the Fubini-Study metric on CP2. 

In general it is a difficult problem to find symplectic potentials giving 
rise to extremal metrics, and a complete existence theory has so far only 
been worked out in the 2-dimensional case. We will discuss this briefly in 
Section 6.7, where we study the algebro-geometric side of the problem. 





Moment Maps and 
Geometric Invariant 
Theory 

Chapter 5 

The main result in this chapter is the Kempf-Ness theorem, which relates 
quotient constructions in symplectic and algebraic geometry. When a com­
pact group G acts by Hamiltonian isometries on a Kahler manifold M, then 
there is a moment map µ : M -+ g* to the dual of the Lie algebra. The 
Kempf-Ness theorem characterizes those orbits Ge · p of the complexified 
group which contain zeros of the moment map in terms of algebro-geometric 
stability. In symplectic geometry quotients are constructed by taking the 
G-quotient of µ-1(0), while in algebraic geometry the quotient parametrizes 
the stable orbits and the Kempf-Ness theorem implies that the two quotient 
constructions give the same result. 

Stability can be tested using the Hilbert-Mumford criterion discussed in 
Section 5.3, and this will be a motivation for the definition of K-stability in 
the next chapter. For a much more thorough treatment of this subject see 
Mumford-Fogarty-Kirwan [85], or see Thomas [109] for an exposition with 
extremal metrics in mind. 

5.1. Moment maps 

Let (M,w) be a compact Kahler manifold with Kahler metric g. We could 
work more generally with a symplectic manifold, but it is convenient to have 
the Kahler structure. The Hamiltonian construction assigns a vector field 

-85 
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Xh on M to any smooth function h: M--+ R satisfying 

dh(Y) = -w(Xh, Y) = -txhw(Y), 

where txh is the contraction with Xh (contracting the first component). In 
terms of the metric g we have dh(Y) = -g(JXh, Y), so 

xh = Jgradh, 

using the Riemannian gradient. 

Lemma 5.1. We have Lxhw = 0, where Lxh is the Lie derivative. In 
other words the one-parameter group of diffeomorphisms generated by Xh 
preserves the form w. 

Proof. The Lie derivative satisfies the formula 

Lxhw = d(txhw) + txhdw. 

This can be checked easily for 2-forms of the type f dg /\ dh and extended 
to arbitrary 2-forms by linearity. Since dw = 0, we have 

Lxhw = d(-dh) = 0, 

using that txh = -dh. D 

Note that while Xh preserves w, it does not preserve the metric g in 
general unless Xh is a real holomorphic vector field (i.e. Lxh J = 0 for the 
complex structure J). 

Suppose now that a connected Lie group G acts on M, preserving the 
form w. The derivative of the action gives rise to a Lie algebra map 

p : g --+ Vect(M), 

where g is the Lie algebra of G and Vect(M) is the space of vector fields on 
M. Roughly speaking, the action of G is called Hamiltonian if each of the 
vector fields in the image of p arises from the Hamiltonian construction. 

Definition 5.2. The action of G on M is Hamiltonian if there exists a 
G-equivariant map 

µ: M--+ g* 

to the dual of the Lie algebra of g such that for any e E g the function (µ, e) 
is a Hamiltonian function for the vector field p( e): 

d(µ,e) = -w(p(e), ·). 

The action of G on g* is by the coadjoint action. The map µ is called a 
moment map for the action. 
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Equivalently, the action is Hamiltonian if there is a G-equivariant lift 
m: g--+ C 00 (M) of the map p, where G acts on g by the adjoint action. In 
the diagram below, Ham refers to the Hamiltonian construction: 

C00(M) 

,, j 
,''~,,,,'' 1!8Jll 

, 
g --p---+ Vect(M). 

For any given Hamiltonian vector field X the possible lifts to C00 ( M) 
all differ by addition of constants. The G-equivariance requires a consistent 
choice of such lifts. In practice this is usually easily achieved by choosing a 
"natural" normalization for the Hamiltonian functions, for example requir­
ing them to have average zero if M is compact. On the other hand there 
are cases when the G-equivariance cannot be achieved. 

The moment map is important in constructing quotients of symplectic 
manifolds. In the above set-up, with a Hamiltonian action of G on Mand a 
choice of moment mapµ, the symplectic quotient is defined to be µ- 1(0)/G. 
If the action of G on µ- 1(0) is free, then this quotient inherits a natural 
symplectic structure from M. If M is Kahler and the group G acts by 
isometries, then the quotient will inherit a Kahler structure. The basic idea 
is that at x E µ- 1(0) the tangent space Txµ- 1(0) is the kernel of dµx, but 
from the definitions this is the orthogonal complement ( JTxGx )..L, where Gx 
is the G-orbit of x. We therefore have an identification 

Tx (µ-1(0)/G) = (TxGx Ea JTxGx)..L. 

This is a complex subspace of TxM, and the restrictions of the complex 
structure and the symplectic form define the Kahler structure on µ- 1(0)/G. 
For more details on this see McDuff-Salamon [84]. 

Example 5.3. Consider the action U(l) r+ C, by multiplication, and let 
w = A.dz/\ dz = 2dx /\ dy be the standard Kahler form on C. The action 
is generated by the vector field 

so 

{) {) 
X=x--y-, 

{)y ox 

1,xw = -2xdx - 2ydy. 

So h = x2 + y2 satisfies dh = -1,xw. In other words, 

µ(z) = lzl2 
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is a moment map for this action, after a suitable identification of u(l)* with 
R. Other moment maps are given by µ(z) + c for any c ER. 

Example 5.4. Generalizing the previous example, let U(n) r+ en be the 
standard action. For any given A E u( n) which generates a circle action, 
we can diagonalize A and apply the result of the previous example to each 
factor of e. If A is diagonal with eigenvalues A>.i for Ai E Z, then a 
Hamiltonian function.for the vector field XA generated by A is given by 

z = (zi, ··.,Zn) i--t >.1lz112 + · · · + >-nlznl2 = -Hzt Az. 

The same formula then holds for any A. This means that a moment map 
for the action is given by 

µ : en --+ u(n)* 

(zi, ... , Zn) 1--t HZiZj, 

where HziZj defines a matrix in u(n), and we identify u(n)* ~ u(n) using 
the pairing (A, B) = -Tr(AB). 

Example 5.5. Consider now the action U ( n + 1) r+ epn, which preserves 
the Fubini-Study form. epn is obtained from en+i as a symplectic quotient, 
with respect to the diagonal action of U(l). More precisely, we choose the 
moment map 

z i--t lzl2 - 1 

for this U ( 1 )-action on en+i. Then 

epn = ( {lzl2 - 1 = O} c en+i)/U(l), 

and the Fubini-Study form is the induced form on this quotient. The mo­
ment map on epn is therefore the moment map on en+i restricted to the 
subset where lzl2 = 1. So we obtain the moment map 

µ: epn--+ u(n + 1)* 

HZiZj 
[Zo : Z1 : .. · : Zn] i--t IZl2 

Here again u(n + 1) is identified with its dual using the pairing -Tr(AB). 
If we restrict the action to SU ( n + 1), then the resulting moment map µsu 
is just the projection ofµ onto .su(n + 1), i.e. 

HZiZj A 
µsu([Zo : ... : Zn]) = 1z12 - n + 1 Id, 

where Id is the identity matrix. We can view epn as a coadjoint orbit in 
su(n + 1)*, and then µsu is the identity map. 
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Example 5.6. Consider the diagonal action SU(2) r+ SymnCP1 on un­
ordered n-tuples of points on CP1. We can identify .su(2)* with R 3, and 
CP1 with the unit sphere in R 3 (as a coadjoint orbit). Under these identi­
fications a moment map for the action is given by 

µ: Symncp1 -t R 3 

µ(xi, . .. , Xn) = X1 + · · · + Xn. 

This means that zeros of the moment map are given by n-tuples of points 
whose center of mass is the origin. 

Example 5. 7. Recall that in Section 4.5, for a strictly convex function 
f : Rn -t R we defined a Kahler metric 

on the complex torus Tc, where wJ = !xi + .,f~f.(}i. The (81 )n-action is 
generated by the vector fields 88;, and we can compute 

82/ k 
ia(Ji w = - L:: axiaxk dx . 

k 

It follows that a moment map for the (81 r-action is given by the gradient 
map 

'VJ: Rn -t Rn. 

In other words the domain of the Legendre transform of f is the image of the 
moment map. If, as in Section 4.5, the torus Tc is a dense open subset of a 
compact Kahler manifold ( M, w) such that the torus action extends to all of 
M, then '\! f is the restriction to Tc of a moment map µ : M -t Rn for the 
(81 r-action, where Rn is identified with the dual of the Lie algebra. Note 
that it is a general result due to Atiyah [6] and Guillemin-Sternberg [62] 
that the image of the moment map for any Hamiltonian torus action on a 
compact symplectic manifold is a convex polytope, which is the convex hull 
of the images of the fixed points of the action. 

Exercise 5.8. Let Mn be the set of n x n complex matrices equipped with 
the Euclidean metric under the identification Mn = cn2 • The unitary ma­
trices U(n) act on Mn by conjugation, preserving this metric. I.e. A E U(n) 
acts by M H A-1 MA. Find a moment map 

µ:Mn -t u(n)* 

for this action (normalize it so that µ(O) is the zero matrix). 



90 5. Moment Maps and Geometric Invariant Theory 

5.2. Geometric invariant theory (GIT) 

Suppose that M c cpn is a projective variety (see below for definitions) 
and a complex Lie group G c GL(n+ 1, C) acts on M by biholomorphisms. 
More invariantly we could take a compact complex manifold M together 
with an ample line bundle L on it and an action of G on M together with a 
lifting of the action to L. The Kodaira embedding theorem implies, however, 
that up to replacing L by a power, this is the same as the more concrete 
situation above. 

Geometric invariant theory gives a way of constructing a quotient M / G 
which is also a projective variety. The basic idea is that M/G should be 
characterized by the requirement that 

"functions on M/G" = "G-invariant functions on M". 

Example 5.9. Before giving more precise definitions, let us look at a simple 
example that illustrates some of the ideas, although it does not fit precisely 
into the framework that we are considering since here we are working with 
affine varieties instead of projective ones. Suppose that C* acts on C 2 with 
the action 

A· (x,y) = (.Xx,.X-1y). 

There are three types of orbits: 

(i) xy = t fort f:. 0. These are closed I-dimensional orbits. 

(ii) x = y = 0. This is a closed 0-dimensional orbit. 

(iii) x = 0, y f:. 0, or x f:. 0, y = 0. These are two I-dimensional orbits 
whose closures contain the origin. 

The orbit space is not Hausdorff because the closure of the orbits of type 
(iii) contain the orbit (ii). However if we discard the non-closed orbits (iii), 
then the remaining orbits are parametrized by C. In terms of functions, the 
C* -invariant functions on C 2 are 

C[x, yf* = C[xy] ~ C[t], 

and so the space of functions of the quotient should be C[t]. Therefore the 
quotient C 2 /C* from this point of view should also be C. Looking ahead 
a little, this example also illustrates the relationship with the moment map 
very clearly. The action of the maximal compact subgroup U(l) c C* on C 2 

is Hamiltonian with respect to the standard symplectic form, and a moment 
map is given by (see Example 5.4) 

µ(x, Y) = lxl2 - IYl 2· 

The symplectic quotient µ-1(0)/U(l) also equals C, and µ-1(0) intersects 
each closed orbit of C* in a U(l)-orbit. See Figure 5.1. 
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y 

Figure 5.1. The orbits of C* n, C 2 and zeros ofµ. 

In order to define the GIT quotient in general, we need a quick review 
of some basic ideas in algebraic geometry. 

Definition 5.10. (a) A projective variety X c cpn is the zero set of a col­
lection of homogeneous polynomials Ji, ... , fk, which is irreducible, 
i.e. it cannot be written as a non-trivial union of two such zero sets. 

(b) The homogeneous coordinate ring of X is the graded ring (graded 
by degree) 

R(X) = C[xo, ... , xn]/ I, 

where I is the ideal generated by the homogeneous polynomials 
vanishing on X. Since X is irreducible, the ideal I is prime (i.e. if 
Jg E I, then f EI or g E I). Equivalently the ring R(X) has no 
zero-divisors. 

Conversely any homogeneous prime ideal I c C[xo, ... , Xn] gives rise to 
a projective variety as long as I i= (xo, ... , xn) (in which case the zero set 
would be empty). The Nullstellensatz in commutative algebra implies that 
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there is a one-to-one correspondence 

{ 
homo.geneous prime ]ideals} {projective subvarieties} 

m C[xo, ... ,Xn +---+ n · 
ofCP 

except (xo, ... , Xn) 

It is often convenient to work on the level of functions and forget the way 
that our variety is embedded in projective space. The correspondence in 
this case is 

{ 
finitely generated graded C-algebras,} { . . } 

proJecbve 
( 5 .1) generated in degree 1, +---+ . . , 

var1et1es 
without zero-divisors 

although to make this correspondence one-to-one, we would have to de­
fine equivalence relations on both sets. In this correspondence a projective 
variety is mapped to its homogeneous coordinate ring. For the converse 
direction, if Risa finitely generated graded C-algebra, generated in degree 
1, then there is a surjective grading-preserving map 

C[xo, ... , Xn] ---+ R 

mapping each Xi to a degree 1 generator. If I is the kernel of this map, then 

C[xo, ... , Xn]/ I ~ R, 

and I is prime since R has no zero-divisors. The vanishing set of the homo­
geneous elements in I is the projective variety X c cpn corresponding to 
R. Let us call this projective variety Proj(R). 

Remark 5.11. In the theory of schemes, the above correspondences are 
extended by allowing arbitrary homogeneous ideals as opposed to just prime 
ideals, and correspondingly, arbitrary finitely generated C-algebras, not just 
those without zero-divisors (even more generally one does not need to work 
over a field, but we do not need this fact). We will see later how these 
schemes arise naturally and how we can think of them geometrically. 

With this background we can proceed to define the GIT quotient. 

Definition 5.12. A complex Lie group G is reductive if it is the complex­
ification of a maximal compact subgroup K c G. For example GL(n, C) 
is reductive with maximal compact subgroup U ( n). In particular the group 
C* is reductive with maximal compact subgroup U(l). On the other hand 
the additive group C is not reductive since it has no non-trivial compact 
subgroups at all. 

Suppose that a complex reductive group G acts on a projective variety 
x c cpn and the action is induced by a representation 

G---+ GL(n + 1, C). 
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Through the dual action on C[xo, ... , xnJ, this induces an action of G on 
the homogeneous coordinate ring R(X). Using that G is a reductive group, 
one can show that the ring of invariants R(X)G is finitely generated. Let us 
write 

R(X)G = E9 R(X)f, 
k~O 

where R(X)f is the degree k piece. To get a projective variety, we would 
like to replace R(X)G with a C-algebra which is generated in degree 1. For 
this, one shows that there is a d > 0 such that the subalgebra 

R(X)G = E9 R(X)fd 
k~O 

is generated by elements in R(X)~. Changing the grading so that R(X)fd 
is the degree k piece in R(X)G, we obtain a C-algebra generated in degree 
1, and we define the GIT quotient to be 

XII G = ProjR(X)a. 

Since R(X)G is a subalgebra of R(X), it has no zero-divisors, and so XII G 
is a projective variety. 

While this definition is very simple (at least once the correspondence 
(5.1) has been established), it is unclear at this point what the quotient 
X II G represents geometrically. To understand this, let us choose degree 1 
generators Jo, ... , fk of R(X)G and look at the map 

q: x --+ cpk 
P 1-7 [fo(p), .. ·, fk(p)], 

which is only defined at points p E X at which there is at least one non­
vanishing G-invariant function in R. Then the image of q is XII G, and q is 
the quotient map. The main points are therefore the following: 

(i) The quotient XII G parametrizes orbits on which there is at least 
one non-vanishing G-invariant function in R. 

(ii) The quotient map q: X --+XII G identifies any two orbits which 
cannot be distinguished by G-invariant functions in R. 

This motivates the following definitions. 

Definition 5.13. The set of semistable points X 88 c Xis defined by 

X = pEX . 
88 { there exists a non-constant homogeneous f E R(X)G} 

such that f (p) =/= 0 
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The set of stable points xs c xss is defined by 

xs = p E xss . . . . { 
the stabilizer of p in G is finite } 

and the orbit G ·pis closed m X 88 

Both X 8 ,X88 are open subsets of X. The GIT quotient XII G can be 
thought of as the quotient of xss by the equivalence relation that p,..., q if 
G · p n G · q is non-empty in X 88 • The role of the stable points xs is that 
G has closed orbits on xs, so a "geometric quotient" X 8 /G exists, and this 
sits inside the GIT quotient XII G. 

5.3. The Hilbert-Mumford criterion 

Let us suppose as in the previous sections, that a complex reductive group 
G c GL(n + 1, C) acts on a projective variety X c cpn, where the action 
is induced by the natural action on cpn. In this section we will discuss a 
criterion for determining whether a given point p E X is stable or semistable. 

For any p EX, let us write p E cn+l \ {O} for a lift of p with respect to 
the projection map cn+i \ {O}--+ CPn. We will write G · x for the G orbit 
of x in cn+l, 

Proposition 5.14. (a) A point p EX is semistable if and only ifO f/. G · p. 
(b) A point p E X is stable if and only if the orbit G · p is closed in 

cn+i and the stabilizer of p in G is finite. 

Sketch of proof. (a) If p EX is semistable, then there is a homogeneous 
G-invariant polynomial f of positive degree which does not vanish 
at p. The G-invariance implies that f is a non-zero constant on the 
orbit closure G · p, so the origin cannot be in this closure. 

Conversely if 0 f/. G · p, then one can show that there exists a 
G-invariant homogeneous polynomial f distinguishing the disjoint, 
closed, G-invariant sets 0 and G · p. This polynomial f does not 
vanish at p, so p is semistable. 

(b) Suppose first that p E X is stable. If G · p is not closed, then 
the closure contains another orbit G · q, for some q E G · p. Then 
necessarily q E X, and q is semistable. This contradicts the fact 
that the orbit of pin xss is closed. 

Conversely suppose that G · p is not closed in X 88 , and let 
q E G · p n xss such that q f/. G · p. Then there is a non-constant 
homogeneous G-invariant polynomial f which does not vanish at p 
and q, and we can assume that f = 1 on G · p and G · q. From this 
one shows that the closure of G · p contains G · q and in particular 
G · p is not closed. D 
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Since we will need it later, we define a third notion of stability at this 
point. 

Definition 5.15. A point p E X is polystable if the orbit G · p is closed. 
Note that stable => polystable => semistable but the converses are false in 
general. We will see later that the closure of every semistable orbit contains 
a unique polystable orbit. In other words the GIT quotient X // G can be 
thought of as parametrizing the polystable orbits. 

The Hilbert-Mumford criterion essentially says that in order to check 
whether an orbit G·p is closed, it is enough to check this for all one-parameter 
subgroups C* c G. In practice this is very useful since the action of a one­
parameter group can always be diagonalized, and this makes it possible to 
do some explicit calculations. In addition the Hilbert-Mumford criterion 
will motivate the definition of K-stability. 

Definition 5.16. Suppose that A : C* Y G is a one-parameter subgroup. 
For any p EX, define the weight µ(x, .X) as follows. First, let q EX be the 
limit 

q = lim.X(t) · p 
t--+0 

(we will see below that this limit exists). The point q is necessarily fixed 
by the one-parameter subgroup .X, so there exists an integer w such that 
.X(t) · q = twq for all t. We define µ(p, .X) = -w. 

A useful way to think of this is the following. Given a one-parameter 
subgroup of G acting on cn+i, we can write cn+l as a sum of weight spaces 

k 

cn+i = E9 V(wi), 
i=l 

where each Wi is an integer, .X(t) · v = twiv for v E V(wi), and k :::;; n + 1. 
We can arrange that w1 < w2 < · · · < wk. Given p E X, we can write 
p =Pl+···+ Pk, where Pi E V(wi)· If l is the smallest index for which Pl 
is non-zero, then the limit q = limt--+O .X(t) ·pis obtained by letting q =Pl· 
Then µ(p, .X) = -w1. 

Theorem 5.17 (Hilbert-Mumford criterion, (85, Theorem 2.1]). 

(a) p EX is semistable ~ µ(p, .X) ;;:: 0 for all one-parameter subgroups 
.X. 

(b) p EX is polystable ~ µ(p, .X) > 0 for all one-parameter subgroups 
A for which lim .X(t) · p ¢ G · p. 

t--+0 
(c) p EX is stable~ µ(p, .X) > 0 for all one-parameter subgroups .X. 
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Remarks on the proof. One direction of the result is fairly straightfor­
ward. For instance for part (a) suppose that.Xis a one-parameter subgroup 
such that µ(p, .X) < 0. Following the discussion before the theorem, we can 
write p = PI + · · · +Pk in terms of the weight spaces of .X. Then 

.X(t) · P = tw1p1 + · · · + twkpk, 

and µ(p, .X) < 0 means that the smallest weight Wi for which Pi =/:- 0 is 
positive. This means that .X acts on p with only positive weights, and so 

lim.X(t) · p = 0. 
t-+0 

Therefore 0 E G · p, and so p cannot be semistable. 

The difficult part of the theorem is to show the converse. One method is 
to reduce the problem to the case of a torus action, for which the statement 
can be checked directly (see Exercise 5.21). . D 

Example 5.18. This example is the algebro-geometric counterpart to Ex­
ample 5.6, where we looked at the action of SU(2) on n-tuples of points on 
CP1. Let 

Vn = {homogeneous degree n polynomials in x, y} ~ cn+1, 
and let X = P(Vn)· By identifying a polynomial with its zero set on CP1, 

we can think of X as the space of unordered n-tuples of points on CP1. 

The group SL(2, C) acts on Vn by 

(M · P)(x, y) = P(M-1(x, y)), 

where M E SL(2, C), P E Vn, and M-1(x, y) is the standard action of 
SL(2, C) on C2 • In terms of n-tuples of points, this action corresponds to 
moving the points around on CP1, using the usual action of SL(2, C) on 
CP1. 

Let us determine the stable points for this action. Let .X be a one­
parameter subgroup of SL(2, C). We can choose a basis u, v for C2 such 
that in this basis .X is given by 

( tw 0 ) 
.X(t) = 0 rw , 

for some integer w > 0. The induced action on a polynomial P( u, v) = 
aoun + a1un-lv + · · · + anvn is 

(.X(t). P)(u, v) = cnwaoun + t-(n-2)wa1un-1v + ... + tnwanvn. 

Writing [P] E P(Vn) for the point in projective space corresponding to P, 
we have 

[.X(t). P] = [cnwaoun + ... + tnwanvn] 

= [akun-kvk + t2wak+lun-k-lvk+l + ... + t(2n-2k)wanvn], 
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where k is the smallest index for which ak =f 0. Therefore 

lim[.X(t) · P] = [akun-kvk]. 
t--+0 

Since 

.X(t). (akun-kvk) = t2k-nakun-kvk, 
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we have µ([P], .X) = n - 2k. By the Hilbert-Mumford criterion we need 
k < n/2 for [P] to be stable. Since k was the smallest index for which 
ak =f 0, this means that P is not divisible by vn/2, i.e. in terms of the n­
tuple of zeros of P, the point [1 : OJ has multiplicity less than n/2. Choosing 
different one-parameter subgroups amounts to looking at different points, 
so we obtain that an n-tuple of points is stable if and only if no point is 
repeated n/2 times. 

In a similar way one can determine that an n-tuple is semistable if and 
only if no point is repeated more than n/2 times. Finally an n-tuple is 
polystable if either it is stable or it consists of just 2 points with multiplicity 
n/2. If n is odd, then all three notions of stability coincide. 

Recall that in Example 5.6 we saw that if we look at the action of SU(2) 
on such n-tuples on CP1 , then zeros of the moment map are those n-tuples 
of points whose center of mass is the origin (thinking of CP1 as the unit 
sphere 8 2 c R 3). The Kempf-Ness theorem which we will discuss in the 
next section implies that an n-tuple is polystable if and only if its 8£(2, C)­
orbit contains a zero of the moment map. In other words we can move an 
n-tuple of points on CP1 into a balanced position (with center of mass the 
origin) by an element in 8£(2, C) if and only if no n/2 points coincide or 
then-tuple consists of just two points with multiplicity n/2. One direction 
of this is clear: if too many points coincide, then we certainly cannot make 
the center of mass be the origin. 

5.4. The Kempf-Ness theorem 

Suppose now that M c cpn is a projective submanifold with a complex 
group G c GL(n + 1, C) acting on M. Let K = G n U(n + 1), and assume 
that K c G is a maximal compact subgroup. This means, on the level of 
Lie algebras, that 

Recall that 
µu: cpn--+ u(n + 1)* 

AZiZj 
[Zo : ... : Zn] r-+ 1z12 
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is a moment map for the U ( n + 1 )-action on cpn. The restriction of this 
to M, projected to !*, is a moment map 

µ:M-7!* 

for the action of K on M, with respect to the symplectic form given by the 
restriction of the Fubini-Study metric to M. Recall also that for p E M we 
let p E cn+i \ { 0} be a lift and say that p is polystable for the action of G 
if the G-orbit G · p c cn+i is closed. 

Theorem 5.19 (Kempf-Ness, [85, Theorem 8.3]). A point p E M is poly­
stable for the action of G if and only if the orbit G · p contains a zero of the 
moment mapµ. Moreover if p is polystable, then G · p n µ-1(0) is a single 
K-orbit. 

Sketch of proof. Let us introduce the function 

M:G/K-7R 

[g] t-+ log Jg· 'Pl2 , 

where I · I is the Euclidean norm on cn+l and [g] denotes the coset gK. 
Note that since K c U ( n + 1), the K-action preserves the norm, so M is 
well-defined. 

The space G / K can be endowed with a Riemannian metric, so that it is 
a non-positively curved symmetric space. The geodesics are given by one­
parameter subgroups [etAegJ fore E ! and g E G. The two main points 
are the following: 

(i) [g] is a critical point of M if and only if µ(g · x) = 0. 

(ii) Mis convex along geodesics in G/K. 

The orbit G · p is closed precisely when the norm Jg · 'Pl goes to infinity as 
g goes to infinity, and this corresponds to the function M being proper. 
Because of the convexity, this happens exactly when M has a critical point. 

To see (i), we need to compute the derivative of M. Fix a g E G and 
write g · p =Zand choose a skew-Hermitian matrix A Et We have 

(5.2) 

~1 M(etAAg) = ~1 log JetAAg. 'fJl2 
dt t=O dt t=O 

= 

-J=IzT:lfZ + J=l(AZ)Tz 
1z12 

2J=lZTAZ 

1z12 
= -2(µ(g · p), A), 
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where we used that A is skew-Hermitian and we are using the pairing 
(A, B) = -Tr(AB). It follows that [g] is a critical point of M if and only if 
µ(g. p) = o. 

To see {ii) we need to compute the second derivative: 

(5.3) 
d22 I M(etv'-IAg) = -2 .!!:_I (µ(etv'-IAg. p), A) 
dt t=O dt t=O 

= 2gps(A9 .p, A9.p) ;;:: 0, 

where 9FS is the Fubini-Study metric restricted to Mand by A9 .p we mean 
the tangent vector at g · p induced by the infinitesimal action of A. D 

Exercise 5.20. With the notation of Exercise 5.8, note that GL(n, C) also 
acts on Mn by conjugation (it does not preserve the metric though). 

(a) Identify the closed orbits of this action. 

(b) By the Kempf-Ness theorem, every closed GL(n, C)-orbit contains 
a U(n)-orbit of zeroes of the moment mapµ. What linear algebra 
statement does this correspond to? 

Exercise 5.21. Suppose that the torus T = (C*)k acts on a vector space 
V with an induced action on P(V). Decompose V into weight spaces 

v = E9v(e), 
~ 

where e Et*. For eachp E P(V) we can define the weight polytope A(p) ct* 
by 

A(p) = span{e Et* : p EV has non-zero component in V(e)}, 

where p E V is any lift of p. We have the following. 

(a) pis stable if and only if A(p) contains the origin in its interior. 

(b) p is semistable if and only if 0 E A (p). 

( c) p is polystable if and only if the origin is contained in the relative 
interior of A(p) (relative to the affine subspace spanned by A(p)). 

(d) Deduce the Hilbert-Mumford criterion for torus actions. 

(e) Let H ct* denote the affine subspace spanned by A(p). Then pis 
relatively stable if and only if the projection of the origin onto H 
(using the metric used in taking the norm of the moment map) is 
in the relative interior of A(p). 

( f) The weight polytope A (p) is the image of the moment map for the 
action of the compact torus (81 )k restricted to the T-orbit of p. 
Use this to verify the Kempf-Ness theorem for torus actions. 



100 5. Moment Maps and Geometric Invariant Theory 

In the next chapter we will see that the scalar curvature of a Kahler 
metric arises as the moment map for an infinite-dimensional Hamiltonian 
action. By comparing formula (5.2) to the variation (4.2) of the Mabuchi 
functional, we see that the function M is the finite-dimensional analog of 
the Mabuchi functional from Section 4.3. There is also an analog of the 
Futaki invariant, given as follows. For p EM, let Gp c G be the stabilizer 
of p, and let gp be its Lie algebra. The group Gp acts on the line spanned by 
p, and we denote the infinitesimal action by the Lie algebra homomorphism 

F: gp--* C. 

We can compute F in terms of the moment map. Writing Z = p again, if 
A E gp, then AZ = F(A)Z by definition. Then 

-J-lZT AZ 
(µ(p), A)= 1z12 = -HF(A), 

so 

(5.4) F(A) = H(µ(p), A). 

This formula should be compared with definition ( 4.1) of the Futaki invariant 
in order to see the analogy. 

Remark 5.22. If we have a Hamiltonian action K riv (M,w), then the 
choice of equivariant moment map µ : M --* t* is only unique up to adding an 
element in the center of t*. The symplectic quotient in turn depends on the 
choice of moment map. On the algebraic side, if K acts by biholomorphisms 
and L--* Mis a Hermitian line bundle with curvature form 27rw, then the 
ambiguity in the choice of a moment map corresponds to a choice in how we 
lift the action of K (and its complexification G) to the space of sections of 
Lk. In Section 5.2 this choice is fixed by thinking of our group as a subgroup 
of GL(n+ 1, C). More generally it would be enough to have a representation 
G --* GL(n + 1, C), lifting the action of G on M, which corresponds to a 
map G --* PGL(n + 1, C). A lift of the G action to the sections of Lk is 
called a linearization of the action. 

In the Kempf-Ness theorem it is crucial that the choice of moment map is 
consistent with the choice of linearization. More invariantly this consistency 
can be expressed as follows. Suppose that e E ! induces the holomorphic 
Hamiltonian vector field v on M with Hamiltonian function given by H = 
(µ, e). Then the induced (dual) action on H0(M, L) is given by 

(5.5) e · s = \I _vs - 27rHH s. 

A calculation shows that this is consistent with our choice of moment map 
for U(n + 1) acting on CPn. 
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5.5. Relative stability 

Suppose that we are in the setting of the Kempf-Ness theorem, but in the 
more invariant formulation of Remark 5.22. Thus we have a Kahler manifold 
(M,w) together with an ample line bundle L--+ M with c1(L) = [w]. We 
assume that we have a Hamiltonian action of a compact Lie group K on 
(M,w) with moment mapµ: M--+ e* and that the complexified action of 
G =Kc has a lift to the total space of L. 

The Kempf-Ness theorem characterizes orbits of the complexified group 
G that contain zeros of the moment map in terms of stability. In the study 
of extremal metrics it will be necessary to extend this to complex orbits 
which contain critical points of the norm squared 11µ11 2 of the moment map. 
In this section we will extend the Kempf-Ness theorem to characterize these 
orbits, following [67] and [107]. 

In order to define the norm squared of µ, we need to choose an inner 
product (·, ·) on t which is invariant under the adjoint action. Using this 
inner product we obtain an identification t ~ t* and so we can think of the 
moment map as µ : M --+ t 

Lemma 5.23. A point pis a critical point of 11µ11 2 if and only if the element 
µ(p) E t is in the stabilizer of p. 

Proof. We have 

d(µ, µ)(p) = 2(dµ(p), µ(p)) = -2wp(p(µ)(p), ·), 

where p : t --+ Vect(M) is the infinitesimal action. Since the symplectic 
form is non-degenerate, we find that p is a critical point if and only if 
p(µ)(p) = 0. D 

We will also need the following, which is analogous to Lichnerowicz's 
result, Proposition 4.18, on the automorphism group of a cscK manifold. 

Lemma 5.24. Suppose that µ(p) = 0. Then the stabilizer gp is the com­
plexification of the stabilizer tp. 

Proof. Let us write p : t E9 it = g --+ TpM for the infinitesimal action and 
J for the complex structure on M. If e, T/ E t, then we have 

IP(e + iry)l 2 = wp(p(e + iry), J p(e + iry)) 
= wp(P(e) + J p(ry), J p(e) - p(ry)) 

= IP(e)l2 + IP("l)l2 - 2wp(P(e), p(ry)) 

= IP(e)12 + IP(T/)12 + 2(dµp(p(ry)), e) 

= IP(e)l2 + IP(T/)1 2 + 2([ry,µ(p)J,e), 
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where we used the equivariance of the moment map in the last step. Since 
we are assuming that µ(p) = 0, it follows that 

IP(e + i11)l 2 = IP(e)l 2 + IP(11)1 2• 

In particular whenever e + i77 E gp, we have e, 1J E tp, which is what we 
wanted to prove. D 

For the action of a subgroup H c K a natural moment map 

is given by composingµ : M -+ t with the orthogonal projection t -+ ~· 

The idea in the definition of relative stability is that if ~ is orthogonal to the 
stabilizer of p and pis a critical point of 11µ11 2, then it follows that µH(P) = 0 
and we can apply the Kempf-Ness theorem. It turns out that instead of the 
whole stabilizer of pit is better to work with a maximal torus Tc Kp. Let 
t c tp be its Lie algebra. We then define the subalgebra 

trJ_ = {e Ee: [e,11J = o, (e,11) = o for all 11 Et} 

and let gr.L be its complexification. One can show that these subalgebras 
correspond to closed subgroups of K, G (see Lemma 1.3.2 in [106]) which 
we will denote by KrJ., GrJ.. With these definitions we have the following. 

Theorem 5.25. Suppose that the complexification Tc is a maximal torus in 
the stabilizer Gp. Then the G-orbit of p contains a critical point of 11µ11 2 if 
and only if p is GIT stable for the action of Gr.L. 

Proof. Assume first that pis stable for the action of Gr.L. The Kempf-Ness 
theorem implies that there is a point q E Gr.L · p such that 

where µT.L is the projection ofµ onto tr.L. Since elements in GrJ. commute 
with T and T C Kp, we know that T fixes q as well. Since the moment map is 
K-equivariant, it follows that µ(q) commutes with t. Since the projection of 
µ(q) orthogonal tot vanishes, it then follows that µ(q) Et, and in particular 
µ(q) is in the stabilizer of q. By Lemma 5.23 it follows that q is a critical 
point of 11µ11 2 . 

Now suppose that q = g-1p is a critical point of 11µ11 2 for some g E G. 
We define a new symplectic form w = (g-1 )*w, which is invariant under the 
action of the compact group K = gKg-1• A moment map for the action of 
K on (M, w) is given by 

'ji,(x) = Ad9µ(g- 1x) E Ad9t, 
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- -where we identify the Lie algebra t of K with Ad9 t. In particular, by the 
invariance of the inner product, we have 

lli£(x)ll2 = llµ(g-1x)ll 2 · 

It follows that pis a critical point of lli£11 2, and so ji(p) E tp by Lemma 5.23. 
The equivariance of the moment map implies that J:i(p) is in the center of the 
stabilizer of p, so if T C Kp is any maximal torus, then we have ji(p) E 1. It 
follows that the projection of ji(p) onto 'if.L vanishes, so by the Kempf-Ness 
theorem.! is stable for the action of Gf.L. The remaining problem is to 
replacer with the original maximal torus r c Kp. 

For this last step we first note that re is a maximal torus in Gp. Indeed 
we have seen that pis stable for the action of Gf.Li so Lemma 5.24 implies 
~at the stabilizer of p in Gf.L is the c~mpl~ification of its stabilizer in 
Kf.L. The latter is trivial, using that T c Kp is a maximal torus, so it 
follows that p has trivial stabilizer in Gf.L. The Lie algebra of Gf.L is 

(5.6) gf.L = {e E g : [e, 17] = 0, (e, 17) = 0 for all 17 Et}, 

and so it follows that the elements in the stabilizer gp that commute with T 
are all contained in Tc. This means that fc is a maximal torus in Gp. 

By our assumption re is also a maximal torus in Gp, so there is an 
element h E Gp such that re= hTch-1. It follows that 

Gr.L = hGf.L. 

It is then clear from Proposition 5.14 that the stability of p for the action 
of Gf.L implies the stability for the action of Gr.L. D 

From the last part of the proof it is clear that the compact group K 
does not play a role in stability for the action of Gr.L, but rather we simply 
need a maximal torus r C Gp, and we look at stability for the action of the 
group Gr.L with Lie algebra defined just as in equation (5.6). The difference 
is that here r is a complex group. This leads to the following definition. 

Definition 5.26. A point p is relatively stable for the action of G if p is 
stable for the action of Gr.L, where r c Gp is any maximal torus. By 
Theorem 5.25 this is equivalent to saying that the orbit G · p contains a 
critical point of 11µ11 2. 

Example 5.27. Let us examine the diagonal action of SU(2) n.. SymnCP1 

from Example 5.6 again. As before, a moment map for the action is given 
by 

µ(xi, ... , Xn) = XI + ... + Xn, 

where CP1 is identified with the unit sphere in R 3 as a coadjoint orbit. We 
furthermore identify R 3 with its dual using the Euclidean inner product. In 



104 5. Moment Maps and Geometric Invariant Theory 

terms of this identification a vector e E R 3 = .su(2) corresponds to rotation 
of CP1 about the axis spanned by e. It follows from Lemma 5.23 that 
critical points of 11µ11 2 in this case are those n-tuples (x1, ... , xn) which are 
concentrated at two antipodal points, in addition to the zeros of the moment 
map. The relatively stable n-tuples, which are not stable, are then simply 
those n-tuples that are concentrated at two points. 

Exercise 5.28. Show that for an 8 1-action on cpn generated by a Hermit­
ian matrix A, the relatively stable points that are not zeros of the moment 
map correspond to the eigenvectors of A with non-zero eigenvalue. 



Chapter 6 

K-stability 

In this chapter we will first describe how the scalar curvature of a Kahler 
metric arises as a moment map for an infinite-dimensional Hamiltonian ac­
tion. This not only sheds light on the developments in Chapter 4 but is 
also the motivation for the notion of K-stability, as an analogous condition 
to the Hilbert-Mumford criterion in geometric invariant theory. The Cal­
abi functional becomes the norm squared of the moment map, and we will 
introduce relative K-stability in analogy with the results in Section 5.5. A 
computation with the ruled surface studied in Section 4.4 will illustrate the 
relation between relative K-stability and the existence of extremal metrics. 
We will conclude with a discussion of K-stability for toric manifolds, giving 
the algebro-geometric side of the development in Section 4.5. 

6.1. The scalar curvature as a moment map 

In this section we will see that the scalar curvature can be viewed as a 
moment map, as was discovered by Fujiki [53] and Donaldson [42]. We will 
only sketch the construction, but the details can be found in [42] and also 
in Tian [113]. 

Let ( M, w) be a symplectic manifold. This means that w is a closed, non­
degenerate 2-form. For simplicity we will assume that H 1(M, R) = 0. Recall 
that an almost complex structure on M is an endomorphism J : TM --+ TM 
such that J 2 = -Id, where Id is the identity map. We say that an almost 
complex structure J is compatible with w if the tensor 

9J(X, Y) = w(X, JY) 

is symmetric and positive definite, i.e. it defines a Riemannian metric. If J 
is integrable, then (M, J) is a complex manifold and the metric 9J is Kahler. -105 
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Define the infinite-dimensional space 

/={almost complex structures on M compatible with w}. 

The tangent space at a point J is given by 

{
A: TM -t TM such that AJ + JA = O} 

TJ / = and w(X, AY) = w(Y, AX) for all X, Y . 

If A E TJ /, then also J A E TJ /, and this defines a complex structure on 
/. We can also define an inner product 

(A, B)J = f (A, B)9J w~, 
}M n. 

for A, B E TJ /, which gives rise to a Hermitian metric on /. Combining 
these structures we have a Kahler form on /, given at the point J by 

OJ(A, B) = (JA, B)J. 

We now let 

r.f ={the group of Hamiltonian symplectomorphisms of (M,w)}. 

These are the time-one flows of time dependent Hamiltonian vector fields. 
Using the Hamiltonian construction, the Lie algebra Lie(r.f) can be identified 
with the functions on M with zero integral, C0 ( M). The group r.f acts on 
/ by pulling back complex structures, and this action preserves the Kahler 
form n. 
Theorem 6.1 (Fujiki [53] and Donaldson [42]). The action of r.f on/ is 
Hamiltonian, and a moment map is given by 

µ : / -t Lie(r.f)* 

J~ S(J)-S, 

where S(J) is the scalar curvature of gJ when J is integrable and S is the 
average of S(J), which does not depend on J. The function S(J) - S is 
thought of as an element of the dual of Lie(r.f) ~ C0 (M) through the L2 -

product on M. 

Note that if J is not integrable, then S(J) is the "Hermitian scalar 
curvature" of gJ, which is not the same as the Riemannian scalar curvature. 
In any case, the theorem means that finding constant scalar curvature Kahler 
metrics amounts to finding integrable J with µ( J) = 0. 

Let us unwind what it means for µ to be a moment map. For any J E / 

there are two linear operators 

P: C0 (M)-t TJ/, 

Q: TJ/ -t C0 (M). 
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The map Pis given by the infinitesimal action of Lie(~) on .J. This can be 
written as 

P(H) = LxHJ, 

where LxH is the Lie derivative with respect to the Hamiltonian vector field 
XH. The map Q is the derivative of the map taking J to the Hermitian 
scalar curvature of 9J, so we can write 

Q(A) = DSJ(A). 

To say that µ is a moment map simply means that for all A E TJ / and 
HE C[f(M) we have 

(Q(A), H)J = -OJ(P(H), A)= (JA, P(H))£2, 

where on the right we just have the £ 2-product on functions. In other words 
the theorem means that Q* =-JP for the adjoint Q* of Q. 

We can also see how extremal metrics arise in this picture. Namely, 
using the £ 2-product on the Lie algebra C[f(M), we have 

(6.1) llµ(J)ll 2 =JM (S(J) - S)2 wn, 

so the norm squared of the moment map agrees up to a constant with the 
Calabi functional from Chapter 4. In particular, extremal metrics are critical 
points of 11µ11 2• Lemma 5.23 in turn tells us that J is a critical point of 11µ11 2 

if and only if µ(J), thought of as an element of Lie(~), fixes the point 
J. In the notation above, this means that at the point J E / we have 
P(S(J) - S) = 0, i.e. 

LxscJJJ = 0. 

This equation expresses that the Hamiltonian vector field Xs(J), or equiva­
lently the gradient \1 S ( J), preserves the complex structure J, which is the 
same as the Euler-Lagrange equation for extremal metrics that we obtained 
in Theorem 4.2. 

Note that in earlier chapters we were always fixing a complex structure 
since we were working on a fixed complex manifold and we were varying the 
Kahler metric w. Now we seem to be doing something rather different, fixing 
the form w and varying the complex structure instead. These two points of 
view can be related to each other as follows. For any symplectic form w and 
compatible complex structure J let us write g( J, w) for the corresponding 
Kahler metric. If J, J' are two complex structures and J' = f* J for a 
diffeomorphism J, then 

(6.2) g(J',w) = J*g(J, u-l)*w). 

If f E ~, then this means that the metrics g( J, w) and g( J', w) are isometric. 
To obtain something non-trivial, we need to consider the complexification 
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<;fc of <if. While this complexified group does not exist, we can at least 
complexify the Lie algebra 

Lie(<i/c) = C0{M, C), 

and since / has a complex structure, we can also naturally complexify the 
infinitesimal action. This complexified infinitesimal action gives rise to a 
foliation on / whose leaves can be thought of as the orbits of <ifc. 

Claim 6.2. If J E / is integrable, then the <ifc-orbit of J (or rather just 
the orbit of the imaginary part of<ifc) can be identified with the set of Kahler 
metrics on (M, J) in the class [w]. 

To see this at an infinitesimal level, let J E / be integrable, suppose 
that HE C0 (M), and let us see what the action of HH looks like on 
TJ /. When J is integrable, then 

JP(H) = JLxHJ = LJxHJ, 

so infinitesimally the action of HH means fl.owing along the vector field 
JXH. By observation {6.2) we obtain the same metric this way as if we fix 
J instead and fl.ow w along the vector field -J X H. The variation of w is 
then 

{6.3) 

and so fl.owing along this vector field amounts to moving w in its Kahler 
class. 

The upshot of all this is that, at least formally, the problem of finding 
a cscK metric in the Kahler class [w] on the complex manifold {M, J) is 
equivalent to finding a zero of the moment map µ for the action of <if, in 
the orbit J under the complexified action. In the finite-dimensional case 
the Kempf-Ness theorem characterizes the orbits with zeros of the moment 
map in terms of GIT stability, which can be tested using one-parameter 
subgroups according to the Hilbert-Mumford criterion. One-parameter sub­
groups heuristically correspond to geodesic rays in the space of Kahler met­
rics. We know little about these in general, but they can be used to define 
a notion of stability; see Chen [30]. Instead of this, one way to think of 
K-stability is to approximate the space of Kahler metrics in the class [w] by 
algebraic metrics obtained by pulling back the Fubini-Study metric under 
embeddings Mc pN_ This is an idea which goes back to Yau [123]. One 
can then use algebraic geometry to study degenerations of M inside projec­
tive space under one-parameter subgroups of GL(N + 1). In the limit as 
N -+ oo, we recover the infinite-dimensional picture, at least heuristically. 
One way in which this approximation can be made rigorous is through the 
Bergman kernel, which we will study in Chapter 7. 
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6.2. The Hilbert polynomial and flat limits 

Recall that for a projective variety X c cpn we defined the homogeneous 
coordinate ring 

R(X) = C[xo, ... , xn]/ I, 

where I is the ideal generated by the homogeneous polynomials which vanish 
on X. This is a graded ring whose degree d piece Rd(X) is the image of 
the degreed polynomials under the quotient map. Each Rd(X) is a finite­
dimensional vector space, and the Hilbert function of X is defined by 

Hx(d) = dimRd{X). 

A fundamental result is that there is a polynomial Px ( d), called the Hilbert 
polynomial, such that Hx(d) = Px(d) for sufficiently large d. The degree of 
Px is the dimension of X. The polynomial Px should be thought of as an 
invariant of X, and one of its crucial properties is that it does not change 
if we vary X in a nice enough family (the technical condition is that the 
family is "flat"). 

The Hilbert function can be defined more generally for any homogeneous 
ideal I c C[xo, ... , xn] by letting 

H1(d) =dim (C[xo, ... , Xn]/ I)d, 

where again we are taking the image of the degree d polynomials under the 
quotient map. Once again one can show that for large enough d, the Hilbert 
function H1(d) coincides with a polynomial P1(d). 

We will now give a very special example of a flat family, which will be 
enough for our needs. Suppose that I c C[xo, ... , Xn] is a homogeneous 
ideal and that we have a one-parameter subgroup..\: C* <-+ GL(n + 1, C). 
For any polynomial f, we can define ..\ ( t) · f by 

(..\(t) · f)(xo, ... , Xn) = f (..\{C1) · (xo, ... , Xn)), 

and it is easy to check that 

It = {A(t) . f If E I} 

is also a homogeneous ideal in C[xo, ... , Xn]· Geometrically the vanishing 
set of It is obtained by applying ..\(t) to the vanishing set of I. 

Definition 6.3. The flat limit Io = limt-+o It is defined as follows. We can 
decompose any f E I as f = Ji + · · · + f k into elements in distinct weight 
spaces for the C*-action ..\on C[xo, ... ,xn]· Let us write in{!) for the ele­
ment fi with the smallest weight, which we can think of as the "initial term" 
off. Then Io is the ideal generated by the set of initial terms {in{!) If EI}. 
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For any ideal I let us write (I)d for the degreed piece of I. Then one 
can check that for our flat limit, the degreed piece (Io)d of Io is the vector 
space spanned by {in(!) If E (I)d}· From this it is not hard to see that 
dim(Io)d = dim(I)d for each d, so the Hilbert polynomials of I and Io are 
the same. In fact in this case even the Hilbert function is preserved in the 
limit, but that is not true for more general flat limits. 

Example 6.4. A simple example is letting I c C[x, y, z] be the ideal 
I = (xz - y2 ), i.e. the ideal generated by the polynomial xz - y2 • The 
corresponding projective variety is a conic in CP2• Let us take the C* -
action given by A(t) · (x, y, z) = (tx, t-1y, z). The dual action on functions 
gives 

A(t) · (xz - y2 ) = r 1xz - t2y2 . 

The initial term is in(xz - y2 ) = xz, and so the flat limit is 

lim A(t) ·I= (xz). 
t--tO 

The variety corresponding to (xz) is two lines intersecting in a point. In 
other words, when taking the limit, the conic breaks up into two intersecting 
lines. While this limit is not irreducible, it is still the union of two projective 
varieties. 

Note that in general by just taking the initial terms of a set of generators 
of the ideal, we might get a smaller ideal than the flat limit. In the example 
we are looking at here, we can check that the Hilbert polynomial of ( xz) 
equals the Hilbert polynomial of (xz - y2), so (xz) has to be the flat limit. 
More generally one can use Grabner bases to do these calculations. 

Example 6.5. For a similar example let us take I = (xz - y2) again, but 
let A(t) · (x, y, z) = (t-1x, ty, z). Then 

A(t) · (xz - y2 ) = txz - t-2y2 , 

so now the initial term is -y2 , and the flat limit is 

lim A(t) ·I= (y2 ). 
t--tO 

The zero set of (y2) is a line in CP2, but it should be thought of as having 
multiplicity 2, or as being "thickened". The quotient ring C[x, y, z]/(y2) has 
nilpotents, and the corresponding geometric object is a projective scheme. 

The flat limits that we are considering arise when we try to form a GIT 
quotient of the space of all projective subvarieties in cpn. More precisely 
one can show that given a polynomial P, there is a projective scheme Hilbp,n, 
called the Hilbert scheme, parametrizing all projective subschemes of cpn 
with Hilbert polynomial P. The idea is that if a homogeneous ideal I c 
C[xo, ... , Xn] has Hilbert polynomial P, then there is a large number d 
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(depending on P, n) such that the scheme corresponding to I is determined 
by the degreed piece of I, which we still denote by (I)d (technically for this 
one needs to restrict attention to "saturated" ideals-saturating an ideal 
does not change the corresponding scheme). This (I)d is simply a linear 
subspace of the degreed polynomials C[xo, ... , Xn]d such that 

dim C[xo, ... , Xn]d/(I)d = P(d). 

Since the degree d piece of I determines the scheme, we obtain a map from 
the set of schemes with Hilbert polynomial P to a certain Grassmannian of 
subspaces of a finite-dimensional vector space. Roughly speaking, the image 
of this map is the Hilbert scheme (although it has more structure than just 
being a subset). 

The "moduli space" of projective varieties (or schemes) in cpn with a 
given Hilbert polynomial should then be the GIT quotient 

HilbP,n // SL(n + 1, C) 

since acting by SL(n+ 1, C) simply changes the embedding of a variety, not 
the variety itself. If we try to use the Hilbert-Mumford criterion to determine 
whether a given variety is stable (or semistable), then we naturally arrive 
at the notion of a flat limit under a C* -action which we defined above. 

6.3. Test-configurations and K-stability 

In this section we will introduce the notion of K-stability. This was orig­
inally defined by Tian [112] and conjectured to characterize the existence 
of a Kahler-Einstein metric on a manifold with positive first Chern class. 
A more refined, algebra-geometric definition was introduced by Donald­
son [44], which he conjectured to characterize the existence of a cscK metric. 
It is this definition which we will use. 

The definition of K-stability is inspired by the Hilbert-Mumford criterion 
for stability in GIT, which we discussed in Section 5.3. Throughout this 
section we will work with a projective manifold M c cpN with dim M = n, 
although it is more natural to think of the pair (M,L), where L = O(l)IM· 
In general such a pair (M, L) of a projective manifold together with an ample 
line bundle L is called a polarized manifold. 

Definition 6.6. A test-configuration for (M, L) of exponent r > 0 consists 
of an embedding M <---+ cpNr using a basis of sections of Lr and a C* -
subgroup of GL(Nr + 1, C). 

Given a test-configuration with >. : C* <---+ GL(Nr + 1, C) being the 
C* -subgroup, we obtain a family of submanifolds Mt c cpNr, with 
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Mt = .X(t) · M. This family can be extended across t = 0 by taking the 
fl.at limit 

Mo= limMt 
t--+0 

according to Definition 6.3. Usually the definition of a test-configuration 
is formulated in terms of the resulting flat C* -equivariant family over C. 
By construction the fl.at limit Mo is preserved by the C* -action .X, and by 
analogy with the Hilbert-Mumford criterion, we need to define a weight for 
this action. This weight is given by the Donaldson-Futaki invariant. 

To define the weight, suppose that X C CPN is a subscheme, invariant 
under a C* -action .X. Algebraically this means that we have a homogeneous 
ideal 

I c C[xo, ... ,xN], 
which is preserved by the dual action of .X. It follows that there is an induced 
C* -action on the homogeneous coordinate ring 

R = C[xo, ... ,xN]/I 

and each degree k piece Rk is invariant. Let us write dk = dim Rk for the 
Hilbert function of X, and let Wk be the total weight of the action on Rk. 

As we discussed in Section 6.2, for large k, dk equals a polynomial, so we 
have 

dk = aokn + aikn-i + O(kn-2), 

for some constants ao, ai. The degree n is the dimensions of X. Similarly 
Wk equals a polynomial of degree n + 1 for large k, so we can define constants 
bo and bi by 

Wk= bokn+l + bikn + O(kn-i). 

Definition 6.7. The Donaldson-Futaki invariant of the C*-action .X on X 
is defined to be 

F(X, .X) = ai bo - bi. 
ao 

Note that in the literature sometimes the formula has the opposite signs 
because of varying conventions on whether one takes the dual action or not. 
We will see in Section 7.4 that if X is smooth and the C* -action is induced 
by a holomorphic vector field, then the Donaldson-Futaki invariant coincides 
with the differential geometric Futaki invariant introduced in Section 4.2. 

Before defining K-stability we need to define when we consider a test­
configuration to be trivial. Originally a test-configuration was defined to 
be trivial if the central fiber Mo is biholomorphic to M. It was pointed 
out by Li-Xu [75] that this is not enough in general unless one restricts 
attention to those test-configurations whose total space is "normal". This is 
a condition on the type of singularities that can occur. Instead we give an 
alternative definition, relying on the norm of a test-configuration. Using the 
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same notation as above, suppose that we have a C* -action .X on a subscheme 
X C CPN, and let us write Ak for the infinitesimal generator of the C* -
action on the degree k piece Rk of the homogeneous coordinate ring. Then 
Tr(Ak) = wk in the notation above. Similarly to dk and wk, the function 
Tr(A~) is a polynomial of degree n + 2, and we define co by 

Tr(A~) = cokn+2 + O(kn+l). 

The norm II.XII of the C* -action .X is defined to be 

11.x11 2 = co - bg' 
ao 

where ao, bo are as above. In other words, ll.Xll 2 is the leading term in 

(6.4) Tr ( Ak - Tr~:k)Id) 2 = ll.Xll2kn+2 + O(kn+l). 

We can now give the definition of K-stability. 

Definition 6.8. Let (M, L) be a polarized manifold. Given a test-configu­
ration x for ( M, L), let us also write x for the induced C* -action on the 
central fiber, so we have the norm llxll and the Donaldson-Futaki invariant 
F(x) = F(Mo,x). 

The pair (M, L) is K-semistable if for every test-configuration x we have 
F(x) ~ 0. If in addition F(x) > 0 whenever llxll > 0, then (M, L) is 
K-stable. 

One version of the central conjecture in the field is the following. 

Conjecture 6.9 (Yau-Tian-Donaldson). Let (M, L) be a polarized manifold, 
and suppose that M has discrete holomorphic automorphism group. Then 
M admits a cscK metric in c1(L) if and only if (M, L) is K-stable. 

In Section 6.4 we will discuss a version of this conjecture applicable when 
M has holomorphic vector fields and where cscK metrics are replaced by 
extremal metrics. In Remark 6.18 we will briefly discuss an example due to 
Apostolov-Calderbank-Gauduchon-T0nnesen-Friedman [2], which suggests 
that the notion of K-stability needs to be strengthened, so as written the 
conjecture should be thought of more as a guiding principle. In Section 6.6 
we will discuss one possible way of strengthening K-stability. 

Exercise 6.10. Suppose that (M, LM) and (N, LN) are polarized manifolds, 
and let L --+ M x N be given by L = 7riLM ® 7r2LN, where 7r1,7r2 are 
the projections onto the two factors. Assuming that (M x N, L) is K­
stable, show that (M, LM) and (N, LN) are K-stable and that the validity 
of Conjecture 6.9 implies the converse. 
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One of our goals in this book is to explain the proof of one direction of the 
conjecture, due to Stoppa [101], which built on the work of Donaldson [46] 
and Arezzo-Pacard [3] (see also Mabuchi [79]). In the Kahler-Einstein case 
the result is due to Tian [112] and Paul-Tian [88]. See also Berman [14] for 
a sharper result in the Kahler-Einstein case in the presence of holomorphic 
vector fields. 

Theorem 6.11. If M admits a cscK metric in c1(L) and has discrete au­
tomorphism group, then (M, L) is K-stable. 

Example 6.12. Let (M,L) = (CP1,0(l)), and embed Mc.....+ CP2 using 
the sections Z~, ZoZi, z? of 0(2) as a conic xz - y2 = 0. Consider the C*­
action A(t) · (x, y, z) = (tx, C 1y, z) as in Example 6.4. The central fiber is 
given by xz = 0, and the dual action on functions has weights (-1, 1, 0) on 
(x, y, z). In order to compute the Donaldson-Futaki invariant, let us write 

S = C[x, y, z], 

I= (xz), and R = S/I. We have an exact sequence 

0 ---+ s ·XZ) s ---+ R ---+ o, 
where the second map is multiplication by the generator xz of the ideal I. 
Let us write Sk and Rk for the degree k pieces of Sand R. Let Dk= dim Bk, 
and let Wk be the total weight of the C*-action on Sk. Similarly write 
dk = dim Rk and Wk for the total weight of the action on Rk. From the 
exact sequence, for k ~ 2 we have 

dk = Dk - Dk-2, 

and since the weight of the action on xz is -1, we have 

wk= wk - (Wk-2 - Dk-2). 

By symmetry of the weights on x, y we must have Wk= 0 for all k, and in 
addition 

It follows that 

( k + 2) 1 2 
Dk= 2 = '2(k + 3k + 2). 

dk = 2k+ 1, 

1 2 1 
Wk= 2k - 2k. 

By the definition of the Donaldson-Futaki invariant, we have 
1 1 1 3 

F(A) = 2 . 2 + 2 = 4· 
In particular F(A) > O, so this test-configuration does not destabilize CP1. 

This is consistent with the fact that the Fubini-Study metric gives a cscK 
metric in c1(0(l)). More general calculations can be done similarly, except 
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when the ideal I is not generated by a single polynomial. Then instead of 
the short exact sequence that we used, one would need to use a longer "free 
resolution" of the homogeneous coordinate ring. 

Exercise 6.13. Let X c CP2 be the conic xz - y2 = 0. Consider the C*­
action >.(t) · (x, y, z) = (t-1x, ty, z) (this is the opposite of Example 6.12). 
Find the Donaldson-Futaki invariant of the corresponding test-configuration. 

6.4. Automorphisms and relative K-stability 

In this section we will study how the notion of K-stability needs to be mod­
ified in the presence of automorphisms and in particular when we are inter­
ested in extremal metrics which do not have constant scalar curvature. In 
Section 6.1 we have seen that the scalar curvature can be seen as a moment 
map and that extremal metrics arise as critical points of the norm squared 
of this moment map. The discussion in Section 5.5 then indicates how we 
should modify the definition of K-stability for dealing with extremal met­
rics. In the next section we will give an example calculation of the resulting 
"relative K-stability" notion. 

In Section 5.5 we have seen that in order to characterize orbits that 
contain critical points of 11µ11 2, we should test stability only in directions that 
commute with, and are orthogonal to, a maximal torus of automorphisms 
in a suitable sense. 

Suppose as before that (M, L) is a polarized manifold, and let T c 
Aut(M, L) be a maximal torus of automorphisms. Given an embedding 
M Y cpNr using sections of Lr, we can realize T as a subgroup T c 
GL(Nr + 1, C). Recall that a test-configuration for (M, L) of exponent r is 
given by a C*-subgroup of GL(Nr + 1, C). 

Definition 6.14. A test-configuration for (M, L) of exponent r > 0 is com­
patible with T ifthe corresponding C*-subgroup of GL(Nr+l, C) commutes 
with T. 

In analogy with Section 5.5 we are only interested in test-configurations 
that are "orthogonal" to T in a suitable sense. For this we need the following 
inner product, extending the norm in Equation (6.4). If two C*-subgroups 
>.,µof GL(Nr+ 1, C) commute and leave a subscheme X c cpNr invariant, 
then on the homogeneous coordinate ring E9k;;;io Rk of X, the induced actions 
of >., µ are generated by matrices Ak and Bk· We define the inner product 
(>.,µ)by 

(6.5) Tr [ ( Ak - Tr~:k)Id) (Bk - Tr~:k)Id)] = (>.,µ)kn+2 + O(kn+l), 
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where dk = dim Rk· We will see in Section 7.4 that when X is smooth and 
A,µ are generated by Hamiltonian vector fields, then this inner product is 
given by the L 2-product of the Hamiltonian functions. This is consistent 
with the fact that in viewing extremal metrics as critical points of the mo­
ment map squared, we are using the L 2-product on Hamiltonian functions. 
This inner product on holomorphic Hamiltonian vector fields was originally 
introduced by Futaki-Mabuchi [56] in their study of extremal metrics. 

If a test-configuration for (M, L) is compatible with T, then T also 
acts on the central fiber of the test-configuration. We say that the test­
configuration is orthogonal to T if the induced C* -action on the central fiber 
is orthogonal to every C*-subgroup of T. With this we have the following 
definition. 

Definition 6.15. Let (M, L) be a polarized manifold and let Tc Aut(M, L) 
be a maximal torus of automorphisms. The pair (M, L) is relatively K­
semistable (relative to the torus T) if F(x) ~ 0 for all test-configurations x 
for (M, L) which are orthogonal to T (and compatible with T). Ifin addition 
F(x) > 0 whenever llxll > 0, then (M, L) is relatively K-stable. 

A further notion in the literature, relevant in the cscK case, is K­
polystability. The pair (M, L) is K-polystable if it is relatively K-polystable 
and in addition the Futaki invariant of every vector field on M vanishes. 

The conjecture analogous to Conjecture 6. 9 is the following. One direc­
tion of this conjecture, the generalization of Theorem 6.11, has been obtained 
in [102]. 

Conjecture 6.16. The manifold M admits an extremal metric in c1(L) if 
and only if ( M, L) is relatively K-stable. 

In calculations, if we have a test-configuration x that is compatible with 
a maximal torus T, then we can modify x to be orthogonal to T by choosing 
an orthogonal basis of C* -actions Al, ... , Al generating T and replacing x 
by 

(6.6) 
l 

" (x, Ai) , 
x - L., (A· A·)/\i· 

i=l i1 i 

Since each Ai commutes with x, the central fiber will be unchanged; only 
the induced C* -action on it will be different. 

6.5. Relative K-stability of a ruled surface 

In this section we are going to work out the relative K-stability condition in 
the special case of the ruled surface that we studied in Section 4.4. Let E be 
a genus 2 curve and L a degree -1 line bundle on it. As before, X is the ruled 
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surface P(LEBO) over E. In Section 4.4, following T0nnesen-Friedman [116], 
we constructed a family of extremal metrics on X which does not exhaust 
the entire Kahler cone. We will show that Xis relatively K-unstable for the 
remaining polarizations, and so it does not admit an extremal metric. That 
X does not admit an extremal metric for these unstable polarizations was 
first shown in [2]. 

Since there are no non-zero holomorphic vector fields on E, a holomor­
phic vector field on X must preserve the fibers. Thus, the holomorphic 
vector fields on X are given by sections of Endo ( 0 EB M). Here Endo means 
endomorphisms with trace zero. The vector field given by the matrix 

( ~1 ~) 
generates a C*-action /3, which is a maximal torus of automorphisms (see 
Maruyama [82] for proofs). 

The destabilizing test-configuration is an example of deformation to the 
normal cone of a subvariety, studied by Ross and Thomas [92]. We consider 
the polarization £ = C + mS00 in the notation of Section 4.4; i.e. C is the 
divisor given by a fiber, 800 is the infinity section (ie. it satisfies S&, = 1), 
and m is a positive constant. We denote by So the zero section, so that 
So = 800 - C. Note that f3 fixes So and acts on the normal bundle of 
So with weight 1. We will make no distinction between divisors and their 
associated line bundles, and we use the multiplicative and additive notations 
interchangeably, so for example ,Ck = kC + mkS00 for an integer k. 

The deformation to the normal cone of So can be most easily under­
stood in terms of the "total space" of the test-configuration. While in Defi­
nition 6.6 we gave a very concrete definition of test-configurations, they can 
be thought of more geometrically, and that is how they were originally de­
fined in [112] and [44]. Namely, if X c CPN and X: C* -t GL(N + 1, C), 
then we can consider the (Zariski) closure of the set 

x* = {(x(t) · x, t) Ix Ex, t EC*} c cpN x c. 

Denoting by X the closure, we have a projection map X -t C such that the 
non-zero fibers are all isomorphic to X and the fiber over 0 is the central 
fiber Xo. The projective embedding is encoded in the restriction of 0(1) to 
the family X. 

With this in mind, the deformation to the normal cone of So is given by 
the blow-up 

X:=DC~xxc 
along the subvariety So x {O}. Denote the exceptional divisor by E. For 
any rational c E (0, m) if k is sufficiently divisible, we have an ample line 
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bundle M~ = k7r* C - ckE. For these values of c we therefore obtain a test­
configuration ( X, M~) with the C* -action induced by 7r from the product 
of the trivial action on X and the usual multiplication on C. We denote the 
restriction of this C*-action to the central fiber (Xo, Co) by X· 

We can view this test-configuration more concretely in terms of Defini­
tion 6.6. For a rational c E (0, m) we choose a large K such that cK is an 
integer and we can then embed X c cpN using a basis of sections of CK. 
We define a C*-action on cpN based on the order of vanishing along So. 
We can use the basis of sections to identify cpN with P(H0(x,CK)). We 
now define a filtration on H0(X, CK) based on the order of vanishing along 
So: 
(6.7) 

Fo C F1 C · · · c FcK = H0(X, CK), 

Fi= {s E H 0(x,cK) Is vanishes along So to order at least (cK -i)}. 

To define the C*-action, we choose an inner product on H0(x,cK) in order 
to turn the filtration into a direct sum decomposition 

o K F1 FcK H (X, C ) = Fo Ee - Ee··· Ee --, 
Fo FcK-1 

and we define the action to have weight - j on Fj / Fj-l . Note that the re­
sulting test-configuration is independent of the inner product that we choose 
(see Section 6.6). 

We will need to modify this test-configuration x by a multiple of the 
action f3 in order to make x orthogonal to f3, and we will need to compute 
the Futaki invariants. Note that f3 fixes the section So, and so x commutes 
with f3. This means that f3 induces an action on the central fiber of the test­
configuration X· For simplicity we will denote the actions on the central 
fiber by x and f3 as well. 

To calculate inner products and the Futaki invariants, we need to under­
stand the actions of x and f3 on the central fiber (Xo, Co). In the following, 
k will always be a multiple of K, so in particular ck is an integer. According 
to [92] we have 

o k _ o _ ~ i H'Jc(kC-(ck-j)So) 
H (Xo,C0 )-Hx(kC ckSo)Ee~t H'Jc(kC-(ck-j+l)So)' 

for k large, with t being the standard coordinate on C. The C*-action 
x has weight -1 on t. For the action (3, we need to further decompose 
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H'Jc(kC - ckSo) into weight spaces as follows: 

o o m::nck H'Jc(kC- (mk - i)So) 
Hx(kC- ckSo) = Hx(kC- mkSo) ffJ w Ho (kC ( k · )S), 

i=l x - m - i + 1 o 

for k large. This holds because of the following cohomology vanishing lemma 
(see [106, Lemma 3.2.1]) from the Leray-Serre spectral sequence. 

Lemma 6.17. H 1(X, kC + lS00 ) = 0 fork» 0 and l ~ 0. 

In sum we obtain the decomposition 

Ho(X Ck) =Ho (kC- kS) m;r: H'Jc(kC- (mk -i)So) 
o, o x m o $ ~ H'Jc(kC-(mk-i+l)So) 

~ ; H'Jc(kC - (ck - j)So) 
$;;it H'Jc(kC- (ck- j + l)So). 

(6.8) 

As above, x acts with weight -1 on t; that is, it acts with weight - j on the 
summand of index j above. The action (3 acts on the term 

H'Jc(kC - lSo) 
H'Jc(kC - (l + l)So) 

with weight l, and the dimension of this space is k + l -1 by the Riemann­
Roch theorem. Let us write Ak, Bk for the infinitesimal generators of the 
actions x and (3 on H 0(Xo, L~) and dk for the dimension of this space. It is 
then straightforward to compute the following expansions: 

d = m2 + 2m k2 2 - m k 0(1) 
k 2 + 2 + , 

3 3 2 2 
Tr(A ) = - c + c k3 c - c k2 O(k) 

k 6 + 2 + , 
(6.9) Tr(B ) = 2m3 + 3m2 k3 m k2 O(k) 

k 6 +2 + , 

Tr(AkBk) = - c4 ~22c3 k4 + O(k3), 

Tr(BkBk) = 3m4 ~ 4m3 k4 + O(k3). 

Following (6.6) we need to replace x by 

- - - (x, f3)f3 
x - x ((3,(3) 

to make x orthogonal to (3, and then we need to compute F(x). Using 
the formulas (6.9) and the definitions of the inner product and the Futaki 
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invariant, we can compute 

F(x) = F(x) - (x, f3) F(f3) 
((3, (3) 

6. K-stability 

= c(m- c)(m + 2) [(2m + 2)c2 - (m2 - 4m - 6)c + m 2 + 6m + 6]. 
4(m2 + 6m+ 6) 

If F(5() :::;; 0 for a rational c between 0 and m, then the variety is not 
relatively K-stable. Using this, we can check that (X, £) is not relatively 
K-stable form 2'.: ki ~ 18.889, where ki is the only positive real root of the 
quartic m4 - 16m3 - 52m2 - 48m - 12. This should be compared with the 
calculation in Section 4.4, where we saw that X admits an extremal metric 
in ci(£) as long as m < ki with the same ki. Note that the relative K­
stability requires a certain polynomial to be positive for all c E (0, m) n Q, 
while the existence of an extremal metric requires a related polynomial to 
be positive for all c E (0, m). In this example these two conditions turn out 
to be the same. 

Remark 6.18. Apostolov-Calderbank-Gauduchon-T!Zlnnesen-Friedman [2] 
have generalized the above calculation together with the ODE existence 
result of Section 4.4 to a large family of examples. In particular they have 
found examples of ruled manifolds over products of Riemann surfaces, where 
the solution of the relevant ODE is positive on (0, m) n Q but vanishes at 
some irrational point. This shows that these examples do not admit extremal 
metrics, but if we only look at deformation to the normal cone as above, 
then the manifold appears to be stable. In other words, algebraically we 
only "see" the rational points in (0, m). This leads to the expectation that 
we need to strengthen the notion of relative K-stability in a way that makes 
these ruled manifolds unstable, in order to have a chance for Conjecture 6.16 
to be true. 

6.6. Filtrations 

In this section we will briefly describe a notion of stability which is a 
strengthening of K-stability. In particular it overcomes the issue raised in 
the previous section, namely the existence of manifolds which do not admit 
extremal metrics but which appear to be relatively K-stable. This notion 
was introduced in [104], motivated by work of Witt Nystrom [121]. 

Recall that a test-configuration for a polarized manifold (M, L) is an 
embedding M c.....+ cpN using sections of U for some r > 0 together with a 
C*-action on CPN. For simplicity of notation, assume that r = 1. We want 
to define a filtration of the homogeneous coordinate ring of (M, L) from this 
data. If M is defined by the homogeneous ideal I c C [ xo, ... , x N], then the 
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homogeneous coordinate ring is 

R = C[xo, ... , xN]/ I, 

and we have a C* -action x on C [ xo, ... , x N]. This C* -action defines a 
"weight filtration", Fi c C[xo, ... , XN], where 

(6.10) ~ =span{! I x(t) · f = tw f, for some w ;;::: -i}, 

so Fi is the sum of the weight spaces with weights at least -i. This filtration 
in turn induces a filtration of R, defined by 

FiR= Fi/J. 

The construction of the flat limit in Definition 6.3 can be formulated more 
abstractly in terms of this filtration. In fact the homogeneous coordinate ring 
of the central fiber of the test-configuration turns out to be the associated 
graded ring 

gr R = E9 FiR / ~-iR, 
i 

with the product being defined through the multiplicative property 

of the filtration. The C* -action x on the central fiber acts on the i-th 
summand with weight -i, and it follows that we can compute the total 
weight Wk of the action on the degree k piece Rk from the filtration: 

(6.11) 

Note that the sum only has finitely many non-zero terms. From this we can 
compute the Futaki invariant of the test-configuration. 

In summary, this discussion shows that a test-configuration for (M, L) 
of exponent 1 can be encoded as a filtration of H0(M, L), and this in turn 
induces a filtration of the homogeneous coordinate ring. If we start with a 
test-configuration with exponent r > 1, then we can still apply this method 
to obtain a filtration of the subalgebra Ea H 0(M, Lrk) of the homogeneous 

k 
coordinate ring. 

To obtain a stronger notion of stability we reverse this discussion and 
start with a filtration. 

Definition 6.19. Let R = Ea Rk be the homogeneous coordinate ring of 
(M, L), where Rk = H 0(M, Lk). A filtration of Risa collection of filtrations 

· · · c Fi-1Rk c FiRk c · · · c Rk 
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satisfying the following conditions: 

(1) The filtration is multiplicative; i.e. 

(FiRk)(F;R1) c Fi+;Rk+l for all i,j, k, l. 

(2) For each k we have FmRk = Rk for some m. 

6. K-stability 

(3) There is a constant C > 0 such that F-kCRk = {O} for all k. 

This notion from [18], [121] is essentially equivalent, but slightly more 
general, than the notion defined in [104]. In the latter work we require 
FoRk = {O} for k > O, so no negative indices are used. Note that in [18] 
real numbers are allowed as indices, but in our setting integers seem more 
natural. 

Suppose that we have such a filtration, which we will denote by X· Then 
using property (2) above, for each r there is an induced filtration Xr on Rr. 
By our previous discussion, Xr can be thought of as a test-configuration for 
(M, L) of exponent r, and we would like to think of the original filtration 
x as a kind of limit of the Xr as r -+ oo. Because of this, it is natural to 
define the Futaki invariant F(x) as a limit of the Futaki invariants F(xr), 
although there are also other natural choices. Similarly one can define the 
norm of x as the limit of the norms of the xr: 

F(x) = liminf F(xr), 
r-+oo 

llxll = lim llxrll, 
r-+oo 

where we used a lim inf in the first line because the limit is not known to 
exist in general. For these definitions to makes sense one needs to make sure 
that the Futaki invariant and norm are defined with a consistent scaling for 
test-configurations of different exponents. We refer the reader to [104] for 
details. 

The main result in [104] is the following generalization of Theorem 6.11. 

Theorem 6.20. Suppose that M admits a cscK metric in c1(L) and has 
discrete automorphism group. Then F(x) > 0 for every filtration of the 
homogeneous coordinate ring of (M, L) which satisfies llxll > 0. 

In the presence of automorphisms, one needs to restrict the class of 
filtrations that are considered, analogously to the discussion in Section 6.4. 
If we have a maximal torus T of automorphisms of ( M, L), then this induces 
a T-action on the homogeneous coordinate ring R and we say that a filtration 
x of R is compatible with the torus action if each filtered piece FiR is 
T-invariant. This ensures that the associated graded ring gr R inherits a 
T-action which commutes with the C'll-action induced by X· If f3 is any 
C* -subgroup of T, we can then define the inner product (x, (3) just as in 
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equation (6.5), with Ak and Bk denoting the infinitesimal generators of the 
actions x,{3 on the k-th graded piece gr Rk· We say that the filtration xis 
orthogonal to T if it is compatible with T and its inner product with every 
C* -subgroup of T vanishes. With these preliminaries we define the following 
stronger notion of relative K-stability. 

Definition 6.21. We say that the pair (M, L) is relatively K-stable if 
F(x) > 0 for all filtrations x of the homogeneous coordinate ring of ( M, L) 
which are orthogonal to a maximal torus of automorphisms of (M, L) and 
satisfy llxll > 0. 

Remark 6.22. An even stronger notion of stability, K-stability, has been 
introduced by Donaldson [50]. This requires that not only is (M, L) K­
stable, but also the blow-up BlpM should be K-stable for all p E M and 
all polarizations of the form L - cE, where c is a sufficiently small rational 
number and Eis the exceptional divisor. Theorem 8.2 implies that if M 
admits a cscK metric in c1 (L) and has no holomorphic vector fields, then 
(M, L) is K-stable. In addition the proof of Theorem 6.20 shows that K­
stability implies K-stability. 

We now state a variant of the Yau-Tian-Donaldson conjecture. 

Conjecture 6.23. The manifold M admits an extremal metric in c1(L) if 
and only if (M, L) is relatively K-stable. 

One direction of this conjecture would follow from a suitable extension 
of Theorem 6.20 to the extremal case. It is likely that this can be done along 
the lines of [102] but it has not been worked out in the literature at this 
time. 

To conclude this section, we will show how allowing filtrations overcomes 
the issue raised in Remark 6.18 at the end of the prev!O\is section. Following 
the notation in that section, recall that we defined the deformation to the 
normal cone of So for any rational c E (0, m). Following [121] we can encode 
this as a filtration, so that if Rk = H 0(X, £,k), then for i ~ 0 

FiRk = {s E Rk Is vanishes along So to order at least (ck - i)}, 

and FiR = {O} for i < 0. Note that this is an extension of the filtration 
in equation (6.7) to the whole homogeneous coordinate ring from RK. This 
definition, however, makes sense even for irrational c. The crucial difference 
is that for irrational c the filtration no longer arises from a test-configuration. 
A calculation shows that in the examples of [2] referred to at the end of 
the last section, the relevant filtrations have vanishing Futaki invariants for 
exactly the values of c E (0, m) at which the corresponding ODE solutions 
vanish. In other words these examples are not potential counterexamples to 
Conjecture 6.23. 
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6. 7. Torie varieties 

In Section 4.5 we discussed the Kahler geometry of toric manifolds. In this 
section we take up the algebra-geometric point of view of toric varieties; 
in particular we will see how K-stability is related to the existence of cscK 
metrics, following Donaldson [44]. For a more in-depth introduction to toric 
varieties, see Fulton [54]. 

In order to make the closest contact with the point of view of Section 4.5 
we will define toric varieties using their moment polytopes, through their 
homogeneous coordinate rings. Let Pc Rn be a convex polytope with in­
tegral vertices, satisfying the Delzant condition (see Definition 4.35). Define 
C(P) C Rn+l to be the cone over P x {1} with vertex at the origin. Then 
Sp = C(P) n zn+l is a semigroup under addition, and we let C[Sp] be 
its semigroup algebra. This has a natural grading, with the degree k piece 
being spanned by the elements of Sp in zn x {k}. We can then define the 
projective variety 

Xp = Proj C[Sp]. 

It turns out that if P satisfies the Delzant condition, then Xp is a smooth 
variety. In addition, writing Xp as Proj gives rise to an ample line bundle 
Lp on Xp whose global section!Nfe the degree 1 elements in C[SpJ. 

We will now describe how this construction is related to the point of view 
in Section 4.5, in particular why Pis the moment polytope. The variety Xp 
has an action of the torus (S1 r, induced by a torus action on the generators 
Sp of the homogeneous coordinate ring. This action has weight p E zn on 
(p, k) E Sp. We can find a moment map for this action by embedding 
Xp c cpN and using the calculations in Section 5.1. We can embed Xp 
into projective space using the homogeneous functions corresponding to the 
points Po, ... ,pN E P n zn. The fixed points in CPN of the torus action 
are then the points with homogeneous coordinates 

xo = [1: O: ···:OJ, x1=[O:1: 0: ···:OJ, ... ,xN = [O: · · ·: O: lJ, 

but not all of these points lie in Xp. In fact the points Xi that lie in 
Xp are precisely those for which Pi is a vertex of P. In addition, under 
suitable identifications the image of Xi under the moment map is the weight 
of the torus action at that point, i.e. Pi· The convexity theorem of Atiyah­
Guillemin-Sternberg that we alluded to in Example 5. 7 then implies that 
the image of the moment map is the convex hull of the vertices of P, so the 
image of the moment map is P itself. 

Suppose that f : P --+ R is a continuous convex function. We can define 
a filtration XJ of the ring R = C[SpJ by letting 

(6.12) FiR = span{(p, k) E Sp : kf(k-1p) ~ i}. 
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The multiplicative property (FiR)(FjR) c Fi+jR follows from the convexity 
of f. This filtration arises from a test-configuration if and only if f is rational 
piecewise linear, i.e. if it can be written as the maximum of a finite set of 
linear functions with rational coefficients. For instance if the coefficients are 
all integers, then the filtration X! is completely determined by the induced 
filtration on the degree 1 piece Rl. The corresponding test-configuration 
can be obtained by embedding Xp C CPN using po, ... ,pN E P n zn as 
above and acting on the i-th coordinate by -f(Pi)· It is useful to compare 
the filtrations (6.12) and (6.10) at this point. More generally when f is the 
maximum of rational linear functions where the denominators are all r, then 
the filtration corresponds to a test-configuration of exponent r, and we can 
reduce to the r = 1 case by replacing zn by ~zn. 

Proposition 6.24. The Donaldson-Futaki invariant of the test-configuration 
X! corresponding to a rational piecewise linear convex function f is 

(6.13) F(x1) = ~ (lap f du - al f dµ) , 

where dµ is the Lebesgue measure on P and du is the measure on the bound­
ary 8P used in Lemma 4.37. 

Proof. To simplify the notation, suppose that the test-configuration has 
exponent 1, i.e. f is the maximum of linear functions with integral coeffi­
cients. To use Definition 6. 7 we need to compute the dimension dk of the 
degree k piece of C[Spj and the total weight Wk of the C*-action on it. The 
dimension dk is simply the number #(P n izn) of elements of the lattice 
izn in P. We have 

(6.14) ( 1 ) kn-1 # P n kzn = knVol(P, dµ) + - 2-Vol(8P, du)+ O(kn-2 ). 

As for the weight, using equation (6.11) we have 

Wk= - L kf(k-1p) 
(p,k)ESp 

= :E kf(p) 
pEPnkzn 

= -k (kn l f dµ + k~-l lap f du+ O(kn-2)) , 

where we used the result of Guillemin-Sternberg [63] in the last line (which 
also justifies (6.14) when setting f = 1). We can now use Definition 6.7 to 
obtain the required formula for F(x1 ). D 
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If f is not rational piecewise linear, then in the previous section we 
defined the Futaki invariant of Xf to be 

F(x1) = liminf F(x1 r), 
r--+oo ' 

where XJ ,r is the test-configuration of exponent r induced by the filtration 
on R,.. From definition (6.12) we can see that XJ,r is the filtration induced 
by the rational piecewise linear convex function fr : P ---+ R whose value at 
a point p E P n ~ zn is 

fr(p) = min{r-1i : i E Z with f(p) ~ r-1i}. 

In other words fr is a rational approximation to f, and fr ---+ f uniformly as 
r---+ oo. It follows that we can take a limit in the formula (6.13) to obtain 

(6.15) F(x1) = liminf F(Xfr) = -21 ( { f da - a { f dµ). 
r--+oo lap 1 P 

Since Xp always has a non-trivial torus of automorphisms, the natural 
stability notion is relative K-stability. The filtration XJ is compatible with 
the maximal torus action, and any <2Jsubgroup f3 of the torus corresponds 
to a linear function h13 on P, defined by the weights of the action. By a 
similar argument to Proposition 6.24 we find that the inner product (X/, /3) 
is given by 

(x,, /3) =Lu -7)(h13 - h13) dµ, 

where 7, h13 are averages, while the norm of XJ is given by 

11x, 11 2 =Lu -7)2 dµ. 

It follows that if (Xp, Lp) is relatively K-stable, then for all non-zero rational 
piecewise linear convex functions f : P---+ R which are £ 2-orthogonal to all 
affine linear functions on P, we have 

(6.16) F(x1) = f f du > o. laP 
It is more convenient to allow f which are not orthogonal to the affine 

linear functions. For this, let A : P ---+ R be an affine linear function defined 
by the condition that 

(6.17) f h du = f Ah dµ for all affine linear h : P ---+ R. laP lP 
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Then, if f is £ 2-orthogonal to the affine linear functions and h is affine 
linear, we have 

f f + h da = f f da + f Ah dµ laP laP lP 
= f f da + f A(f + h) dµ. lap lP 

From this, together with (6.16), we have the following. 

Proposition 6.25. If (Xp, Lp) is relatively K-stable, then for all rational 
piecewise linear convex functions f : P --* R which are not affine linear, we 
have 

(6.18) f f da - f Af dµ > 0, lap lP 
where A is the unique affine linear function on P defined by ( 6.17). 

This should be compared with the simple necessary condition ( 4.17) 
for the existence of an extremal metric that we obtained using integration 
by parts. In particular A is the scalar curvature of the extremal metric 
if it exists. In [44] an example is given of a polytope P such that the 
corresponding function A is constant and inequality (6.18) does not hold for 
suitable f, so (Xp, Lp) is not K-stable. In addition, note that by (6.15), 
if (Xp, Lp) is relatively K-stable, then we can allow any continuous convex 
function f: P--* R rather than just the rational piecewise linear ones. 

To conclude this section, we discuss what progress has been made on 
showing that relative K-stability of (Xp, Lp) implies the existence of an 
extremal metric on Xp. As in Chapter 3 the difficulty is to obtain a priori 
estimates for extremal metrics, so that one can use a suitable continuity 
method. More precisely, if A is an affine linear function on the polytope P 
and u is a symplectic potential on P satisfying S(u) =A, then we need to 
obtain estimates for u depending only on P and A. Since adding an affine 
linear function to u does not change the scalar curvature, we need to first 
normalize u in some way. 

Definition 6.26. Let x0 E P 0 be a point in the interior of P. We say that 
a convex function f: P--* R is normalized if f ~ 0 and f(xo) = 0. 

In addition, the a priori estimates will need to depend on the stability 
condition since when (Xp, Lp) is not stable, then we cannot expect to be 
able to find an extremal metric. For this we define one more notion of 
stability which a priori is even stronger than K-stability. 

Definition 6.27. We say that (Xp, Lp) is uniformly stable if there is a 
A> 0 with the following property. Fix a point xo E P 0 in the interior of P. 
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Then for all normalized convex functions f : P --+ R, we have 

{ f da - J Af dµ ~ ).. { f da, 
lap lap 

where A is defined by (6.17). 

6. K-stability 

Exercise 6.28. Let M be the blow-up of CP2 in one or two points. Show 
that the toric manifold (M, Kil) is uniformly stable. 

To see why this condition is useful, suppose that u is a symplectic po­
tential on P such that S(u) = A. We can then apply the integration by 
parts formula of Lemma 4.37 to g = u to obtain 

f ndµ= f uda- f Audµ. 
lP laP lP 

If in addition we assume that u is normalized and that ( X p, L p) is uniformly 
stable, then we obtain that 

f uda:::;; n>.-1Vol(P,dµ). 
laP 

This is a first a priori estimate on the solution u, and in the series of papers 
[45], [48], [49], Donaldson developed it into the following existence result. 

Theorem 6.29. Suppose that P is 2-di.mknsional, (Xp, Lp) is uniformly 
stable, and the affine linear function A is constant. Then Xp admits a cscK 
metric in c1 (Lp). 

Together with the following result of Donaldson [44], this shows that the 
Yau-Tian-Donaldson conjecture for cscK metrics holds for toric surfaces. 

Theorem 6.30. Suppose that P is 2-dimensional and (Xp, Lp) is K-poly­
stable (i.e. (Xp, Lp) is relatively K-stable, and the affine linear function A 
is constant). Then (Xp, Lp) is uniformly stable. 

Theorems 6.29 and 6.30 have been extended by Chen-Li-Sheng [28] and 
Wang-Zhou [120], respectively, to the case when the affine linear function A 
is not constant, thereby showing that the Yau-Tian-Donaldson conjecture for 
extremal metrics also holds for toric surfaces. In higher dimensions neither 
result is known, and it seems likely that Theorem 6.30 fails. It remains to 
be seen whether a stronger condition such as relative K-stability is sufficient 
to imply uniform stability. 



Chapter 7 

The Bergman Kernel 

In this chapter we discuss the asymptotic expansion of the Bergman kernel. 
This provides a crucial link between algebraic and differential geometry, and 
it is the basis of many results in the field. Our goal in this chapter will be 
to use it to prove Donaldson's theorem (Theorem 7.17), providing a lower 
bound on the Calabi functional in terms of the Futaki invariants of test­
configurations [46]. A corollary of this result is that if an X admits a cscK 
metric in c1(L) for a line bundle L, then (X, L) is K-semistable. 

7.1. The Bergman kernel 

Let M be a compact complex manifold, and let L be a positive line bundle 
over M. Suppose that L is equipped with a Hermitian metric h which has 
positive curvature form F(h). Let us define the Kahler form w = l'lrF(h), 
so that w E c1(L). 

The Hermitian metric h induces a natural Hermitian metric on the space 
of holomorphic sections H0 (M, L). Fors, t E H 0(M, L) we define 

(s, t)£2 = r (s, t)h w~. 
}M n. 

Definition 7.1. Choose an orthonormal basis {so, ... , SN} of H 0 (M, L). 
The Bergman kernel of the Hermitian metric h is the function 

Bh: M---+ R 
N 

x i--t L lsi(x)lt 
i=O 

One can check that Bh is independent of the orthonormal basis chosen. -129 
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An alternative definition is given by the following. 

Lemma 7.2. For any x EM we have 

Bh(x) = sup{ls(x)I~ : llsllL2 = l}. 

Proof. It is clear that Bh(x) ~ ls(x)I~ for any s such that llsllL2 = 1, by 
considering any orthonormal basis containing s. 

For the converse inequality, write Ex C H 0(M, L) for the space of sec­
tions vanishing at x. If Bh(x) > 0, then there must be a section which does 
not vanish at x, and so Ex has codimension 1. Lets be in the orthogonal 
complement of Ex such that llsllL2 = 1. Then it follows from the definition 
that Bh(x) = ls(x)I~ since every section orthogonal to s vanishes at x. D 

The Bergman kernel has the following geometric interpretation. 

Lemma 7.3. Suppose that the map 

'P: M---* cpN 

x i-t [so(x): · · ·: SN(x)] 

is defined on all of M, where {si} is an jrthonormal basis of H 0(M, L). 
Then 

<p*wps = 27rw + ./=188logBh, 

where wps is the Fubini-Study metric. 

Proof. On the subset of M where so "I 0, we have 

v>•wFS ~ Ra81og ( 1+ I :J + · · · + I:: I') 
= ./=laBlog ( 1 + ls1I~ + ... + lsNI~) 

I sol~ I sol~ 
= -./=188log I sol~+ ./=188log Bh 

= 27rw + ./=188log Bh 

since 27rw is the curvature of h. The same argument works on the open sets 
where Si "I 0 for each i, and these cover M. D 

The Hermitian metric h on L induces a metric hk on Lk, and we get a 
corresponding Kahler form kw. Repeating the above construction with this 
metric, we obtain a function Bhk on M. The key result is the asymptotic 
behavior of this function ask---* oo. 

Theorem 7.4. Ask---* oo, we have 

(7.1) Bhk = 1 + S(w) k-1 + O(k-2), 
47r 
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where S(w) is the scalar curvature of w. More precisely, there are functions 
ao, ai, ... on M such that ao = 1 and ai = 4~S(w), and for any integers 
p, q ~ 0 there is a constant C such that 

p 

Bhk - L °"'k-i ~ ck-P-1. 

i=O Cq 

This theorem is due to Tian [110], Ruan [93], Zelditch [124], Lu [78], 
Catlin [24], and by now there is a large literature on it. In the next section 
we will only prove a simpler statement, giving the pointwise asymptotics 
(7.1). For now we look at some simple applications. 

The original motivation of Tian was the following result, which implies 
that any Kahler metric in c1(L) can be approximated by "algebraic" metrics 
obtained as pullbacks of Fubini-Study metrics under projective embeddings. 
The result follows immediately from Lemma 7.3 and the previous theorem. 

Corollary 7.5. For large k, an orthonormal basis of H0(M, Lk) gives a 
map 'Pk: M-+ cpNk, where Nk + 1 = dimH0(M,Lk) and 

~cpkwFs - 27rw = O(k-2) in C00 • 

Another application is the following special case of the Hirzebruch­
Riemann-Roch theorem. 

Corollary 7.6. Ask-+ oo, we have 

Proof. We integrate the expansion (7.1) over M, remembering that the {si} 
form an orthonormal basis for H0(M, Lk). This means that 

D 
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7.2. Proof of the asymptotic expansion 

In this section we will prove the pointwise expansion (7.1) using the "peaked 
section" method of Tian [110], following the exposition of Donaldson [50]. 

Fix a point x E M. The basic idea is to try to construct a holomorphic 
section a of Lk such that llaiiL2 = 1 and which is £ 2-orthogonal to all 
holomorphic sections of Lk which vanish at x. If we could do this, then we 
would have Bhk(x) = ia(x)I~· Although we cannot do this exactly, for large 
k it is possible to construct sections a which are almost orthogonal to the 
sections which vanish at x. This is enough to calculate Bhk(x) up to an 
O(k-2) error. 

We can choose holomorphic coordinates wi centered at x such that 
27rw = A.oB<p, where 

<p(w) = lwl2 - ~Ri]kfWiwfwkw! + Q(w) + P(w). 

Here Ri]kf is the curvature tensor of 27rw at x, Q is a quintic polynomial, 
and P(w) = O(lwl6). Suppose the wi are defined in a small neighborhood 
B c M of x. For simplicity we can assume that B = {lwl < 1}. We can 
choose a holomorphic section s of L over B such that 

Isl~= e-'P, 

and for each k, we will use sk to trivialize the bundle Lk over B. 

Introduce coordinates zi = Jkwi, and let q,(z) = k<p(w). Then 

k-1 .. 
(7.2) q,(z) = lzl2 - 4 Ri]kfzizJ zkzl + k-312Q(z) + kP(k- 112z), 

and q, is a Kahler potential for 27rkw in B. In terms of z we have B = {lzl < 
Jk}. For large k, we can choose a cutoff function x such that x(z) = 1 for 
lzl < k115 and x(z) = 0 for izl > 2k115 , and moreover IVxl < 1. The reason 
for choosing k115 is that on the ball {izl < 2k115} we can make q,(z) be 
arbitrarily close to izl 2 by choosing k to be large enough. In particular for 
large k the metric A.a8q, will be very close to the Euclidean metric. 

The truncated function xsk can be extended by zero outside B, and so 
it can be thought of as a global section ao of Lk. It is not holomorphic, but 

Bao = B(xsk) = (Bx)sk 

is supported in the annulus {k115 ~ lzl ~ k215}, and 
- 2 k 2 
l8aolhk ~ is lhk 

on this annulus. It follows that for large k 

(7.3) 
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where by e(k) we mean a function of k that decays faster than any power 
of k. By construction luo(x)l~k = 1. 

The next task is to show that uo can be perturbed to obtain a global 
holomorphic section of Lk. This uses the so-called Hormander technique. 
The main point is the following. 

Lemma 7.7. Let t::J.8 = 8*8 + {){)* be the 8-Laplacian on Lk-valued (0, 1)­
forms, where on Lk we use the metric hk and on forms we use 27rkw .. If k 
is sufficiently large, then for any Lk-valued (0, 1)-form a we have 

(7.4) 

Proof. This essentially follows from the Weitzenbock formula 

t::J.8 = v*v + Ric + F, 

where Ric and F are endomorphisms obtained from the Ricci curvature of 
kw and the curvature form of hk, respectively. The point is that F is the 
identity, whereas as k ---+ oo, Ric goes to zero. The details are as follows. 

Let us write g for the metric 27rkw, which is also the curvature of hk. 
First note that 

- 2 -* 2 (!::J.aa, a) L2 = ll8allp + 118 allL2. 

In local coordinates let us write a = ay,dzi, where the ay, are sections of Lk. 
Let us work at a point x in normal coordinates for g. Then 

Ba= L:v3akdzi /\ dzk = L('V3ak - \7ka3)dzi /\ dzk, 
~k j<k 

where \7 is the Chern connection on Lk coupled with the Levi-Civita con­
nection on (0, 1)-forms. Since the dzi /\ dzk form an orthonormal basis, we 
have 

j,k 
-, k 

= gPJgq 'V3ak('Vpaq - 'Vqap), 

where we have used the summation convention in the last line and the metric 
h is implied in the pairing of L with L. The last expression is coordinate 
invariant, so this is IBal2 even if we are not in normal coordinates. Note 
also that 
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We therefore have 

llBalli2 + llB*alli2 = JMgPJgqk[\13a"k('\lpaq- \lqap) + '7qa"k\1;ap] dV 

= llVallh +JM gPJ gqk [(\1 q \13a"k)ap - (\13\1 qa"k)ap] dV 

~ 1 gPJgqk [R~ -.a- a-+ F -.ak-a-] dV r kqJmp qJ P 
M 

= JM [gPJ gqk Ry,ka3aq + gPkakaP] dV. 

Since the Ricci form Rpk is invariant under scaling the metric w, we have 
that Rpk = O(k-1g) since g is the metric 27rkw. For sufficiently large k, we 
will then have 

-2 -*2 1 2 ll8allL2+118 allL2 ~ 2llallL2, 
which is what we wanted to prove. D 

It follows from this result that for large k the operator b,,.8 has trivial 
kernel, and since it is selfadjoint, it is invertible (by a result analogous to 
Theorem 2.13). Let us now return to our section uo. Define 

-* 1-u = u0 - 8 L!ii 8uo. 

Using that b,,.8 commutes with B*, we can check that B*Bu = 0, and so 

(Bu, Bu) = (B*Bu, u) = 0. 

It follows that Bu = 0, so u is a holomorphic section of Lk. A priori it could 
be the zero section; however, the estimates (7.3) and (7.4) imply that for 
large k 

2 -* -1- 2 llu - uollL2 = 118 b,,.8 8uollL2 

(7.5) 
-1- -

= (b,,.8 8uo, 8uo) 
- 2 

~ 2ll8uollL2 
= c(k). 

At the same time uo is holomorphic on the ball lzl < k 115 , so u - uo is also 
holomorphic on this ball. The L2-bound and the estimate from Corollary 2.3 
for harmonic functions imply that lu - uol~k(x) = c(k). This implies that 

lu(x)l~k = 1 + c(k), 

so if k is large enough, u does not vanish at x. 

Next we want to show that u is approximately orthogonal to every holo­
morphic section which vanishes at x. 
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Lemma 7.8. There is a constant C independent of k such that 

l(r,a)L2I::::; Ck-1llrllL2 

for every holomorphic section r E H0(M, Lk) vanishing at x. 
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Proof. Using the trivializing section sk, we can think of r as a holomorphic 
function of z which vanishes at z = 0. Then by the mean value theorem we 
have 

(7.6) f r(z)e-lzl2 dV = 0, 
Jlzl<kl/5 

where dV is the Euclidean volume form. We need to see that this differs 
from (r, a)L2 by at most Ck-1llrllL2· First of all, by (7.5), we have 

(r,a)L2 = (r,ao)L2 +c-(k)llrllL2· 

Also, recall that ao = xsk, with Vx supported in the annulus k115 < lzl < 
2k115, on which we can assume that <P(z) > !lzl2 and that 27rkw is uniformly 
equivalent to the Euclidean metric. It follows that 

(r, a)L2 = e(k)llrllL2 + r r(z)e-41(z) (2 ~n I (\1-Iaa<Pr. 
Jlzl<kl/5 7f n. 

Using expansion (7.2) combined with (7.6) for the leading term, we find that 

l(r, a)L21 ::::; e(k)llri1L2 + Ck-1 f lzl4 lr(z)le-lzl2 dV 
Jlzl<kl/5 

::::; e(k)llrllL2 + Ck-1 llrll£2, 

where we used the Cauchy-Schwarz inequality in the last step, once again 
using the fact that on the set {lzl < k115} the metrics h and 21fkw are 
uniformly equivalent to e-lzl2 and the Euclidean metric, respectively. D 

Finally we want to compute the £ 2 norm of the section a. 

Lemma 7.9. For large k we have 

llalli2 = 1 - Bw(x) k-1 + O(k-2), 
47f 

where Bw is the scalar curvature of w. 

Proof. By the same arguments as in the previous lemma, up to an error of 
e(k), which we can ignore, it is enough to compute the £ 2-norm of sk on the 
ball {lzl < k115}. I.e. we need to compute 

(7.7) r e-41(z) 1 (J=laa<Pr. 
Jlzl<kl/5 (27r )nn! 
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From (7.2) we have the expansion 

~! (R.aa~r = [1- k-1Rk;:zkzl + k-312q(z) + O(k-21zl4)]dv, 
where q(z) is a cubic polynomial in zi,zi and 

dV = ( Rrdz1 /\ dz1 /\ · • • /\ dzn /\ dzn 

is 2n times the Euclidean volume form on en. In addition we have 

e-w(z) = e-lzl2 ( 1 + k~l Ri]k;:izi zkzl - k-3/2Q(z) + O(k-2lzl6)) . 

Extending integral (7.7) over all of en introduces an error of c(k), so we 
have 

(7.8) 

(27l'rllalli2 = f e-lzl2 dV Jen 
+ k-1 kn e-lzl2 (~Ri]klzizi zkzl - Rk;:zkzl) dV 

+ k-3/2 f e-lzl2 [Q(z) - q(z)] dV Jen 
+ O(k-2). 

These integrals can be computed by integrating in each coordinate direction 
separately and using the following formulas. First we have the 1-dimensional 
integral 

f e-t1z12 A.dz/\ dz= 271'. 
le t 

Differentiating this with respect to t we obtain 

fc lzl2e-lzl2 Hdz /\dz= 271', fc lzl4e-lzl2 Hdz /\dz= 471'. 

All other integrals where the number of z and z factors are not equal will 
vanish by the mean value theorem. This implies that 

1 n e-lzl2 Ri]k;:izi zkzl dV = I)271'r-1 (411')~iii + L(211'r(Riij] + ~]ji) 
e i=l i=h 

= 2(271' r 2: ~ij] 
i,j 

= 2(27l'rs27rw(x), 

where S27rw is the scalar curvature of the metric 271'w. Similarly, 

r e-lzl2 Rk;:zkzl dV = L(211'rRkk = (211')ns211"w(x). Jen k 
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The integral involving Q, q vanishes. From (7.8) we therefore obtain 

llulli2 = 1 - 821r;(x) k-1 + O(k-2 ). 

Finally note that S27rw = 2~ Sw. 
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D 

We are now ready to complete the proof of the asymptotic expansion 
(7.1). Recall that lu(x)lhk = 1 + c(k), so in particular u(x) does not vanish 
at x for large k. Let Ex c H 0(M, Lk) be the space of sections vanishing at 
x, and let 

(7.9) 

be the orthogonal decomposition of u with T/ _l_ Ex and r E Ex. Then 

i1TJlli2 = llulli2 - llrlli2· 
Since 

(r,r)L2 = (r,u)L2 ~ Ck-1llri1L2, 
we have llrllL2 ~ Ck-1, from which it follows that 

(7.10) llTJlli2 = llulli2 + O(k-2 ) = 1 - Sw(x) k-1 + O(k-2). 
471' 

Since rJ is orthogonal to every section vanishing at x and since lrJ(x)l~k = 
1 + c(k), the Bergman kernel at xis given by 

Bhk(x) = l~l~~{:k = 1 + S~:) k-1 + O(k-2). 

This completes the proof of (7.1). In order to obtain stronger results, in 
particular the fact that the expansion holds in Cl-norms, not just pointwise, 
one needs to work harder, but it is possible to argue along similar lines (see 
Tian [110] or Ruan [93]). An alternative approach is to use Fourier analytic 
techniques, as in Zelditch [124]. 

Exercise 7.10. We have shown that if L--+ Mis a positive line bundle and 
p E M, then we can choose a large power Lk such that there is a holomorphic 
section u of Lk which does not vanish at p. Use a similar technique to show 
that for large enough k there are holomorphic sections ui, ... , u n such that 
the holomorphic functions fi = ~ defined near p are such that the 8 fi span 
n~·0 M. Using this, prove the Kodaira embedding theorem (Theorem 1.40). 

Exercise 7.11. Let L be a positive line bundle over a compact Kahler 
manifold (M,w) of dimension n. Choose a metric h on L with positive 
curvature, not related tow. On H0(M, Lk), define the inner product 

(s, t}L2 = r (s, t)hk w~. 
jM n. 
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Given any orthonormal basis {so, ... , s Nk} for this inner product, define the 
Bergman kernel 

Nk 

Bk(x) = L lsi(x)l~k· 
i=O 

What are the first two terms in the asymptotic expansion of Bk(x) as k --7 

oo? 

7.3. The equivariant Bergman kernel 

In this section we will discuss an equivariant version of expansion (7.1) in 
the simplest case of a circle action. The set-up is the same as in Section 7.1 
except that in addition we assume that we have an B1-action on M preserv­
ing the complex structure and the metric w and that the action of B1 lifts 
to the total space of the line bundle L. In particular we will have B1-actions 
on the spaces of sections H 0(Lk). 

Suppose that the B1-action on M is generated by a vector field v with 
Hamiltonian H. Recall that this means 

dH(w) = w(w, v) 

for all vector fields w. We assume that the lifting of the B1-action to L is 
related to the choice of Hamiltonian H in the following way: the action of 
the generator v on sections of L is given by 

(7.11) v · s = 'Vvs + 27rHHs. 

Note that this is the opposite of the action that we discussed in Remark 5.22, 
chosen to avoid minus signs below. 

Let us denote by 27rJ=IA the induced endomorphism of the vector space 
H0(M,L). Then A is a Hermitian matrix, and we define the equivariant 
Bergman kernel 

Bff1 : M--+ R 
N 

xi--+ L(Asi, si)h(x), 
i=O 

where {so, ... , SN} is an orthonormal basis of H0(M, L). Once again, this 
is independent of the orthonormal basis chosen. 

As before, we are interested in the asymptotics of Bff: as k --7 oo, and 
we have the following. 

Proposition 7.12. Ask --7 oo, we have the asymptotic expansion 

Bhs: = Hk + B(w)H + O{k-1). 
47r 
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Note that this actually follows from expansion (7 .1) of the usual Bergman 
kernel: 

Exercise 7.13. Prove Proposition 7.12 using Theorem 7.4, together with 
an explicit expression for the Hamiltonian function of the vector field v with 
respect to the pullback <p"fcwps of the Fubini-Study metric in the notation of 
Corollary 7.5. 

A useful variant, however, is obtained as follows. For any smooth func­
tion f : R --+ R we define 

(7.12) 
Nk 

B~:·1 (x) = LU(k-1 Ak)si, si)hk(x), 
i=O 

where 27rv'-IAk is the action of v on H0(M, Lk) and /(k-1 Ak) is defined 
using the spectral theorem. In particular if {Si} is an orthonormal basis of 
eigenvectors of Ak with corresponding eigenvalues Ai, then 

Nk 

B~:·1 (x) = L f(k-1 Ai)lsi(x)l~k· 
0 

For these "twisted" Bergman kernels, we have 

Proposition 7.14. Ask--+ oo, we have the asymptotic expansion 

Bhs:,1 (x) = J(H) + S(w)f(H) + O(k-2). 
411" 

We will only show a weak form of this expansion. We can follow the 
strategy of the previous section; namely, given a point x E M, if we have a 
section 'f/ E H0(M, Lk) which is £ 2-orthogonal to all holomorphic sections 
vanishing at x, then 

(7.13) 

We use the same section 'f/ that we have constructed in equation (7.9). We 
can approximate f with polynomials, and in view of equation (7.11) we 
then need to understand (k-h\7 v)i'f/. For this, note that with respect to the 
rescaled coordinates zi in (7.2), the vector field v has coefficients of order 
Vk, and also since 'f/ is holomorphic, we can use the (1, 0)-part of v in the 
calculations. At the point x our section ao gives a trivialization in which 
the connection I-forms of the covariant derivative are given by 

Ak = 8k(-~(z)), 

with ~(z) as in (7.2). At the point x, corresponding to z = 0, we then have 
Ak = 0 and 8iAk = 0. It follows that the section ao satisfies Y'wo(x) = 
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V';Y'iao(x) = 0. All higher derivatives are also bounded independently of k. 
In terms of the vector field v this implies that 

(k-1V'v1,o)iao(x) = O(k-312), 

for all j > 0. 

Using the Schauder estimates and the fact that a - ao is holomor­
phic on the unit ball, we get that (k-1V'v1,o)ia(x) = O(k-312) as well. 
The Schauder estimates applied tor, together with llrllL2 ~ Ck-1, imply 
(k-112Vv1,o)ir(x) = O(k-1). It follows from these estimates that 

(k-1V'v)i17(x) = O(k-312), 

for all j > 0. The action of k-1 Ak is given by 

k-1Ak · s = ~ Y'vs + Hs, 
21rk -1 

and so we get 

Using polynomial approximations to f we then obtain 

f(k- 1 Ak) · s(x) = f(H(x))s(x) + O(k-312). 

We can now use this in equation (7.13) together with the formula (7.10) 
for the £ 2-norm of 17 to get 

B~:,1 (x) = f~:i,t:) + O(k-3/2) = J(H(x)) + Bw(x){;H(x)) + O(k-3/2). 

As for the non-equivariant Bergman kernel expansion, the Fourier ana­
lytic method leads to more precise results, as can be seen in Zelditch [125] 
for instance. 

7 .4. The algebraic and geometric Futaki invariants 

Suppose that (M, L) is a polarized variety with a C*-action .X (acting on 
both Mand L). Let w E c1(L) be a metric invariant under the B1-subgroup. 
In this situation we can define the Futaki invariant differential-geometrically 
for the vector field generating the B1-action as in equation (4.1) and also 
algebraically as in Definition 6.7. We will use the Bergman kernel expansion 
to show that these two definitions are the same up to a constant factor. 

Let us write Ak for the infinitesimal generator of the C* -action .X on 
H0(M,Lk). By this we mean that the action is given by tr-+ tAk, and so 
Ak has integral eigenvalues, which are the weights of the action. Recall 
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that the Donaldson-Futaki invariant is defined by looking at the asymptotic 
behaviors 

dimH0(M, Lk) = aokn + aikn-i + O(kn-2), 

Tr(Ak) = bokn+l + bikn + O(kn-i) 

for large k. Since we would like to make use of Proposition 7.14, we will 
use the action on H0(M, Lk) given by equation (7.11) rather than the dual 
action that we have used earlier. This means that the Donaldson-Futaki 
invariant is given by 

(7.14) 

in order to match with the sign that we had previously. 

On the differential geometric side, suppose that the vector field v gener­
ates the si-action on M, normalized so that the time 1 map generated by v 
is the identity. The fact that we have a lifting of the C* -action to L means 
that we have a Hamiltonian H for the vector field v with respect tow (we 
will see this in the proof below). The differential geometric Futaki invariant 
of vis then 

Fdg(v) = { H(S(w) - S) w~. JM n. 
We are using a slightly different definition from before, but the two only 
differ by a constant factor. We will prove the following. 

Proposition 7.15. In the situation above, we have Fdg(v) = -47rFa1g(.X). 

Proof. We need to compute the coefficients ao, ai, bo, bi differential-geometri­
cally. For ao, ai we have done this in Corollary 7.6, from which we have 

ao = { w~, ai = 4
1 f S(w) w~. JM n. 7r JM n. 

To deal with bo, bi we can integrate the expansion in Proposition 7.12 over 
M. If we choose an orthonormal basis of H 0 (M, Lk) consisting of eigenvec­
tors of A, we find that 

1 BS1 (kwr - Tr(A ) 
hk I - k. 

M n. 

From Proposition 7.12 we obtain 

Tr(Ak) = kn+l { H w~ + 4kn { S(w)H w~ + O(kn-i), 
JM n. 7r JM n. 

and so it follows that 

1 wn 
bo= H-1 , 

M n. 
1 1 wn bi= -4 HS(w)-1 • 
7r M n. 
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Using these in the definition of Fa1g(.X), we get 

S 1 wn 1 1 wn 1 Fa1g(.X) = -4 H-1 - -4 HS(w) - 1 = -4 F(v). 
7r M n. 7r M n. 7r 

D 

In a similar way, using Proposition 7.14, we can also relate the inner 
product and norm of C*-actions defined in equation (6.5) to L2-products of 
corresponding Hamiltonian functions, which was the original definition due 
to Futaki-Mabuchi [56]. For this, suppose that we have two commuting C*­
actions .X, µon (M, L), and denote by Ak and Bk the infinitesimal generators 
of the actions on H0(M, Lk). On the one hand we have the inner product 
(.X, µ) defined by the asymptotics 

Tr [ ( Ak - Tr~:k)Id) (Bk - Tr~~k)Id)] = (.X, µ)kn+2 + O(kn+l), 

while on the other hand we have two Hamiltonian functions H>.., Hµ gener­
ating the C* -actions. 

Proposition 7.16. We have (.X,µ) = (H>..-H>..,Hµ-Hµ)L2, whereH>..,Hµ 
denote averages. 

Proof. Using the polarization identity 

1 
(.X, µ) = 4( (.X + µ, .X + µ) - (.X - µ, .X - µ) ), 

it is enough to focus on the case when .X = µ. 

The formula follows easily from the integrated form of Proposition 7.14. 
Namely, applying the result to the functions 1, x, and x2 , we get 

dk =kn { w~, JM n. 

Tr(Ak) = kn+l { H>.. w~, JM n. 

Tr(A2) = kn+21 H2 wn 
k >.. n'' M . 

and the required result follows from these formulas. 

7.5. Lower bounds on the Calabi functional 

D 

Our goal in this section is to explain the proof of Donaldson's theorem [46], 
giving lower bounds for the Calabi functional in terms of Futaki invariants 
of test-configurations. Rather than reproducing all of the details from [46], 
we will focus on the main ideas. 

Suppose that (X, L) is a polarized manifold. Recall that a test-configura­
tion for (X, L) (of exponent 1 for simplicity) consists of an embedding X C 
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cpN using a basis of sections of Land a C*-action >.: C* c.....+ GL(N + 1, C). 
The flat limit 

Xo = lim>.(t) · X 
t--+0 

is a projective scheme fixed by the action >.. In Definition 6. 7 we defined 
the Donaldson-Futaki invariant F(Xo, >.) and the norm II.XII. We then have 
the following. 

Theorem 7.17. If w E c1(L) is a Kahler metric on X, then 

II.XII· llS(w) - SllL2 ~ -411'F(Xo, >.). 
In particular if X admits a cscK metric in c1(L), then F(Xo, >.) ~ 0 for any 
test-configuration. 

Note that by replacing L by Lr one can obtain similar statements for any 
test-configuration, not just those of exponent 1, so the conclusion F(Xo, >.) ~ 
0 really holds for any test-configuration. 

7.5.1. Using the Bergman kernel. Suppose that we have a projective 
manifold V c CPN of dimension n. Define the matrix M(V) to be 

M(V)·· = f zizJ (i?rwps)n 
iJ lv 1z12 n! ' 

and let M(V) be the trace free part of M(V), i.e. 

Vol(V) 
M(V)ij = M(V)ij - N + l §ii· 

This is a moment map for the action of SU(N + 1) on the space of projective 
submanifolds of dimension n in cpN. The basic idea is that in some sense as 
N ---+ oo, the moment map M approaches the infinite-dimensional moment 
map given by the scalar curvature, the link between the two being provided 
by the Bergman kernel expansion. We will now make this more precise. 

Suppose that Lis an ample line bundle on X, and let w E c1(L). 

Proposition 7.18. There is a sequence of embeddings M ---+ Vk c cpNk 
using sections of Lk such that 

kn/2-1 
llM(Vk)ll ::::;; 471' llS(w) - SllL2 + O(kn/2- 2 ), 

where llMll 2 = Tr(M2) for any Hermitian matrix M. 

Proof. As in the construction of the Bergman kernel, let {Si} be an or­
thonormal basis of H 0(x, Lk), where the inner product on sections is defined 
using a metric hon L whose curvature form is 211'W. We let vk c cpNk be 
the image of X under the embedding 

<pk : X ---+ cpNk, 
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given by this basis for large k. By applying a unitary transformation we can 
assume that M(Vk) is diagonal, and so 

M(Vi ) .. _ /v 1Zil2 (-/,;wFsr -1 I .12 B (-/,;cpZ:wFs)n 
k ii - IZl2 I - Si hk hk I , vk n. x n. 

where Bhk is the Bergman kernel. From Corollary 7.5 we know that 

(2~ 'PkWFS) n = (kwr( 1 + O(k-2)) 

and also 

(7.15) 

The rank of the matrix M(Vk) is 

Nk + 1 = dimH0 (X, Lk) = f (k~)n + O(k-1), 
lx n. 

It follows that 

Tr(M(Vk)) = l _ k-1 S + O(k-2 ), 

Nk + 1 47r 

and so using (7.15) the trace free part of M(Vk) is 

k-11 2 A (kwr 2 M(Vk)ii = -4 lsilhk(S - S(w)) - 1- + O(k- ), 
7r x n. 

where we also used that llsillL2 = 1. Using the Cauchy-Schwarz inequality, 
we have 

2 k-21 2(kw)n1 2 A 2 (kw)n -3 IM(Vk)iil :::;; 16 2 lsil - 1- lsil (S - S(w)) - 1- + O(k ) 
7r x n. x n. 

k-21 2 A 2 (kw)n -3 
= 16 2 lsil (S-S(w)) - 1- + O(k ), 

7r x n. 
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and so summing over the Nk + 1 rv kn terms, we have 

2 k-21 A 2 (kwr n 3 llM(Vk)ll ~ 16 2 Bhk (B - B(w)) - 1- + O(k - ) 
71" x n. 

kn-21 wn 
= 16 2 (S - B(w))2 -, + O(kn-3). 

71" x n. 

Taking square roots gives the result we want. D 

7.5.2. Lower bounds on llM(V)ll. Suppose that V c CPN is a projec­
tive manifold, and let A: C* <---+ GL(N +1, C) be a one-parameter subgroup. 
We further require now that the image of the unit complex numbers B1 c C* 
under A lies in U(N + 1). We will give a lower bound for llM(V)ll that is a 
finite-dimensional analog of Theorem 7.17. 

For any t E C*, let us write Vt = A(t) · V. Suppose that A(t) = tA 
for a Hermitian matrix A with integer eigenvalues. Then the B1-action 
on cpN is induced by the skew Hermitian matrix AA (we will use the 
convention (7.11) for the action on functions, which means that the formula 
for the Donaldson-Futaki invariant will be given by (7.14)). A Hamiltonian 
function for the vector field generating this circle action is then given by 

Define the function 

·-j 
Aijziz 

h= 1z12 

where A is the trace free part of A. Then 

f(t) = f h (~w~s)n - Tr(A)Vol(V). 
}Vt n. N + 1 

The key point is that f(t) is non-decreasing fort E R>O· 

Lemma 7.19. Restricting f(t) to real numbers t > 0, we have f'(t) ~ 0. 

Proof. This is essentially the calculation (5.3), using the fact that M is a 
moment map. Nevertheless we can check it directly. Let Vh be the vector 
field generating the B1-action on CPN. Then 

Jvh = -gradh. 

Let us write q>s : cpN --+ cpN for the one-parameter group of diffeo­
morphisms generated by Jvh (this corresponds to approaching 0 along the 
positive real axis in C*). It is enough to compute the following derivative 



146 7. The Bergman Kernel 

at s = 0: 

!!_I r h W~s = !!_I r q,;(h) (q>;w~sr 
ds s=O iiPs(V) n. ds s=O iv n. 

= { (Jvh)(h) Wps + { h nLJvhWFS /\ Wpsl 
iv n! iv n! 

Since (-gradh)(h) = -lgradhl2, the first term is 

r -lgradhl2 Wp5. 
iv n! 

For the second term, recall from (6.3) that LJvhWFS = -2A.88h. Inte­
grating by parts we have 

[ h 2nR.08h /\ wF-81 = - [ 2nah /\ 8h /\ wF-81 = [ 21ah1i w1J;.8 , 

where we used Lemma 4.7 and we want to emphasize that l8hli is the norm 
of only the part of oh which is tangential to V. In terms of the real gradient, 
l8hli = ~lgradhli, where again only the tangential part is considered. It 
follows that 

.!!__I r h W~s = - r lgrad hlfv W~s :::; o, 
ds s=O iiPs(V) n. iv n. 

where lgrad hlfv means that we are taking the norm of the normal component 
to V. Increasing t corresponds to flowing along -Jvh, so the result that we 
want follows. 0 

Let us write Vo = limHo Vt for the flat limit. A crucial fact is that 
there is an algebraic cycle IVol associated to Vo, which can be thought of as 
the union of then-dimensional irreducible components of Vo, counted with 
multiplicities. In this way one can make sense of integrals over Vo, and if we 
define 

FCh(A Vi)= 1 h (/,rwFsr - Tr(A)Vi l(V) 
' o I N+l o ' Vo n. 

then 

lim J(t) = FCh(A, Vo), 
t-+0 

since the convergence Vt --+ IVo I holds in the sense of currents. The mono­
tonicity of f(t) implies the following, which is the finite-dimensional analog 
of Theorem 7.17. 

Proposition 7.20. We have 

llAll · llM(V)ll ~ FCh(A, Vo). 
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Proof. The monotonicity of f implies that 

'D:(AM(V)) = /(1) ~ lim f(t) = FCh(A, Vo). 
t-+0 

The result then follows from the Cauchy-Schwarz inequality. D 

In order to relate this to the Futaki invariant, we need to be able to 
compute FCh(A, Vo) algebro-geometrically. Recall from Section 6.3, that 
given the C* -action >., there is an induced C* -action on the homogeneous 
coordinate ring 

R = C[xo, ... , XN]/ Io, 

where Io is the homogeneous ideal corresponding to the flat limit Vo (except 
that our convention is the opposite of that in Section 6.3). Let us write Ak 
for the generator of the C*-action on Rk, so the total weight of the action 
is wk= 'D:(Ak)· Note that if V c cpN is not contained in any hyperplane, 
then Ri consists of all the linear polynomials, and Ai = A. We need the 
following. 

Lemma 7 .21. For large k we have 

(7.16) 'D:(Ak) = kn+l { h (-trw~s)n + O(kn). 
lvo n. 

If Vo were smooth, then this would follow from integrating the expression 
in Proposition 7.12. In general, more involved arguments are required. One 
approach is to reduce the problem to the case when A has constant weights, 
and so h is a constant function. Then one needs to relate the volume of 
Vo to the leading order term of its Hilbert polynomial (see Donaldson [46) 
for this approach). An alternative approach, following Wang [119], is to 
degenerate Vo into a union of linear subspaces (with multiplicities) in such 
a way that the two sides of (7.16) remain unchanged in the limit and then 
check directly that the equation holds for linear subspaces. 

7.5.3. Putting the pieces together. We would now like to combine 
the results of the previous two subsections to complete the proof of The­
orem 7.17. We start with a test-configuration>. for (X,L) of exponent 1 
and a metric w E c1(L). We would like to apply Proposition 7.20 to the 
sequence Vk C cpNk obtained in Proposition 7.18. For this we need to use 
>. to define C* -actions 

>.k: C* c.....+ GL(Nk + 1, C) 

in such a way that >.k maps 8 1 c C* into U(Nk + 1). A natural way to do 
this is to work with filtrations instead of C* -actions, as we did in Section 6.6. 
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Let us write S = C[xo, ... , XN] for the polynomial ring in N + 1 = 
dimH0(X, L) variables. The homogeneous coordinate ring of Xis given by 

R=S/I 

for a homogeneous ideal I. As before, the C* -action A induces a filtration 
(in fact even a grading) on S defined by 

FiS ={span of elements f ES with weights ~ -i}, 

and this descends to a filtration FiR on R such that 

· · · c FiR c Fi+lR c · · · . 

We can further restrict the filtration to the degree k piece Rk for any k, 
and as we have seen before, all the data from the test-configuration that we 
need can be extracted from the filtration. The following is clear from the 
definitions. 

Lemma 7.22. We have the following: 

Nk + 1 = dimRk = L(dimFiRk -dimFi+iRk), 
i 

Tr(Ak) = L i(dimFiRk - dimFi+lRk), 
i 

Tr(A~) = L i 2 (dimFiRk - dimFi+1Rk)· 
i 

Note that there are only finitely many non-zero terms in each sum since for 
fixed k the filtration FiRk must stabilize. Also, Ak denotes the generator of 
the C* -action on H 0(Xo, Lk) as in the definition of the Donaldson-Putaki 
invariant, but with the opposite convention for the action in order to match 
with equation (7.11). 

Now for any k, recall that the embedding x -t vk c cpNk was given 
by an orthonormal basis, for a suitable choice of Hermitian metric on Rk = 
H0(X, Lk). Using this metric we can decompose Rk into an orthogonal 
direct sum 

Rk = · · · EB FiRk/ Fi-1Rk $ Fi+iRk/ FiRk EB · • • , 

where only finitely many terms are non-zero. We then define the C* -action 
Ak to act with weight -i on the summand FiRk/ Fi-lRk· In this way, 8 1 

will act by unitary transformations of Rk· Applying Proposition 7.20 to this 
action, we get 

(7.17) llAkll · llM(Vk)ll ~ f hk (/,rw~sr - ~(~kivol(Vk), 
J(Vk)O n. k 
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with self-explanatory notation. From Lemma 7.21 we have for fixed k, as 
l--+ oo, 

Tr(Akz) = in+i J hk (~w~sr + O(ln). 
(Vk)O n. 

Comparing this to the expansion (as k --+ oo) 

Tr(Ak) = bokn+l + O(kn), 

we see that 

f hk (~w~sr = bokn+i. 
J(Vk)O n. 

From (7.17) we therefore have 

(Tr(A2))1/2 · llM(Vi )II~ b kn+l - bokn+l + blkn + O(kn-1) a kn 
~ - k :::-- o aokn + aikn-1 + O(kn-2) o 

= bokn+l _ [bokn+l + blkn + O(kn-1)] [1- :~ k-1 + O(k-2)] 

=-kn (b1 - :~ bo) + O(kn-1). 

Combining this with Proposition 7.18 and the definitions of the Donaldson­
Futaki invariant F(Xo, >.) and the norm ii>.11, we have 

(
kn/2-1 ) 

(1i>.llkn/2+l+O(knl2)) 471' llS(w) - SllL2 + O(kn/2- 2) 

;;a:: -kn F(Xo, >.) + O(kn-l). 

Letting k --+ oo we find 

ii>.11 · llS(w) - Slip ;;a:: -411'F(Xo, >.), 

which is the statement of Theorem 7.17. 

The following corollary is immediate from Theorem 7 .17. 

Corollary 7.23. Suppose that X admits a cscK metric w E c1(L). Then 
(X, L) is K-semistable. 

In Section 8.6 we will see that together with a perturbation argument, 
this result can be used to show that (X, L) is in fact K-stable if X has no 
holomorphic vector fields and admits a cscK metric in c1(L). 

Exercise 7.24. Use Theorem 7.17 to show that extremal metrics on pro­
jective manifolds minimize the Calabi functional in their Kahler class. 
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7.6. The partial C0-estimate 

In previous sections, we were concerned with the asymptotics of the Bergman 
kernel for a fixed background metric w. An important insight due to Tian 
[111], [112] is that obtaining uniform control of the Bergman kernel for 
a family of metrics is the key to relating the existence of Kahler-Einstein 
metrics on Fano manifolds to algebro-geometric stability. In this section we 
will outline some of these ideas. 

Recall from Section 3.5 that if M is a Fano manifold, i.e. c1 (M) > 0, 
then M does not always admit a Kahler-Einstein metric. In order to find 
Kahler-Einstein metrics, we try to find metrics Wt E c1(M) which satisfy 

(7.18) Ric(wt) = twt + (1 - t)a, 

where a E c1(M) is a fixed Kahler form. As we discussed in Section 3.5, 
there is a T > 0 such that a solution Wt exists fort E [O, T), and the difficulty 
is in understanding what happens to Wt as t -t T. 

Letting K'A,/ be the anticanonical line bundle, for any metric w E c1 (K"A,/) 
we can choose a metric hon K'A,/ whose curvature form is w. We will write 
Bw,k = Bhk for the Bergman kernel constructed using hk. 

Tian [111] conjectured the following, called the partial C0-estimate. 

Conjecture 7.25. Given c > 0, there are constants k, c > 0 depending on 
M, c such that if w satisfies Ric(w) >cw, then 

inf Bwk > c. M , 

The importance of this conjecture stems from the formula in Lemma 7.3. 
In particular, by replacing k by a large multiple, we can assume that we have 
embeddings 

<pt: M -t CPN 

using orthonormal bases of H 0(K·;/) with respect to the metrics hf for 
t E [O, T), and if the partial C0-estimate holds, then we will have a uniform 
lower bound on the Bwt,k· One can show (see [51] for details) that under 
the assumption Ric(w) >cw we have an upper bound for Bw,k, so we have 
a constant C such that 

sup I log Bwt,kl < C 
M 

for all t E [O, T). From Lemma 7.3 we have 

1 1 /"1 -

27fk cp;wFs =Wt+ kv-188logBwt,k• 

so the upshot is that on the level of c0-bounds for the Kahler potentials, we 
can compare the metrics Wt along the continuity method to certain "alge­
braic" metrics cp;wFS· This can be used to compare the values of an energy 
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functional, such as the Mabuchi functional, at Wt and cp;wps, while at the 
same time an algebro-geometric stability condition can be used to control 
the energy functional on the space of algebraic metrics. For details of this 
approach, see Tian [112], [114] and Paul [87]. 

There has been much progress recently on Tian's conjecture (Conjec­
ture 7.25). In proving the existence of Kahler-Einstein metrics on Fano 
surfaces with reductive automorphism group, Tian [111] showed that the 
partial c0-estimate holds for a family of Kahler-Einstein surfaces. There was 
little progress in the higher-dimensional case until the work of Donaldson­
Sun [51], which extended Tian's result to Kahler-Einstein manifolds in all 
dimensions. Soon afterwards, Chen-Donaldson-Sun [32], [33], [34] extended 
these results to families of metrics Wt solving a variant of equation (7.18), 
where a is replaced by the current of integration [DJ along a suitable di­
visor D c M. Geometrically this amounts to Wt satisfying the equation 
Ric(wt) = twt on M \ D and having conical singularities along D with 
cone angle 27rt. This result was enough to relate the existence of a Kahler­
Einstein metric on M to the K-stability of ( M, Ki/) (see [34]). The tech­
niques of Donaldson-Sun [51] were extended to the Kahler-Ricci flow by 
Tian-Zhang [115], giving a new proof of the existence of Kahler-Einstein 
metrics on K-stable Fano manifolds for dimension at most 3. In [105] we 
showed that the methods of Chen-Donaldson-Sun can be used to obtain 
the partial c0-estimate for solutions of the usual continuity method (7.18), 
i.e. without using conical singularities. As for the general case of Conjec­
ture 7.25, Jiang [66] showed, using the Ricci flow techniques of [115], that 
the conjecture holds in dimensions up to 3. 

To conclude this section, we briefly explain the idea in Donaldson­
Sun [51] which underpins all of these works. In the proof of the asymptotic 
expansion of Theorem 7.4, the basic idea is that the manifold ( M, w) is close 
to Euclidean space on a suitable scale. More precisely, there is a small ra­
dius r > 0 such that any ball Br c M of radius r is well approximated by 
the Euclidean unit ball B 2n when scaled to unit size. We could therefore 
glue a model section of the trivial bundle over B 2n, with exponential decay, 
onto the manifold M and use the Hormander technique to perturb it to a 
holomorphic section. 

When we have a family of metrics ( M, Wi), then to use a similar argument 
one needs some scale r at which each (M, wi) "looks" standard. The key 
difficulty is that in general the model is no longer just Euclidean space, as can 
be seen already in the case of complex surfaces where orbifold singularities 
can develop. The new input in [51] is the theory of Cheeger-Colding [25], 
[26], [27] on the structure of limit spaces of sequences of manifolds with 
lower Ricci curvature bounds. In the present situation these results imply, 
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roughly speaking, that there is a suitable scale r at which a neighborhood of 
each point in (M, wi) is well approximated by a ball in the cone C(Y) over 
a length space Y. At most points the cone is just en, which is similar to 
the case when we have a fixed metric, but there are other possibilities. The 
crucial step is then to show that one has suitable model sections over these 
cones that can be glued onto the manifold using cutoff functions. In the 
end one does not obtain asymptotics as precise as in Theorem 7.4; however, 
one can still obtain the lower bound for the Bergman kernel required for 
Conjecture 7.25. 



CscK Metrics 
on Blow-ups 

Chapter 8 

Suppose that Mis a compact Kahler manifold with a cscK metric w. In this 
section we will describe how one can construct cscK metrics on the blow-up 
of M at a point. We will only discuss the simplest setting in detail, namely 
when M has no holomorphic vector fields. We will briefly outline how more 
general results can be obtained, as in Arezzo-Pacard [3], [4], Arezzo-Pacard­
Singer [5], and also [108]. 

8.1. The basic strategy 

The technique used for constructing cscK metrics on the blow-up at a point is 
very general and is used in a wide variety of problems in geometric analysis. 
There are two main steps in the argument. Starting with a cscK metric w 
on M and a point p E M, one first constructs a family of metrics We on the 
blow-up BlpM depending on a small parameter c > 0. The metrics We are 
obtained by modifying w on a very small neighborhood of p, as indicated in 
Figure 8.1, and as c --+ 0, the metrics We converge tow in a suitable sense 
(away from the point p). The second step is to perturb We in its Kahler 
class to obtain a cscK metric. This involves studying the linearization of 
the scalar curvature operator, and it will only be possible for sufficiently 
small c. 

When n > 2 we can get away with a fairly crude construction of the 
approximate solutions We. For the case when n = 2 we will construct a better 
approximate solution, while even more careful constructions are needed for 
the more refined results in [4], [5], [108]. The other step in the argument, 
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we = w glued to £ 2ry 
scalar fl.at metric T/ 

Figure 8.1. Constructing a metric We on BlpM. 

namely studying the inverse of the linearized operator, is almost the same 
in each of these results. 

8.1.1. Blow-ups. Let us recall briefly how to construct the blow-up of a 
Kahler manifold M at a point p. The blow-up Bloen of en at the origin is 
simply the total space of the 0 ( -1) bundle over epn-l. Let us write 

E ~ epn-l c Bloen 

for the zero section. There is a holomorphic map 

7f: 0(-1) ---+en 

([zo: ···:Zn], (zo, ... , Zn)) t-7 (zo, ... , Zn), 

where we recall that the fiber of 0(-1) over the point [zo : · · · : Zn] is 
simply the line in en+l spanned by (zo, ... , Zn)· The map 7f restricts to a 
biholomorphism 

7r : Bloen \ E---+ en\ {O}. 

Suppose now that M is a complex manifold of dimension n > 1 and 
that p EM. We can identify a neighborhood of p with a ball B c en such 
that p corresponds to the origin. The blow-up BlpM is then constructed by 
replacing B c M by 7r-1(B) c BI0en, using the biholomorphism 

7r : 7r-1(B \ {O}) ---+ B \ {O}. 

The result is a complex manifold BipM, equipped with a holomorphic map 

7r : BlpM ---+ M, 
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called the blow-down map. The preimage E = 7r-1(p) is a copy of cpn-I, 
and 7r restricts to a biholomorphism 

7r : BlpM \ E -.'.; M \ {p}. 

Exercise 8.1. Let M be a compact complex manifold, and let p E M. Show 
the following: 

(a) Any holomorphic vector field on M which vanishes at p can be 
lifted to the blow-up BlpM. 

(b) Any holomorphic vector field on BlpM is obtained by lifting a holo­
morphic vector field on M that vanishes at p. 

An application of the Mayer-Vietoris sequence shows that (if n > 1) 

H 2(BlpM, R) ~ H 2 (M, R) E9 R[E], 

where [E] denotes the Poincare dual of E. We will see that if w is a Kahler 
metric on M, then for sufficiently small c > 0, the class 

is a Kahler class on BloM. Our goal is to prove the following theorem. 

Theorem 8.2 (Arezzo-Pacard). Suppose that Mis a compact Kahler man­
ifold with no holomorphic vector fields and that w is a cscK metric on M. 
Then for any p EM the blow-up BlpM admits a cscK metric in the Kahler 
class 

for sufficiently small c > 0. 

This theorem gives a way of constructing many new cscK manifolds. For 
instance we could take M to be a Kahler-Einstein manifold of dimension 
at least 2, given by Theorem 3.1. By Exercise 1.43, M does not admit 
holomorphic vector fields. We can then obtain new cscK metrics on the blow­
up of M at any point, and we can even iterate the construction. Note that 
we have little understanding of what the metrics produced by Theorem 3.1 
actually look like. In contrast we will see that the perturbation method 
giving Theorem 8.2 implies that the metrics we obtain on the blow-up BlpM 
are very close to our original metric on M away from the point p, while near 
p they are very close to scaled down versions of the the Burns-Simanca 
metric which we will study in the next section, as indicated by Figure 8.1. 

8.1.2. The Burns-Simanca metric. A basic ingredient in constructing 
cscK metrics on blow-ups is a scalar flat, asymptotically flat metric on 
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BI0cn. This metric was found by Burns and Simanca (see [70], [95]). For 
n > 2 the metric can be written as 

(8.1) 

as lwl--+ oo, in terms of the standard coordinates on BloCn \ E ~en\ {O}. 

We will briefly describe the construction of the metric rJ here, using the 
methods we used in Section 4.4. We are trying to construct a metric on the 
total space of the 0(-1)-bundle over cpn-1. Choose a Hermitian metric h 
on 0(-1) with curvature form F(h) = -wps. We will construct the metric 
in the form 

rJ = H8Bf(s), 

where f is a suitable strictly convex function and s = log lzl~ is the log of 
the fiberwise norm. As in Section 4.4 we can use coordinates z on cpn-l 
and a fiberwise coordinate w, so that l(z, w)I~ = lwl2h(z). We can choose 
coordinates at a point such that dh = 0. Then 

'( ) * "( ) Adw A dw 'f/ = f s p wps + f s lwl 2 , 

where p: 0(-1)--+ cpn-1 is the projection map. We get 

'f/n = ~:(,~) (!'(s))n-lp*w1f;.81 A Hdw A dw, 

which is true at any point, not just where dh = 0. The Ricci form is therefore 

p = -H8Blog(!"(s)(!1(s)r- 1) + p*(nwps), 

using that Ric(wps) = nwps. Taking the Legendre transform off as in 
Section 4.4 we can rewrite this in terms of the function c,o(r) = f"(s), where 
r = f'(s). We have 

* HdwAdw 
'f/ = rp wps + c,o(r) lwl 2 , 

p = -H8Blog(c,orn-l) + np*wps 

-(- ,_ (n-l)c,o ) * _ (, (n-l)c,o)' HdwAdw 
- c,o + n P wps c,o c,o + I 12 . 

T T W 

Taking the trace, we have 

S(rJ) = ~; [r2c,o" + 2T(n - l)c,o' + (n - l)(n - 2)c,o - rn(n - 1)]. 

To obtain a metric which on the zero section restricts to wps, we need to 
find c,o defined on [1, oo) such that 

c,o(l) = 0, c,o'(l) = 1. 
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The equation S(TJ) = 0 is equivalent to 

(8.2) d~2 [rn-l<p] = Tn-2n(n - 1). 

Integrating this twice, using the boundary conditions, we get 

<p(r) = T - (n - l)r2-n + (n - 2)r1-n. 

We need to change variables back to s to see the asymptotics of the Kahler 
potential in complex coordinates. Note that 

d d 
r = dsf(s) = <p drf(s), 

so 
d 
drf(s) = T<p-l = (1- (n - l)rl-n + (n - 2)r-n)-1. 

For large r we have 

d 
drf(s) = 1 + (n - l)rl-n - (n - 2)r-n + O(r2- 2n), 

and so up to changing f by a constant, 

n-1 n-2 32 f(s) = T - --T2-n + --Tl-n + O(r - n). 
n-2 n-1 

We also have 

ds = <p-1 = T-1(1 + (n - l)rl-n - (n - 2)r-n + O(r2-2n)) 
dr 

for large r, so up to adding a constant to s (which corresponds to scaling 
the metric h), we have 

log lzl~ = s = logr + O(r1-n). 

Using this, 

f(s) = lzl~ - : = ~lzlh-2n +: = ~lzl~-2n + O(lzl6- 4n). 

Now recall that under the biholomorphism 0(-1) \ cpn-l ~en\ {O}, the 
metric h is given by a multiple of the Euclidean metric 

l(zi, · · ·, Zn)I~ = c(lz112 + · · · + lznl2). 

This shows that the metric 'f/ is of the form given in equation (8.1). 

When n = 2, then a similar calculation shows that 

'f/ = V=Ia8(1wl 2 +log lwl). 

Below, we will often not mention the n = 2 case separately since in the basic 
definitions, dealing with it is usually a simple modification. We will see, 
however, that when n = 2 there are some real difficulties when controlling 
the inverse of the linearized operator in Theorem 8.14, and also we will need 
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to construct a better approximate solution than what we obtain in the next 
section. We will discuss these issues in Section 8.4. 

8.1.3. The approximate solution. Let us suppose now that w is a cscK 
metric on M and that we picked a point p E M. In order to construct 
a metric on BlpM which has approximately constant scalar curvature, the 
idea is to replace the metric w on a small neighborhood of p with a suitably 
scaled down copy of 'f/· To do this we use cutoff functions to patch together 
the Kahler potentials. 

Suppose that the zi are normal coordinates centered at p, so that near 
p the metric w is of the form 

w = v'-Ia8(1zl2 + <p1(z)), 

where <p1(z) = O(lzl4). For simplicity we can assume that the zi are defined 
for lzl < 1. Fix a parameter e, and let 

n-1 
re: = €---..--. 

We will glue e2'f/ to w on the annulus B2re \ Bre· Under the change of 
variables z = cw we have 

e2TJ = Ra8(1zl2 + e2ip2(e-1z) ), 

where <p2(z) = O(lzl4- 2n). 

Let us choose a smooth function 'Y: R--+ [O, 1] such that 

'Y(X)={l ifx~2, 
0ifx~1 

and define 'Y1(z) = 'Y(lzl/re:)· Also, let 'Y2 = 1 - 'Yl· Define the metric We: on 
M \ {p} by letting 

{
w on M \ B2re, 

We:= v'=I88(1zl2 + 'Y1(z)<p1(z) + e2'Y2(z)<p2(e-1z)) on B2re \ Bre, 

e2'f/ on Bre \ {p}. 

The reason for our choice of re: = g(n-l)/n is that, this way, on the annulus 
B2re \ Bre we have 

'Y1(z)<p1(z) +e2'Y2(z)cp2(e-1z) = O(lzl4). 

The metric We: is positive definite everywhere if e is sufficiently small. It 
also naturally extends to a metric on BlpM which we will write as We: as 
well. Since the volume of the exceptional divisor E with this metric is (~:~), 
and we have not changed w outside a small ball, the Kahler class of We: is 
11'*[w] - e2[E]. 
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8.1.4. The equation. Our goal is to perturb We into a cscK metric for 
sufficiently small c. This means that we need to find a smooth function 
<.p on BlpM such that We + H87Jc.p is cscK. A small technical nuisance is 
caused by the fact that adding a constant to <.p does not change the metric. 
One way to overcome this is to choose a point q E M outside the unit ball 
around p and try to solve the equation 

(8.3) S(we + H87Jc.p) - S(w) - c.p(q) = 0. 

This equation is no longer invariant under adding constants to c.p. 

We will solve the equation using the contraction mapping principle, and 
for this a crucial role is played by the linearization of the scalar curvature 
operator. At any metric w this is given by Lemma 4.4 as 

Lw('P) := dd I S(w + t.,r-:l87Jc.p) = -'D*'Dc.p + gffca;S(w)8k:c.p 
t t=O 

- -fl.21n - Rik:8·8k-1n - .,., w J .,.,, 

where flLk is the Ricci curvature of w with the indices raised. An important 
observation is that if S(w) is constant, then 

Lw('P) = -'D*'Dc.p, 

and so if Mis compact, the kernel of Lw(c.p) coincides with the kernel of 'D. 
If there are no non-zero holomorphic vector fields on M, then the kernel of 
'D consists of only the constants, so in this case Lw is an isomorphism when 
restricted to the £ 2-orthogonal complement of the constants. Again one can 
remove the issue with the constant functions by considering the operator 

Lw('P) = Lw(c.p) - c.p(q), 

where q E M is a point we fix in advance. It is then easy to check that if M 
is compact, w is cscK, and M has no holomorphic vector fields, then 

(8.4) Lw: ck,a(M)-+ ck-4,a(M) 

is an isomorphism. 

In order to solve equation (8.3), the most important step is to show that 
the linearization Lw,, is invertible and to obtain bounds on the norm of the 
inverse in suitable Banach spaces. It turns out that the right spaces to use 
are certain weighted HOlder spaces. In the next section we will discuss the 
basic theory of elliptic operators acting between weighted spaces. 

8.2. Analysis in weighted spaces 

8.2.1. The case of Rn\ {O}. Many of the results that we need follow from 
a study of the Laplacian on Rn\ {O} in suitable weighted spaces. To define 
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the weighted spaces, let f : Rn\ {O} --+ R, and choose a E (0, 1), 6 E R, 
and a non-negative integer k. For r > 0, define 

fr : B2 \ Bi --+ R 

fr(x) = r-5 f(rx), 

where Br is the ball of radius r in Rn. In other words fr is the pullback of 
r-5 funder the scaling map B2 \Bi--+ B2r \Br. Then for any i we have 

V'i fr(x) = r-Hivi f(rx). 

Using this, we define the weighted norm by 

(8.5) 

in terms of the usual Holder norms. 

We say that f E c;10 (Rn \ {O}) if the weighted norm off is finite. One 
can show that these weighted Holder spaces are Banach spaces, and it follows 
from the definition that if f E c;,o:, then for i :s::;; k we have V'i f E c;~ii,o: 
and 

for some C independent of f. In particular for any 6 the Laplacian defines 
a bounded linear map 

l::..5: c;'0 (Rn \ {O})--+ c:~i'0(Rn \ {O} ). 

Certain non-linear operators also define bounded maps between suitable 
weighted spaces, thanks to the boundedness of the multiplication maps 

ck,o: x ck,o: --+ ck,o: 5 51 5+5' 
(!, g) i--+ f g. 

The basic question is to determine the mapping properties of l::..5. The 
main result on this that we need is the following. 

Theorem 8.3. Suppose that 6 ~ Z \ (2 - n, 0). Then the map 

l::..5 : c;'0 (Rn \ {O}) --+ c:~i'0(Rn \ {O}) 

is an isomorphism. 

Sketch of proof. The proof follows from studying explicit integral repre­
sentations of the inverse of !::... We will only give the proof in the easiest 
case, when 6 E (2 - n, 0) and in particular n > 2. The general case (using 
weighted Sobolev spaces instead of Holder spaces) can be found in Bart­
nik [12, Theorem 1.7]. 
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Recall that the fundamental solution of the Laplacian is 

G(x) = ( 1 2) lxl2-n, 
n n- Cn 
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where Cn is the volume of the unit ball in Rn. If u E c;~;·0 , then we would 
like to define f : Rn \ {O} --+ R by 

f(x) = f G(x - y)u(y) dy. 
Jan\{O} 

To show that this is well-defined, we use that 

lu(y)I:::;; llull0 k-2,alYl6- 2. 
6-2 

By scaling and symmetry considerations it is enough to bound 1/(1)1, which 
amounts to bounding the integral 

r 1y15- 2 

Jan\{O} 11- Yln-2 dy. 

It follows that f is well-defined, 6.f = u, and we have 

lf(x)I:::;; Cllull0 k-2,alxl6. 
6-2 

In order to obtain estimates for the derivatives of f, we can apply the 
Schauder estimates (Theorem 2.8) to the rescaled functions fr in (8.5). This 
shows that 6.5 is surjective. For more general weights o one needs to use 
other integral kernels. 

To see that 6.5 is injective, suppose that 6.f = O, and expand f in 
spherical harmonics. In other words we write fin polar coordinates f(r, 8), 
where 8 E sn-1, and for each r we expand the function 8 i--t f(r, 8) in terms 
of eigenfunctions of the Laplacian on sn-1• We have 

00 

i=l 

where wi is an eigenfunction with eigenvalue Ai· Using the formula for the 
Laplacian in polar coordinates, we have 

6.f = f [a?(r) + n - l a~(r) + A~ai(r)] wi(8). 
i=O r r 

It follows from this that if 6.f = O, then the ai(r) are solutions of the ODEs 

"( ) 2n - 1 , ( ) Ai ( ) ai r + ai r + 2 lli r = 0. 
r r 

The solutions of this ODE are linear combinations of r81 , r82 , where 

si, s2 = n -1 ± J(n - 1)2 - Ai, 
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while the eigenvalues Ai for i ~ 0 are given by 

Ai= -i(n-1 +i). 

The powers s1, s2, with Ai ranging over all eigenvalues are called the indicial 
roots of fl. and they give all the possible growth rates of harmonic functions 
on Rn\ {O}. From the above description we see that the indicial roots are 

{O, 1, 2, ... } U {2 - n, 1 - n, -n, .. . } = Z \ (2 - n, 0), 

so our choice of & means that ll.5 is injective. D 

Remark 8.4. From the expansion in terms of spherical harmonics above, 
it is clear that if instead of functions on Rn\ {O} we have f: B1 \ {O}-+ R 
or g: Rn\ B1-+ Rand ll.f = ll.g = 0, then the growth rates off and g at 
0 and oo, respectively, must be one of the indicial roots. 

Exercise 8.5. Suppose that u : Rn\ {O} -+ R is in the weighted space 
c;~;,a for some k ~ 2 and a E (0, 1). Suppose that f : Rn\ {O} -+ R 
satisfies 

lf(x)I < Clxl5 

for some constant C and ll.f = u. Show that then f E c;,a. 

The above result can be used to understand properties of the Laplacian 
in weighted spaces on manifolds such as Mp = M \ {p} or on asymptotically 
flat manifolds such as BloCn. We can use our weighted spaces on R 2n \ {O} 
to define weighted spaces on such manifolds (n is the complex dimension) 
using cutoff functions. Consider Mp first. Let us use normal coordinates at 
p to identify a small geodesic ball, say B1, around p, with the unit Euclidean 
ball B1 c R 2n. Let 'Y be a cutoff function on M, equal to 1 in B1;2 and to 
0 on M \ B1. Then if f : Mp -+ R, we can think of 'Y f, extended by zero, 
as a function on R 2n \ {O}. We can therefore define the weighted norm 

llfllc;•a(Mp) = llfllck,a(M\B1; 2) + ll'Yfllc;•a(R2n\{O})" 

Similarly on BloCn, let 'Y be a cutoff function which equals 1 outside B2 
and which equals 0 in B1. Then for any f: BloCn-+ R the function 'Yf can 
be thought of as a function on R 2n \ {O}. We can then define 

11/llc;•a(BloCn) = llfllck,a(B2) + ll'Yfllc;•a(BloCn\Bi)' 

where B1, B2 are subsets of BloCn. 

A crucial point is that we can compare the Laplacian fl. on M near p 
with the Euclidean Laplacian ll.Euc on B1 C R 2n in these weighted spaces, 
owing to the fact that the metric is flat to order 1 at p in normal coordinates. 
It follows that if f E c;•a(Mp), then 

ll.f - fl.E f E Ck-2,a rather than Ck-2,a 
UC 5 5-2 I 
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and an analogous result holds on BloCn when using a metric that is asymp­
totically flat. Using this, many results about the Euclidean Laplacian can 
be generalized to more general Laplacian operators. 

Although we will not have to use this, we mention a central result in the 
theory. Note that on Mp and BloCn we can no longer expect an isomorphism 
result as in Theorem 8.3; however, it turns out that except when 8 is an 
indicial root, the Laplacian bi.5 defines a Fredholm map. References for such 
results are Lockhart-McOwen [77], Pacard [86], or Bartnik [12]. 

Theorem 8.6. If 8 is not an indicial root, then the maps 

bi.5: c;•a(Mp)--+ c;~;·a(Mp), 

bi.5 : c;•a(BloCn) --+ c;~;·a(BloCn) 

are Fredholm operators. Moreover 

Im(bi.5) = (Ker(bi.2-n-6)).L, 

where the orthogonal complement is taken with respect to the L 2-product. 

In contrast to this, one can check that when 8 = 0, the image of bi.5 is 
not closed, so the operator is not Fredholm: 

Exercise 8. 7. Consider the Laplacian acting between weighted spaces on 
Mp: 

bi.5 : c;•a(Mp) --+ c;~;·a(Mp)· 
Show that if 8 = 0, then the image of bi.5 is not closed, by considering the 
Laplacian of functions that behave like log log lxl for x sufficiently close top. 

8.2.2. The linearized operator. Instead of the Laplacian, we are inter­
ested in the operator 

L: <pr-+ -bi.2<p - Rik8/Jii:<p, 

either with respect to the metric T/ on BloCn or with respect tow on Mp. 
The mapping properties of this operator can be deduced from those of bi. 2 
acting on R 2n\ {O}, using the fact that T/ is asymptotically flat at infinity and 
w is flat up to first order at p. The mapping properties of bi.2 on R 2n \ {O} 
can be deduced from those of bi.. In particular the indicial roots of bi.2 on 
R 2n are Z \ (4- 2n, 0): 

Exercise 8.8. Use Theorem 8.3 to show that for 8 ¢ Z\ (4-n,O), the map 

bi.~ : c;•a(Rn \ {O}) --+ c;~:·a(Rn \ {O}) 

is an isomorphism. 

The following two results will be crucial. 
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Proposition 8.9. If 8 < 0, then the operator 

L 11 : c:·0 (Bloen)-+ C2~(Bloen) 

has trivial kernel. 

Proof. We can assume that in fact 8 E (-1, 0). We have L11 = -v;v11 , 

so suppose that v;v111.p = 0 with <p E C:·0 (B10en) and 8 < 0. We first 
want to obtain better decay for <p at infinity, using our knowledge of the 
growth rates of biharmonic functions on R 2n at infinity (using Remark 8.4 
and Exercise 8.8). Our formula for the metric 17 implies that as lzl -+ oo, 
we have 

17jk = 8jk + O(lzl2- 2n). 

Let 'Y be a cutoff function supported in Bloen \Bi, equal to 1 outside B2. 
We can then think of 'Y'P as a function on en = R 2n, and we can compare 
'D*'D with the Euclidean operator l:l.2. We obtain 

l:l.2('Y<p) E C2.'....a2-2n(en \ {O}). 

Exercise 8.8 implies that we can find a 'l/J E Cif2_2n(en \ {O}) such that 

l:l.2('1/J) = l:l.2("f<p). 

It follows that 'l/J - 'Y'P is a biharmonic function and it decays at infinity. 
Since there are no indicial roots in (4 - 2n, 0), we must have 

'l/J - 'Y'P E C!~2n(en \ B1), 

at least when n > 2, while for n = 2 we already have better decay than this 
by assumption. Then our estimate for 'l/J implies that 'Y'P E C:f2_2n(en\B1), 
and so 

<p E Cif2-2n(Bloen). 

This decay is enough to show that the following integration by parts is 
possible: 

0 = r <p'D*'D<p 17n = r IVipl211n, 
la10C" la10C" 

so 'D<p = 0. This implies that grad1•0ip is a holomorphic vector field on 
Bloen, and it gives rise to a holomorphic vector field v on the complement 
en \ B of the unit ball B. The components of v are holomorphic functions, 
which by Hartog's theorem can be extended to all of en. At the same time 
the components decay at infinity, so we must have v = 0. This implies that 
<p is constant, but <p also decays at infinity, so <p = 0. D 

The analogous result for the operator Lw on Mp is the following. 
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Proposition 8.10. If 8 > 4- 2n, then 

Lw : ct'Cl!(Mp) ---+ c2~0!4(Mp) 

has trivial kernel. 

Proof. We can assume that 8 is not an integer in order to avoid indicial 
roots in the argument below. Recall that we fixed a point q different from 
p and that 

Lw(cp) = -'D*'Dcp - cp(q). 
- 4 Suppose that Lw(<p) = 0 and <p E C0 'a(Mp)· We let 'Y be a cutoff function 

supported in B1, equal to 1 in B1; 2 so that we can think of "f<p as a function 
on R 2n \ {O}. Again we compare 'D*'D to the Euclidean ll.2, and we obtain 

fl. 2 ('Yep) E c2~a2' 

as long as 8 < 2. From Exercise 8.8 we have a 'l/.J E Cif2(R2n \ {O}) such 
that 

ll.2("f<p - 'lf.J) = 0. 

We have "f<p - 'l/.J E Ci'a(B1 \ {O} ), and since there are no indicial roots in 
(4 - 2n, 0), we obtain 

Note that when n = 2 we already have better decay than this by assumption. 
From our decay estimate for 'l/.J we obtain <p E ct+a2 (Mp) if 8 + 2 < 0 or 

<p E ct'a(Mp) otherwise. We can repeat the argument with 8 + 2 instead of 
8 if necessary, to eventually obtain <p E Ct'a(Mp) in either case. 

From this it follows that <p actually extends smoothly across p, and we 
have already seen that there are no smooth functions on M in the kernel of 
Lw. D 

Remark 8.11. Although we will not use this fact, it is interesting to note 
that by Theorem 8.6 the previous two propositions imply that 

Lw : ct'Cl!(Mp) ---+ c2~0!4(Mp) 

is surjective for 8 < O, while 

L11 : Ci'a(BloCn)---+ c2~a4(BioCn) 

is surjective for 8 > 4 - 2n. In particular both maps are isomorphisms for 
8 E ( 4 - 2n, 0). 
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8.2.3. Weighted spaces on BipM. The weighted spaces that we use on 
BlpM are essentially glued versions of the spaces defined on Mp and on 
Bl0Cn. Recall that we have chosen normal coordinates zi around p, defined 
for JzJ < 1. To obtain BlpM we are gluing in a scaled down version of 
Bl0Cn. In terms of the coordinates wi on BloCn we perform the gluing by 
identifying the annuli 

{re< JzJ < 2re} = {c-1re < JwJ < 2c-1re}, 
Z=€W. 

There are three regions of the manifold BlpM: 

• M \Bi: Here the coordinates zi are not defined, but we can think 
of it as the region where JzJ ~ 1. 

• Bi \Be: This region can either be thought of as a subset of M, where 
€ ~ JzJ < 1, or also as a subset of BloCn, where 1 ~ JwJ < c-1. 

• Be: Here the coordinates zi are again not defined, and this region 
should be thought of as the subset of BloCn, where JwJ < 1. Note 
that this region is not actually a ball since it contains the excep­
tional divisor. 

We define the weighted Holder norms as follows. Suppose that f : 
BlpM--+ Rand fix a weight 8. For r E (c, 1/2) define 

fr : B2 \ Bi --+ R 

fr(z) = r-6 f(rz) 

and also let 
fe : B1 c BloCn --+ R 

fe(w) = c-6 f(cw), 

where B1 is the subset of BloCn where [.:vi < 1. We are abusing notation, 
writing w i-t cw for the map identifying Bi with Be c BlpM. The weighted 
norm is defined as 

On M \Bi and B1 we are measuring the HOider norms with respect to 
fixed background metrics (or alternatively with respect to fixed coverings 
by charts). On B2 \Bi we use the standard Euclidean metric. 

Recall the cutoff functions 'Yi that we used in Subsection 8.1.3. Since 
\l'Yi is supported on B2re \ Bre and since it is of order r;1 on this annulus, 
one can check that 
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for some constant c independent of c. One use for these cutoff functions is 
that if f is a function on BlpM, then 'Yif and 'Y2f can be naturally thought 
of as functions on Mp and BloCn, respectively. Using these, an equivalent 
weighted norm could be defined as 

(8.6) llfllc;•"(BlpM) = ll'Yifllc;·"(Mp) + c-0 lh2fllc;•"(BloCn)' 

Note that the spaces c;•0 themselves do not depend on 8, as they all consist 
of functions on BlpM which are locally in Ck,a. The weight 8 only affects the 
norm. There are simple inequalities relating the norms for different weights: 

(8.7) { llfll 0 k,.. if 8' ~ 8, 

llfllc;;" ~ c0- 0'iifll 0 ;.a if 8' > 8. 

Lemma 8.12. Let us write ge for the metric defined by We· We have the 
estimates 

llgellc~·0 (BlpM)' llg; 1 11c~·0 (BlpM) ~ C, 

for the components of the metric ge and its inverse, where C is independent 
ofc. 

Proof. We are measuring the Holder norms of the components of ge and 
g;1. We can deal with the three regions of BlpM separately. For instance, 
to deal with the annulus B2r \Br, we need to pull back the components 
of ge to B2 \ B1 (note that this is different from pulling back the metric 
itself, which would introduce a factor of r 2). The result follows since by 
the construction in Subsection 8.1.3 these pulled back metrics are uniformly 
equivalent to the Euclidean metric. D 

Lemma 8.13. There are constants co, C1 > 0 with the following property. 
If ll'Pllc4,<> <co, then Wcp =We+ A.88cp is positive, and the corresponding 

2 
metric gcp satisfies 

llgcp - ge 1102,a , llg;p1 - g;-11102, .. , llRmgcp - Rmge llao,a < C1 ll'Pllc4•"' 
6-2 6-2 6-4 6 

llLwcp - Lwe II c4,a -+CO,<> < C1 II cp II c4,<>' 
6 6-4 2 

where in the second line we are measuring the operator norm. 

Proof. We have llH8fJcpll0 2 ... < C2ll'Pllc4,a, so as long as co is small 
0 2 

enough, the form Wcp is positive, and moreover we have 

llg;p1 llc~·" < 2C, 

where C is as in the previous lemma. The required estimates can then be 
obtained by straightforward calculations using multiplication properties of 
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the weighted norms. For example 

-1 -1 -1( ) -1 Yip - Ye = Yip Ye - Yip Ye • 

and so 

The heart of the matter is the following result, which gives good bounds 
on the inverse of the linearization of our equation. The proof uses a contra­
diction argument together with rescaling. 

Theorem 8.14. For 8 E (-1, 0) there is a constant K such that for suffi­
ciently small € the operator 

Fe : ct·°' (BlpM) -+ C~~°'4 (BlpM) 

<p 1-7 'D~E'DwE'P - <p(q) 

is invertible and we have a bound llFe-1 11 < K €0 for its inverse. When the 
dimension n > 2, then we have a bound llFe-1 11 < K independent of€. 

Proof. We will only focus on the n = 2 case since when n > 2 the proof is 
easier. Note that we already know that Fe is invertible from our assumption 
that M has no holomorphic vector fields. This implies that BlpM also has 
no holomorphic vector fields (see Exercise 8.1), and so the kernel of 'D~E'DwE 
consists of the constants. It follows from this that ker Fe is trivial, and since 
it has index zero, it is an isomorphism. What we need to show is that the 
inverse of Fe has the required bounds. 

The Schauder estimates imply that there exists a constant C indepen­
dent of € such that 

(8.8) 

This can be seen as follows. Let us define p: BlpM-+ R by 

{ 
1 if x E M \ Bi, 

(8.9) p(z) = lzl if x E Bl \Be, 
€ if x E Be, 

where we are identifying BlpM \ Be with M \ Be as before to make sense of 
the distance lzl. The key point is that we can choose a small scale r > 0, 
independently of€, such that for each point z E BlpM the ball of radius 
rp(z) around z with respect to We, when scaled to unit size, is close to 
the Euclidean unit ball. Here "close" means that the components of the 
metrics can be made as close as we wish in any Ck-norm by choosing r 
sufficiently small. Note that for this to be true it is important that the Burns­
Simanca metric 'f/ is asympotically flat, but otherwise it follows directly from 
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the construction of we. Estimate {8.8) now follows by applying the usual 
Schauder estimates to these balls of radii rp(z) scaled to unit size. 

Our goal is to show that inequality {8.8) also holds without the ll'Pllco 
6 

term up to replacing C by K e0. We argue by contradiction. If the estimate 

ll'Pll 0 4,a ~ Ke0 llFe(cp)ll 0 o,a 
6 6-4 

does not hold for sufficiently small e for any K, then there is a sequence 
€i ---+ 0 and corresponding functions 'Pi such that 

{8.10) 

Note that each 'Pi is a function on BlpM, but the weighted norms depend 
on i. We will obtain a contradiction by extracting limits of the 'Pi on three 
different regions: on Mp, BlpM, and the "neck region" C2 \ {O}. 

First consider the integral of Fei(cpi) over BlpM. From (8.10) we can 
estimate 

{ Fei ('Pi) w~. < c~, 
jBlpM ' i 

but the integral of V*Vcp vanishes, so this implies 

(8.11) 

for some constant C. 

1 
l'Pi(q)I < C-;, 

i 

We now consider the limit on Mp. We can think of the 'Pi as functions on 
M \ Bei' i.e. on larger and larger subsets of Mp. The uniform c:·a-bounds 
imply that up to choosing a subsequence, we can assume that 'Pi ---+ cp00 

locally in ct·c/ for some a' < a, and since 'Pi(q) ---+ O, the function cp00 on 
Mp satisfies cp00 ( q) = 0 and 

(8.12) 

At this point, if we were working in dimensions n > 2, then we would 
obtain cp00 = 0 from Proposition 8.10. When n = 2 we need to work a bit 
harder. By an argument similar to that in the proof of Proposition 8.10 we 
obtain that 

(8.13) cp00 = 'l/J +a log lzl, 

where 'l/J E cg.al and a E R. The point is that the only biharmonic functions 
on B1 \ {O} with growth rate in [8, O] are log lzl and the constants. We want 
to show that a= 0. 

One can see this by integrating equation (8.12) over M\Br for sufficiently 
small r and integrating by parts. The conceptual reason is that we can think 
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of cp00 as giving a solution of the equation 

V~Vw<p00 = ac8p, 

on all of M in the sense of distributions, where 8p denotes the Delta function 
at p and c is a non-zero constant. But pairing both sides of the equation with 
the constant 1, we obtain a contradiction unless a= 0. It follows therefore 
from (8.13) that cp00 E ci·o:'. As in Proposition 8.10 it follow then that cp00 

extends as a smooth function on M, so we obtain cp00 = 0. 

From (8.10) and (8.8) we find that llcpilloo is bounded above and is 
li 

bounded away from zero. By scaling the functions cpi by suitable factors, 
we can obtain new functions 'I/Ji satisfying the following: 

(8.14) 
llV~ . Vwe.1/Jillco·"' --+ 0, and 'I/Ji--+ 0 locally on Mp in C4•o:. 

e, • li-4 

We now need to examine the point qi E BlpM, where the function p;61/Ji 
achieves its maximum, i.e. 

Pi6(qi)'l/Ji(qi) = 1, 

with Pi denoting the function in (8.9) corresponding to ci· Since 'I/Ji --+ 0 
locally on Mp, we must have Pi(qi) --+ 0, and there are two different cases 
depending on whether ci1Pi(qi) is bounded or not. 

If ci1Pi(qi) < R for some Rand for all i, then under the identification of 
Bi c BlpM with the ball Be-1 c BloC2 (see Subsection 8.2.3), the points qi 
are inside BR c BloC2 • Up to choosing a subsequence, we can assume that 
qi --+ z00 E BR· Moreover, using (8.6) we can think of ci61/Ji as functions 
on larger and larger subsets of Bl0C 2, bounded in c;•o:, so up to choosing 
a further subsequence, we can assume that ci61/Ji --+'I/Joo locally in C4•o:' on 

2 4 o:' BloC and that 'I/Joo E C6• • From (8.14) we obtain 

1/Joo(zoo) ~ R6, 

v;vri'l/Joo = 0. 

For the second equation note that c;2wei converges to the LeBrun-Simanca 
metric rJ under our identifications. This contradicts the fact that there 
are no non-zero elements in the kernel of V~V.,, which decay at infinity, by 
Proposition 8.9. 

The last case to examine is when ci1Pi(qi) is unbounded but Pi(qi)--+ 0. 
In particular in this case we have Pi(qi) = lqil from the definition of Pi· We 
can choose sequences ri --+ 0 and ~ --+ oo such that the annulus 
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is contained in smaller and smaller balls around p when thought of as a 
region in Mp, while it is also in the complement of larger and larger balls in 
BloC2 when thought of as a set there. More precisely R;,, Ti satisfy 

R;,jQil --7 0, Ti,Qilci1 --7 00. 

We identify the annulus Ai with the annulus BR; \ Bri c C 2 \ { 0} by scaling, 
with corresponding metric IQi1-2wei" These scaled metrics converge to the 
fl.at metric on C 2 \ {O} locally uniformly in any Ck-norm. The points Qi 

correspond to points on the unit sphere by this identification, so up to 
choosing a subsequence we can assume Qi --7 Qoo. We can think of the 
functions IQil-01/ii as functions on larger and larger subsets of C 2 \ {O}, 
with a uniform ct·a-bound, so choosing a further subsequence, we have 

jQil-01/ii --7 ¢ 00 locally in C4•a'. The limit satisfies ¢ 00 E c:·a' and 

1/ioo(Qoo) = 1, 

/),,. 21/loo = 0. 

We used that V*V = b,,. 2 for the fl.at metric. This contradicts Theorem 8.3, 
and so the proof is complete. D 

The operator that we really want to invert is Le rather than Fe. The 
difference between the two is the operator 

T: cp ~ g{~'VjS(we)'Vk'P· 

From the proof of Lemma 8.19 below we obtain the estimate 

ll'VS(we)lld·" <Cr; 
-3 

for some constant C, which means that we have a bound 

llTll 0 4,a-+Co,a < Cr; 
6 6-4 

on the operator norm of T with a larger C. This implies that from the 
bound for the inverse of Fe in Theorem 8.14 we obtain a similar bound for 
the inverse of Le for sufficiently small c. 

Exercise 8.15. Is the dependence on c in the bound llFe-lll < Kc0 in 
Theorem 8.14 sharp in the case when n = 2? 

Exercise 8.16. Prove an analogous result to Theorem 8.14 for & E (0, 1). 
Do you obtain a bound on the inverse independent of c? What about when 
& = O? 

Remark 8.17. There are several alternative approaches to the proof of 
a result such as Theorem 8.14, and in different geometric problems one 
method may have advantages over others. The approach above was used by 



172 8. CscK Metrics on Blow-ups 

Biquard-Rollin [16] for the similar problem of smoothing out singular cscK 
metrics. 

Another possibility is to use the inverses of the linear operators in Re­
mark 8.11 together with suitable cutoff functions to construct an approxi­
mate inverse of Le on BlpM. For sufficiently small c this can be perturbed 
to a genuine inverse. This is the approach in [108] for instance. 

Yet another approach is to work on manifolds with boundary, M \ Bre 

and Be-Ire C BloCn, and glue inverses of the linear operators by match­
ing boundary data. This method can be applied directly to the non-linear 
operator, as was done by Arezzo-Pacard [3]. 

8.3. Solving the non-linear equation when n > 2 

We are now ready to solve the equation 

(8.15) S(we + H8fJcp) - S(w) - cp(q) = 0, 

for sufficiently small c where q is a point outside the unit ball around p. We 
will choose 8 < 0 to be very close to 0. Writing 

(8.16) S(we + H8fJcp) = S(we) + Lw,,(cp) + Qwe(cp), 

equation (8.15) is equivalent to 

S(we) - S(w) + Lw,,(cp) - cp(q) + Qw,,(cp) = 0. 

From Theorem 8.14 we know that the operator 

Lw,,(cp) := Lwe(cp) - cp(q) 

has an inverse, in terms of which our equation can be rewritten as 

cp = L;:;,,1 ( S(w) - S(we) - Qw,,(cp)). 

Let us define the operator N by 

N : c:·0 (BlpM) -t c:·0 (BlpM) 

cp I-+ L;:;,,1 ( S(w) - S(we) - Qwe ( cp)) · 

Equation (8.15) is then equivalent to the fixed point problem cp = N(cp). 

The following lemma shows that N is a contraction on a suitable set. 

Lemma 8.18. When n > 2, there is a constant c1 > 0 such that if 

llcpllc4,a, 11¢11 0 4,a ~ c1, 
2 2 

then 
1 

llN(cp) -N(¢)110 4,a ~ -2 llcp- ¢11 0 4,a. 
6 6 
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Proof. We have 

N(cp) -N('l/J) = L:;}(Qwe('l/J) - Qwe(cp)). 

By the mean value theorem there is at E [O, 1] such that x = t<p + (1 - t)'l/J 
satisfies 

Qwe('l/J) - Qwe(<p) = DQwe,x('l/J - cp). 
Differentiating (8.16) at x we have 

so from Lemma 8.13 we know that if llxll0 4,<> < co, then 
2 

llQw.,(1/J) - Qw.,(cp)ll 0 o ... < Cllxll0 4,<> 111/J - cpll 0 4,<> 
6-4 2 6 

~ C{llcpllc4 ·" + ll1/Jllc4·"}111/J - cpllc4·"· 
2 2 6 

(8.17) 

Since L~} is bounded by Theorem 8.14, the result follows once c1 is chosen 
small enough. D 

We also need to know how good our approximate solution we is. 

Lemma 8.19. For sufficiently small E we have 

llS(we) - S(w)ll 0 o ... :::;; Cr:-5 
6-4 

for some constant C. 

Proof. We examine three different regions of BlpM. On M\B2re the metrics 
we and ware equal, so S(we) - S(w) = 0. 

On B2re \ Br", in terms of the Euclidean metric w E we have 

WE =we+ HfflJcp, 

where <p = O(lzl4). It follows that 

llcpllct·"(B2r., \Br.,) :::;; C1r:-5 

for some constant C1. Using this for 8 = 2 as well, Lemma 8.13 implies that 

llS(we) - Oll0 o,,. (B \B ) :::;; C2r:-5 , 
6-4 2re re 

for sufficiently small E. Since S(w) is a fixed constant, we also have 

llS(w)llc1~4(B2r.,\Bre):::;; Car:-5, 

so this takes care of the annulus B2r., \ Br.,. 

On Br" we have S(we) = 0, and again 

llS(w)ll 0 o ... (B ) :::;; Car:-5. 
6-4 re 

We can finally put the pieces together. 

D 
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Proposition 8.20. Assume n > 2. Using the constant c1 from Lemma 8.18, 
let 

U = { cp E c:·a : li'Pllct·" :::;; c1e2- 6} C c:•a(BlpM). 

If e is sufficiently small, then N is a contraction on U, and N(U) CU. In 
particular N has a fixed point, which gives a cscK metric on BlpM in the 
Kahler class 7r*[w] - e2[E]. 

Proof. From the comparison in (8.7) between the weighted norms, we have 
li'Pllc4,a :::;; c1 if cp E U. From Lemma 8.18 it follows then that N is a 

2 

contraction on U and in addition 

(8.18) 
llN(cp)llct·" :::;; llN(cp) -N(O)llct·" + llN(O)llct·" 

1 
:::;; -2 ll'Pllc4,a + llN(O)ll0 4,a. 

6 6 

From Lemma 8.19 we have 

From the definition of re, 
4-6 (4-6} n-l re = e n , 

and if o is close to 0 and n > 2, then 

(8.19) 
n-1 

(4-o)- > 2-0. 
n 

It follows that if e is sufficiently small, we have 

llN(O) lict·" :::;; ~c1e2-6 . 
From (8.18) we then have N(cp) EU. This completes the proof. D 

8.4. The case when n = 2 

We have given the proof of Theorem 8.2 in the case when the dimension 
n > 2. The most apparent reason for this restriction is that the best range 
of weights for the linear analysis is o E (4-2n, 0), and when n = 2 this set is 
empty. We have seen in Theorem 8.14 that when n = 2 we can still work with 
o E ( -1, 0), but we lose the uniform control of the inverse operator. Another 
issue comes from inequality (8.19). One can check that even by choosing 
re = ea for different a, the corresponding inequality cannot be satisfied 
when n = 2. For this, note that the estimate in Lemma 8.19 becomes 
worse when we do not have a= n~I. One way to overcome these problems 
is to construct a better approximate solution than the one constructed in 
Subsection 8.1.3. 
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First of all, as we mentioned in Subsection 8.1.2, the Burns-Simanca 
metric has the form 

'f/ = v'-I88(1wl2 +log lwl2) 

on Bl0C2. We can follow the construction in Subsection 8.1.3 to obtain the 
metric We. On the annulus B2re \ Bre the metric is given by 

v'-Ia8(1zl2+1'1 (z)c,o1 (z) + c:2')'2(z) log lc:-1 zl). 

We will construct a new metric 

(8.20) 

where the leading term in r(z) is log lzl and r(z) solves the equation 

(8.21) 

on Mp, where c is a constant. 

To show that such a r exists, we again use that 'D~'Dw is a small pertur­
bation of the Euclidean ~fuuc· Using the notation from Subsection 8.1.3, in 
normal coordinates around p the metric w is given by 

w = v'-Ia8(1zl2 + c,o1(z)), 

where C,01 = O(lzl4). For small r > 0, let ')' be a cutoff function supported 
in B2r, equal to 1 on Br, and define the metric 

w = v'-Ia8(1zl2 + f'(z)c,o1(z)) 

on R 2n \ {O}, which is fl.at outside B2r· For any o ER we have a constant 
C such that 

ll(~fuuc - 'D~'Dw)fllco,a ~ Cr2 llfllc4,a, 
6-4 6 

for any f : R 2n \ {O} --7 R. It follows that for sufficiently small r (perhaps 
depending on o) the operator 

(8.22) 'D~'Dw : Ci'0 (R2n \ {O}) --+ C~.'....04(R2n \ {O}) 

is an isomorphism whenever o is not an indicial root of ~2 • Note that near 
the origin 'D~'Dw = 'D~'Dw. 

By comparing 'D~'Dw with ~fuuc we find that 

'D~'Dw log izi E C'.:~(R2n \ {O} ), 

and so using the isomorphism (8.22) we can find a function 'l/J1 E ci:rr for 
any small r > 0 such that near the point p we have 

'D~'Dw(/' log lzl - 1''1/J1) = 0. 
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We are thinking of 'Ylog lzl and 'Y'l/J1 as functions on Mp. Now using the 
isomorphism (8.4) between the usual Holder spaces we can find a function 
'l/;2 E C~,a: such that 

1J~1Jw('Ylog lzl - 'Y'l/J1 - 'l/;2) = 'l/J2(q) on Mp. 

We can then set r = 'Y(log lzl - 'l/;1) - 'l/;2 to obtain (8.21), and r will be 
asymptotic to log lzl near p. 

We now return to equation (8.20). The advantage of We over We is that 
on the annulus B2re \ Bre it is given by 

we= J=Ia8(1zl 2 + 'Y1(z)cp1(z) + c-2 log lzl + c2'Y1(z)'lf;(z)), 

so now the log lzl term no longer needs to be multiplied by a cutoff function. 
The operator Lwe is a sufficiently small perturbation of Lwe, so that we 
have a bound llL;e111 < Kc-6 from Theorem 8.14. We can then follow the 
arguments of Section 8.3 using the metric We instead of We, except that we 
will solve the equation 

(8.23) S(we + H8Bcp) - S(w) + c-2c - cp(q) = 0, 

with c from (8.21). 

Because of our slightly worse bound on the inverse of Lwe, instead of 
Lemma 8.18, we obtain the following, with the same proof. 

Lemma 8.21. For o E (-1, 0), there is a constant c1 > 0 such that if 
llcpllc4,a, ll'l/Jllc4,a :::;; c1c--6, then 

2 2 

1 
llN ( cp) - N ( 'l/J) 11 0 4,., :::;; -2 11 cp - 'l/J 11 0 4,.,. 

6 6 

The other ingredient we need is an estimate on how good our approxi­
mate solution is. At this point we fix re= ca:, with 

2 
a< 3' 

and we will work with o E (-1, 0) very close to 0. We obtain the following 
result analogous to Lemma 8.19. The estimate looks similar, but the point 
is that we are now able to choose a wider range of a, whereas the earlier 
result only applied when a= n~l. 

Lemma 8.22. For sufficiently small c and for o E (-1, 0), we have 

llS(we) + c2c - S(w)ll 0 o," :::;; Cr:-6, 
6-4 

for some constant C. 
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Proof. Inside Br" our metric is still scalar flat, so there we have 

llS(we) + c2c - S(w)llc~'.._"'4(Bre;) :::;; cr:-0. 

177 

The main advantage of We over We is on the region B2re \ Br". Here we 
can write 

we =wE+Raae 
in terms of the Euclidean metric, where 

e = c2 log lzl + ')'1(z) ('Pl (z) + c2¢(z)). 

If a< 2/3, then this implies 

e = c2 log izl + O(lzl4). 

We can compute the scalar curvature as 

S(we) = S(wE) + LwE(e) + QwE(e) 

and note that LwE = -~~. Using (8.17) to control the Q term, we can 
compute that 

llS(We) + c2c- S(w)llco,o (B \B ) :::;; cr:-0• 6-4 2re re; 

The remaining region is M \ B2re, on which we have 

- 211° -
We =w+c v-188r. 

It is helpful to break this region up further into M \ Bi and regions of the 
form B2r \Br with r > 2re. On M \Bi we have 

(8.24) S(we) = S(w) - c2V~Vwr + Qw(c2r), 
which implies that 

S(we) = S(w) - c2c + O(c4). 

From this it follows that 

llS(we) + c2c - S(w)llco,o (M\B) :::;; cr:-tS 6-4 1 

if t5 is close to 0. 

Finally, on the region B2r \Br with r > 2re, we can use equation (8.24) 
to get 

S(we) = S(w) - c2c + O(c4r-6). 

Once again, it follows that 

llS(we) + c2c - S(w)llc~'.._"'4(B2r\Br) :::;; cr:-0, 

as long as a < 2/3. D 
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We can now follow the proof of Proposition 8.20 to solve equation (8.23). 
Because of our slightly worse bound on the inverse of the linearized operator, 
we need to set 

U = { cp E c:•a : llcpllct·"' ~ C1c2- 20}, 

and we need to show that 

(8.25) 

for sufficiently small c. We have 

llN(O)ll0 4,a ~ Cc0 llS(we) + c2c- S(w)ll0 o,a ~ C'c0ri-0• 
6 6-4 

If we choose a > 1/2 (while also a < 2/3), then 

o+(4-o)a>2-2o 

for o sufficiently close to 0, so we can obtain (8.25) for sufficiently small c. 
It follows that we can solve the non-linear equation once c is small enough. 

8.5. The case when M admits holomorphic vector fields 

We have so far only dealt with manifolds M which have no holomorphic 
vector fields. If M does admit holomorphic vector fields, then the basic 
difficulty is that Proposition 8.10 no longer holds. Indeed the kernel and co­
kernel of 'D~'Dw can be identified with holomorphic vector fields on M which 
have holomorphy potentials. This issue manifests itself in being unable to 
show that our linearized operator on BlpM is invertible, or at least we cannot 
find good bounds on its inverse. This is not merely a technical difficulty since 
when M has holomorphic vector fields, then BlpM may not admit a cscK 
metric even if M does. 

The simplest example to consider is M = CP2 since then BlpM admits 
an extremal metric with non-constant scalar curvature (see Exercise 4.32). 
It follows that BlpM cannot admit a cscK metric since the Futaki invariant 
does not vanish. Of course one may hope then that if M admits an extremal 
metric, then so does BlpM in certain Kahler classes, but even this is not true. 
Indeed Levine's example in Remark 4.20 is a blow-up of CP1 x CP1 in four 
points which does not admit an extremal metric in any Kahler class, with 
the structure of its automorphism group being the obstruction. A more 
general obstruction is given by K-stability. 

The way that K-stability enters is that any one-parameter subgroup 

p : C* c.....+ Aut(M) 
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gives rise to a test-configuration for BlpM no matter what ample line bundle 
we use on BlpM. The central fiber of this test-configuration is BlqM with 

q = limp(t) · p. 
t-tO . 

In view of Theorem 8.2 it is natural to expect that the only obstruction 
to the existence of an extremal metric on BlpM comes from such test­
configurations, at least for Kahler classes that make the exceptional divisor 
sufficiently small. This expectation has been verified in the cscK case for 
n > 2 in [103]. At the time of this writing, the problem is still open for 
n = 2 and for general extremal metrics in any dimension. 

In the rest of this section we will outline some of the modifications that 
need to be made to the analysis in the previous sections, although we will 
ignore certain technicalities to highlight the ideas that are applicable to other 
similar problems in geometric analysis. As we have seen, there are two main 
ingredients in the gluing method. We need to construct good approximate 
solutions, and we need to understand the linearized operator. For simplicity 
suppose that the dimension n > 3. 

For constructing the approximate solutions, recall that we are trying to 
glue the extremal metric w on M to the scaled Burns-Simanca metric c2'f/ 
along an annulus B2r,, \Br,, aroundp EM. For better approximate solutions 
we need more precise expansions of these metrics than what we used before. 
In normal coordinates around p we have 

w = Ra8(1zl2 + A4(z) + A5(z) + O(lzl6)), 

where A4 and A5 are a quartic and quintic expression in z, respectively. One 
can also show (see Gauduchon [57]) that we have an expansion 

'f/ = Ra8(1wl2 - lwl4-2n + dilwl2-2n + d2lwl6-4n + O(lwl4-4n)), 

where di, d2 are constants, so we are trying to glue w to 

c2'f/ = yCia8(1zl2 - c2n-21zl4-2n + dic2nlzl2-2n + d2c4n-41zl6-4n + ... ), 

with a change of variable z =cw. 
In constructing our crudest approximate solution we in Subsection 8.1.3, 

we multiplied every term apart from the lzl2 with cutoff functions. To obtain 
better approximate solutions we would like to avoid cutting off certain other 
higher-order terms. For instance when obtaining the metric we in Section 8.4, 
we avoided cutting off the log lzl term, which corresponds to lzl4-2n here, 
by introducing a similar term in the metric w. This involved finding a 
solution of a linear equation on Mp which is asymptotic to log lzl near p. In 
[103], when constructing the approximate solution, one needs to deal in a 
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similar way with A4, As, lz1 2- 2n, and lzl 6- 4n. We will see shortly why better 
approximate solutions are useful. 

The other aspect of the gluing problem is controlling the linearized op­
erator. The operator that we need to understand is 'D~e'Dwe, where We is our 
approximate solution. Let us write bp for the kernel of this operator, and 
let b denote the kernel of 'D~'Dw on M. Note that we can naturally identify 
bp with a subset of b. If bp is non-trivial, then the best we can hope for is 
to invert 'D~e 'Dwe on the space orthogonal to bp· In fact the operator 

'D~e 'Dw., : bt -7 bt 
is invertible, and we need to control its inverse in suitable weighted spaces 
on BlpM. In the proof of Theorem 8.14 a crucial ingredient was the triviality 
of the kernel of the relevant operator on Mp, but now bis contained in the 
kernel of 'D~'Dw, at least in the weighted spaces that we used. One could try 
to work in the orthogonal complement to b, but there will still be difficulties 
when bp is strictly smaller than b. 

Remark 8.23. One could try to work with different weights o. Note that 
when o E (1, 2), then the kernel of 'D~'Dw in ct•°'(Mp) is just bp modulo the 
constants since bp consists of the elements of b which vanish to first order 
at p. The difficulty with this is that the kernel of v;v.,, in ct•°'(BloCn) 
contains functions with linear growth when o > 1. 

A similar issue arises in many other problems in geometric analysis, and 
a way to overcome it is to rewrite our equation as a system consisting of a 
more general equation whose linearization we can control together with a 
simpler, usually finite-dimensional, equation. For our gluing problem this 
amounts to solving two equations of the form 

(8.26) 
Te(cp, f) = 0 for cp E b-1 C ct•°'(BlpM) and f Eb, 

f E bp· 

The operator Te is constructed in such a way that ifTe(cp, f) = 0 and f E bp, 
then We + Ao8cp is an extremal metric on BlpM. At the same time the 
linearization of Te is the map 

(b_J_ n ct·°') x b -7 c~~°'4 (BlpM) 

(cp, f) I-+ 'D~e'Dw.,'P- J, 
whose inverse one can control using the method of proof of Theorem 8.14. 
One technical point that we are ignoring here is that we need to make sense 
of the elements in b as functions on BlpM. Since only the elements in bp 
have natural lifts to BlpM, we need to define lifts of functions in b \ bp, but 
this can be achieved by using cutoff functions. 
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The upshot is that the equation Te ( <p, f) = 0 can be solved for sufficiently 
small g with methods very similar to the ones we used in Section 8.3. We 
only obtain an extremal metric if the solution satisfies f E Qp, but the key 
observation is that we can try to vary the point p EM to achieve this. More 
precisely, for every p E M and for all sufficiently small g we can solve the 
corresponding equation Te('Pp,e, fp,e) = 0, and so we have maps 

µe: M-+ Q 

P 1--t fp,e· 

The construction gives rise to an extremal metric on BlpM whenever µe(P) E 

Qp· Since Qp c Q can be thought of as vector fields vanishing at p, this 
condition is very reminiscent of the condition in Section 5.5 for p being a 
critical point of the norm squared of a moment map. 

To make further progress we need to understand what the map µe is, 
and this is where constructing a better approximate solution is important. 
If we construct an approximate solution that only needs to be perturbed by 
a term of order git to a genuine solution, then we will obtain an expression 
for µe correct to order git. In this way the arguments in [5] and [108] lead 
to 

µe(p) = µ(p) + O(c:lt) 

for some K > 0, where µ : M -+ Q is a moment map for the action of 
the isometry group of (M,w). This is already enough for obtaining some 
existence results. For example suppose that µ(p) E Qp for some p E M. One 
can show that then for sufficiently small c: there is a point q E Aut(M) · p 
in the orbit of p under the automorphism group such that µe(q) E q, and 
so we obtain an extremal metric on BlqM. But BlqM is biholomorphic to 
BlpM, so we have obtained an extremal metric on BlpM. For more details 
on this and for sharper results, we refer the reader to [108] and [103]. 

8.6. K-stability of cscK manifolds 

In addition to giving new examples of cscK manifolds, Theorem 8.2 also 
has theoretical applications. Perhaps the most important application is the 
following sharpening of Corollary 7.23 due to Stoppa [101]. 

Theorem 8.24. Suppose that the compact Kahler manifold M has no holo­
morphic vector fields and that w E c1 ( L) is a cscK metric. Then ( M, L) is 
K-stable. 

Sketch of proof. Recall that a test-configuration x for M is an embedding 
M c CPN using a basis of sections of Lr for some r, together with a C* -
action on CPN. We have defined the Donaldson-Futaki invariant F(x) and 
the norm llxll, and we need to show that F(x) > 0 whenever llxll > 0. 
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We will assume that n > 1 since if n = 1, then we can consider M x M 
and apply Exercise 6.10. From Corollary 7.23 we already know that F(x) ~ 
0, so let us suppose by contradiction that F(x) = 0 and llxll > 0. For any 
point p E M and large l, the line bundle lL - E is an ample line bundle on 
the blow-up BlpM, and the test-configuration x induces a test-configuration 
x for the pair (BlpM, lL - E). The strategy of [101] is to choose the point 
p E M in such a way that for sufficiently large l we have F(x) < 0. We 
know from Theorem 8.2 that BlpM admits a cscK metric in c1(lL - E) for 
sufficiently large l, so this contradicts Corollary 7.23. 

The choice of p for this to work must be rather special since it turns out 
that with most choices we would actually increase the Futaki invariant of 
the test-configuration rather than decrease it. Suppose that the 8 1-action 
induced by X has Hamiltonian h : CPN -+ R. Then the action of x(t) as 
t -+ 0 along the real axis corresponds to flowing along -grad h. Let p E M c 
CPN be a point where his maximal. Then it follows that p E x(t) · M for 
all t, and sop E Mo, where Mo= limx(t) ·Mas before. We will now make 

t--+0 
a simplifying assumption that Mo is smooth in a neighborhood of p. The 
general case is similar but it involves a more complicated algebra-geometric 
calculation to deal with the possible singularity at p. 

The C*-action x acts on Mo, and it fixes the point p E Mo, so it induces 
an action x on the blow-up BlpMo. This blow-up can be constructed locally 
around p using that Mo is smooth near p. Denoting by Lo the 0(1)-bundle 
restricted to Mo, we have positive line bundles lLo - E on BlpMo for suf­
ficiently large l. The key calculation that we need to do is to compute the 
Donaldson-Futaki invariant F(BlpMo, lLo - E, x) in terms of F(Mo, Lo, x), 
where in the notation we included the line bundles lLo - E and Lo used for 
the projective embedding of BloMo and Mo. We can do this, using the fact 
that we have an identification 

H0(BlpMo, k(lLo - E)) c H0(Mo, klLo) 

of sections over BlpMo with the sections over Mo which vanish at p to order k. 
Let us denote by Ak the generator of the action x on H0(BlpM0 , k(lLo-E)) 
and by Akl the generator of x on H0(Mo, klLo). 

Suppose that we choose a basis 

{so, ... , SNk1} 

of C* -equivariant sections of H 0 (Mo, kl Lo) ordered by their order of vanish­
ing at p. So the section so does not vanish, s1, ... , Sn vanish to first order, 
etc. We can use so as a local trivialization of klLo at p, so if zi, ... , Zn are 
local holomorphic, x-equivariant coordinates at p (using that p is a fixed 
point of the action), then a section s that vanishes to order r at p has an 
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expansion of the form 

where fr is a degree r homogeneous polynomial. The weight w(s) of the 
action of x on s is given by 

w(s) = w(so) + w(fr(z)), 

where w(so) = klh(p) (using convention (7.11) for the action on sections), 
while lw(fr(z))I ~ er, for some c determined by the action of x on the 
tangent space at p. Once l is large enough, there will be a section s corre­
sponding to each fr with r ~ k, so 

(8.27) dimH0(BlpMo, k(lLo - E)) = dimH0(M0, klLo) - (k- ~ + n). 

In addition we can estimate the difference between Tr(Akz) and Tr(Ak) as 
follows: 

A (k-1 +n) (8.28) Tr(Ak) = Tr(Akz) - n klh(p) + 0(1), 

where 0(1) means a term that depends on k and n but is bounded indepen­
dently of l. The binomial coefficient (k-~+n) is the dimension of the space 
of polynomials in zi, ... , Zn of degree at most k - 1. 

In order to compute the Donaldson-Futaki invariants using formula (7.14), 
we have expansions 

dimH0(Mo, klLo) = ao(klr + ai(kzr-1 + · · · , 
dimH0(BipMo, k(lLo - E)) = O.okn + 0.1kn-l + · · ·, 

Tr(Akz) = bo(kzr+i + b1 (kzr + · · · , 
Tr(Ak) = bokn+l + bikn + · · · , 

and so from (8.27) and (8.28) we get 

A zn 1 ao = ao - ,, 
n. 

A - zn-1 n(n - 1) ai - ai - 2 1 , 
n. 

bo = bozn+i - ~lh(p) + 0(1), 
n. 

bi = b1ln - n(~:i l) lh(p) + 0(1), 
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where again the 0(1) terms are bounded independently of l. Using this we 
can compute 

~ a1 ~ 
F(BlpMo, lLo-E, x) =bi - -;:-bo 

ao 

= (b1 - ai bo) in - n(n - 1) (h(p) - bo) l + 0(1) 
ao 2n! ao 

= F(Mo, Lo, x)ln - n(~ ~ l) (h(p) - bo) l + 0(1). 
n. ao 

The assumption that llxll > 0 implies that his not constant, while as in the 
proof of Proposition 7.15 the average of his bo/ao. From the assumption 
that F(x) = 0 and the fact that h is maximal at p, we find that 

F(BlpMo, lLo - E, x) < 0 

for sufficiently large l. This gives the contradiction that we wanted. D 
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A basic problem in differential geometry is to find canonical metrics on manifolds. 
The best known example of this is the classical uniformization theorem for Riemann 
surfaces. Extremal metrics were introduced by Calabi as an attempt at finding a higher­
dimensional generalization of this result, in the setting of Kahler geometry. 

This book gives an introduction to the study of extremal Kahler metrics and in partic­
ular to the conjectural picture relating the existence of extremal metrics on projective 
manifolds to the stability of the underlying manifold in the sense of algebraic geometry. 
The book addresses some of the basic ideas on both the analytic and the algebraic 
sides of this picture. An overview is given of much of the necessary background mate­
rial, such as basic Kahler geometry, moment maps, and geometric invariant theory. 
Beyond the basic definitions and properties of extremal metrics, several highlights 
of the theory are discussed at a level accessible to graduate students: Yau's theorem 
on the existence of Kahler-Einstein metrics, the Bergman kernel expansion due to 
Tian, Donaldson's lower bound for the Calabi energy, and Arezzo-Pacard's existence 
theorem for constant scalar curvature Kahler metrics on blow-ups. 
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