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Preface

This monograph results from the author’s lectures at the ETH during the Spring
Semester of 1997, when he was presenting a Nachdiplom course on Kahler-
Einstein metrics in complex differential geometry.

There has been fundamental progress in complex differential geometry in the
last two decades. The uniformization theory of canonical Kéhler metrics has
been established in higher dimensions. Many applications have been found. One
manifestation of this is the use of Calabi-Yau spaces in the superstring theory.

The aim of this monograph is to give an essentially self-contained introduc-
tion to the theory of canonical Kéhler metrics on complex manifolds. It is also
the author’s hope to present the readers with some advanced topics in complex
differential geometry which are hard to be found elsewhere. The topics include
Calabi-Futaki invariants, Extremal Kéhler metrics, the Calabi-Yau theorem on
existence of Kihler Ricci-flat metrics, and recent progress on Kihler-Einstein
metrics with positive scalar curvature. Applications of Kahler-Einstein metrics
to the uniformization theory are also discussed.

Readers with a good general knowledge in differential geometry and par-
tial differential equations should be able to understand the materials in this
monograph,

I would like to thank the ETH for the opportunity to deliver the lectures
in a very stimulating environment. In particular, I thank Meike Akveld for
her patience and efficiency in taking notes of the lectures and producing the
beautiful IATEX file. Without her efforts, this monograph could never have been
as it is now. I would also like to thank Ms. Nini Wong for her endless pa-
tience in proof-reading and correcting numerous typos in earlier versions of this
monograph.

Part of my work involved in this monograph was supported by National Sci-
ence Foundation Grants DMS-9303999 and DMS-9802479, at Courant Institute
of Mathematical Sciences and Massachusetts Institute of Technology. My re-
search was also supported by a Simons Chair Fund at Massachusetts Institute
of Technology.

MIT, April 1999. Gang Tian






Chapter 1

Introduction to Kahler manifolds

1.1 Kahler metrics

Let M be a compact C°° manifold. A Riemannian metric g on M is a smooth
section of T*M ® T* M defining a positive definite symmetric bilinear form on

T.M for each x € M. In local coordinates x1,...,Z,, one has a natural local
basis a%l, e ,% for TM, then g is represented by a smooth matrix-valued

function {g;;}, where

(8 0
94 =9 Ba:i’azj '

Note that {g;;} is positive definite. The pair (M, g) is usually called a Rieman-
nian manifold.

Recall that an almost complex structure J on M is a bundle automorphism
of the tangent bundle TM satisfying J? = —id.

Definition 1.1 The Nijenhuis tensor N(J) : TM x TM — TM is given by
N(v,w) = [v,w] + J[Jv,w| + J[v, Jw] — [Jv, Jw]
for v,w vector fields on M.

An almost complex structure J on M is called integrable if there is a holo-
morphic structure (that is a set of charts with holomorphic transition functions)
such that J corresponds to the induced complex multiplication in TM x C.
Clearly, any complex structure induces an integrable almost complex structure.
The following theorem is due to Newlander and Nirenberg, see for example
Appendix 8 in [14].

Theorem 1.2 An almost complex structure is integrable if and only if
N(J)=0.
The hard part is to prove that N(J) = 0 implies integrability.
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We say that J is compatible with the metric g or g is a Hermitian metric if
9(u,v) = g(Ju, Jv).
We can then define a 2-form wy by
wg(u,v) = —g(u, Ju).
Usually, we call such an w, the Kéhler form of g.
Example 1.3 Consider M = C" as a real manifold by identifying R?® with C"

in the usual way, then the corresponding almost complex structure J is given
by

0 0 0 0
and J— = — .
Ox; 3:):nJrz OTnys or;
Let 21,..., 2z, be the canonical complex coordinates, z; = x; + v/ —1zp4;. Then

de = dil?j + Vv —1d.’l?n+j, dfj = dil?j — vV —1da:n+j

and

i_l(i__18>’ o

1 —
0z; Ox; O0Tn4j 0—2] (3:1:] *

8xn+J>

for j =1,...,n. We also have that
Hm;) =V Ty w955 ) =Tz
If g is the Fuclidean metric, then its Kihler form is given by

= _\/2__—1 Zdzi ANdz; = Zda:i NdTpy;.

We will denote by V the Levi-Civita connection of g, which is the unique
torsion free connection which makes g parallel.

Definition 1.4 A Kdhler manifold (M,g,J) is a Riemannian manifold (M, g)
together with a compatible almost complex structure J, such that VJ = 0, where
V is the Levi-Civita connection of g.

Let (M, g,J) be a Kahler manifold. We can extend the metric g C-linearly
to TM ® C. Recalling that T°M and T%' M are the i -cigenspaces of J, we
sec that g(u,v) = 0 for u,v € T"°M or u,v € T®'M (use compatibility of J
with the metric). Define h(u,v) = g(u,?) for u,v € T*°M, then this defines a
Hermitian inner product on T°M.
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If (M,J) is a complex manifold and J is compatible with the metric, then
from the above, we get that

0 2\ (0 8\,
g Bzi’azj -9 321"02_7' -

and in local coordinates, we can write

(0 0
gzj =g azia 02_7' ’

v—=1
——2— Z gzde.L A dfj.
1.5

On a Kihler manifold M, a Kihler metric is uniquely determined by its
Kahler form. So we often denote a Kéahler metric g by its Kéhler form w,. Note
that N(J) =0 on M, so M is a complex manifold and dw, = 0, that is, w, is a
closed form.

Proposition 1.5 If the Nijenhuis tensor N(J) vanishes, then VJ = 0 if and only
if dwg = 0. In particular, if (M, J) is a complex manifold and g is a Hermitian
metric, then (M, g,J) is Kdhler if dwy = 0.

so we have

Wg =

Proof. For all u,v,w € TM, we have
durg (11,0, ) =u(wg (v, w)) + vwyw, W) + w(wy (1, ) —
g (1t 6], ) + g ([0, ], ) — ([0, 0], ).
Since wy(u,v) = g(Ju,v) for any u,v, we deduce from the above
dwg(u,v,w) = g((Vud)v,w) + g((VyJ)w, u) + (Vo J)u, v).
Replacing u by Ju or v by Jv in the above, we obtain
dwg(Ju, v, w) = g((Vyu v, w) + g((VyJ)w, Ju) + (V) Ju, v),
dwg(u, Jv, w) = g((VuJ)Jv,w) + g((ViuJ)w, u) + g((VwJ)u, Jv).
Summing up the above two and using the facts that
J?=—I and g(Ju,v)+ g(u,Jv) =0,
we have
dwg(Ju, v, w) + dwg(u, Jv, w)
=29((Vwd)u, Jv) + g(VJ)Jv = (Vo J)Ju + (V guJ)v — (V 10 J)u, w)
=29((VyJ)u, Jv) — g(Ny(u,v),w).

It follows that if dw, = 0 and Ny = 0, then VJ = 0. It is trivial to see that
VJ = 0 implies dwy = 0. O
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1.2 Curvature of Kahler metrics

Let (M,g,J) be a Kahler manifold and V be its Levi-Civita connection. We
extend V in a C-linear way to I'(Tc M).

Since M is also a complex manifold, we have local coordinates (z1, ..., 2,)
and hence a local basis (6;21, cee %) for Tc M. We define the Christoffel sym-
bols I‘k by

0 O g 0
Vitos, ~iay Tl
and
v, 0 k0
3%: 323 B 0z, 9z,
Because VJ = 0 and Ja =+/- 15% and Ja—- —/— a- , we see that
0 0 0
Ve (Ja—zj) = IV g (v,e9) B
implies
0 8 d d & & 98
k 2 k 2 k £ 9
V- (F”B + P”B ) J(I“”(9 + %5 57 ) V= (I‘U(9 - T sz)

and therefore I‘fj = 0, similarly, I‘% = I‘% = 0, so the only possible non-zero
terms are Ffj and F% = E

Moreover, if g,z = g( 6‘2 , az ) denote the metric tensor in local coordinates,
then

7= a0 (o) = (Ve o) =0 (Moo ) =T

and hence

Tt = g 995k - gu'cagil‘c
¢ 0z; 0z;

So if the Kéhler metric is given by {g;;}, its connection V is given by

) 097
i _ il Il

Proposition 1.6 (Normal coordinates in Kéihler case) Let M be a Kéhler mani-
fold with a real analytic Kdhler metric. Given x € M, there exist local complex

coordinates (z1,...,2n) unique modulo unitary linear transformations such that
gi;(z) = 655 , dg;3(x) = 0 and %(w) =0foralll >0 andiy+---+ip, =1,

and this also holds for its conjugate.
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This proposition can either be proved by induction in an elementary way or
for another elegant proof, see [16], page 286.
So given a Kéhler manifold (M, g) with its Kahler form

-1 _
Wg = ———2—— ;gﬁdzz AN de

and its compatible connection V, the Riemannian curvature tensor is defined
by
R(u,v)w = Vo ,Vyw = V,Vyw — V[, ,jw
and can be extended in a C-linear way to Tc M.
Note that because J is parallel, that is VJ = 0, we have that

R(u,v)Jw = JR(u, v)w.
Defining
R(u,v,w,z) = g(R(u,v)z,w),

we can easily see that
R(u,v, Jw, Jr) = R(u, v, w, x)

and because of the splitting Tc M = T*°M © T%' M into the +i-eigenspaces of
J, we can deduce that R(u,v,w,z) = 0 unless w and z are of different type.

In local coordinates 21, ..., 2,, this means that the only possibly non-vanish-
ing terms are essentially

o o0 o0 0
Rsui=R (8—22,8—%,8—%55>

Using that
v, 2 - w0910
L sz BZJ' Oz ’
we can deduce that
R = — 0953 gsfagsi 0giz
Wk 02107 Oz, 0z

We define the Ricci curvature to be the trace of this, so we get
] 82

- .
Ricyr =Ry =g JRijkl = _—szazl (log det gij)'

We will denote the Ricci curvature both by Ric and by Rj; which should not
cause any confusion. In complex coordinates we have found a nice expression



6 Chapter 1. Introduction to K&hler manifolds

for the Ricci curvature, but we need to check that it is still the same as that
in the Riemannian case. So choose an orthonormal basis ej,...,es, such that
Je; =enprifori=1,...,nand set u; = %(ei——\/—_lJei), then {u;} is a unitary
basis. It follows that

R(uza az) = ZR(uzvauu_ja 77'_7)

7

1
= Z §R(ei —V—=1Je;,e; +V—1Je;, uj, ;)
j
= Z\/—lR(ei,Jei,Uj,ﬂj)
j

= —ZR(ei,Jei,ej,Jej)
J
= ZR(Jei,ej,ei,Jej) + Z R(ej, e, Je;, Jej)

J J

=Y R(ei, Jej, Jej,e) + > Rleis 5, €5,€;)
J J

= " R(€i,entsrniii€i) + D Rleiej,e5,€)
J J
= Ric(e;, €;).

Here we have used the first Bianchi identity for R:
R(e;, Jei, ej,Je;) + R(Je;, e5, e, Jej) + R(ej, e, Je;, Jej) = 0.

This shows that the Ricci curvature defined above is the same as the one in
Riemannian geometry.

Recall that if |z| = |y| = 1 and x is perpendicular to y, then R(z,y,y,x) is
the sectional curvature of the plane spanned by z,y. Set now

= —% ! (y — vV-1Jy),

u

(x —v/—=1Jz) and v =

S

2
then

Definition 1.7 The bisectional curvature is defined to be
R(u,,v,7) = R(z,y,y,z) + R(z, Jy, Jy, x).

Definition 1.8 A Kadhler manifold (M,g) is said to be of constant bisectional
curvature if there exists a constant A such that in any local coordinates of M,

Rzt = M9i39k1 + 9:9k35)-
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Example 1.9 Let M = CP™ = {[20: - : 2,);0 # (20 : -+ : 2n) € C**1} and let
Uo={[1,21: - : z,]} =~ C™ be an open subset of CP™. Set

2

== log(1 2.4 ... |2
9:5 aziazj Og( +|21| + +|z |)

or equivalently

V1
2

wg = Adlog(L+ 21> + -+ + |z.%) =

v—1/[dz; /\d_zl _ z;dz; /\Zjd;j
2 \1+|[z]? (1+1=12)2 )

We will check that wy is globally defined on CP™. Let
Uy = {(wo, L, wa, ..., ws)} C CP"

and check what happens to wy under a coordinate transformation on the overlap

UNUi={[1:2z1:--:2z5)=[wo:1:wy:--:wyl]}
There exists a non-zero constant A such that Awg = 1, A = z; and Aw; = z; for
1=2,...,m,80 A = w%) and therefore z; = %; foralli# 1 and z; = w%) So we
see that

VI

wg = Taé_)log(l + 22+t [2a]?)
T opug(1+ L+ wi2)
= ——00log| 14+ — + X%
2 & |wol? lwol?

~—V2_16510g(1 + |w[?) — 88 1og(|wol?)

= YL 0810g(1 + fwf?),

since wyp is holomorphic. So wy is globally defined and the corresponding metric
on CP" is called the Fubini-Study metric. Clearly, each ¢ € SU(n + 1) acts
naturally on CP™ as an isometry of g, and SU(n + 1) acts on CP™ transitively.

Note that
n (V=1\" (dz; A dz;)™
s~ "2 ) 0P+t

w

and hence

: 8 1
RlCij = —m 10g<(—1:_‘—|;‘]‘m) = (Tl + 1)%
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The following calculation

B 6291'3 o = _64log(1+ |z|2)| _
D20z 824,0%,02:02; * 0
d*|2|* |
szaflaziaij z=0
o 9
= m(lﬂ 2j)|2=0
62
= m(zjzl)lzzo

1
2

= 6;6k1 + 610k,

shows us that CP™ is a manifold of constant bisectional curvature and that
Ri5k1 = 9459k1 + 9:19k;, since the isometry group of g acts on CP™ transitively.

Example 1.10 Let M = C” then wy = A@dzi A dz; is the flat metric and the
bisectional curvature vanishes.

¥
Example 1.11 Let M = B™ = {z € C*;|z| < 1} and let

wy = Yot 6B log(1 ~ [2l?),

then R;zx; = —(9:59k1 + 9it9x;) and (B™, g) is Kéhler manifold of constant bi-
sectional curvature —1.

Theorem 1.12 (Uniformization Theorem) If (M, g) is a complete Kdahler mani-
fold of constant bisectional curvature Rz.r = M(g;591r+ 9:i9k3) for some constant

A, then its universal covering M is one of the above examples. Moreover, up to
scaling, g pulls back to one of the metrics in the above examples.

Proof. After scaling, we can distinguish three cases, A = -1, A\=0and A = 1.
We will first prove the cases A < 0. Let (M), gx) be the Kahler manifold of
constant bisectional curvature A in the above examples. Consider the maps
expg : ToM) — M) and exp, : T,M — M, where exp, and exp,, are the expo-
nential maps of g and g, respectively, for any v € Ty M), expy(v) is the geodesic
v of gy at time 1, satisfying v(0) = 0 and +/(0) = v. We need completeness to
guarantee the existence of geodesics.
Identify both To M) and T, M with R?" and define the map

¢ = exp,(expg) ™.
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We claim that ¢ is an isometry and once this is proved, we have proved the
theorem. So we must consider d¢. We will first look at d expy(v). For w € R?",
we have

dexpo(v) ) = o expo(s(v -+ ) = ory(s,1) = Xu(s)

where we have introduced (s, t) = expy(s(v + tw)) for simplicity.

We now check that X,,(s) is a Jacobi field. Because ~(s,t) is a geodes1c for
cach fixed ¢, we have that V.o (. ;) £ ~(s,t) = 0 and hence VoV Ly(s,t)=0
and then

0 \7;(10\7@@Z
s Js
oy oy Oy Oy
= Vs — ——R Xu
V%‘EVXW ds +V[Xw,%}] s (d 3 dé
=Vs, Vo, X, — R @,Xw 6—7
&8s s BS 68
together with the initial conditions X,,(0) = 0 and X/,(0) = w. Now fix an
orthonormal basis ei,...,eq, for TyM,, such that e; = o] |6 I~ 1 and Enii =

Je;. Parallel transport this basis along ~v, that is, V _161( ) = 0 and e;(0) = e;.
So we can write X,,(s) = > X%(s)e;(s) and the J acobl equation reads
02 X%(s) Oy 07 yj _
“ors G R (a ! ) Fs

Taking the inner product with e;, we get

92X (s) Oy Oy i
925 —<R (&,GJ’) —6—3,€1>X =0

which is equivalent to

82X’

’ | R(ey,€ej,e5,€1) X7 = 0.

By the lemma below, the R(el, e;,€;,e1) are completely determined by the bi-
sectional curvature, so X, is uniquely determined by w and A. If now Xo (s ) =
dexp,,(v)(w) is a Jacobi ficld along the corresponding geodesic 7 in M then X,,
satisfies the same cquation as X, does because the biscctional curvatures arc
the same and hence we can deduce that |X,,| = |Xw|, so ¢ is an isometry.

If A > 0 we know that the Ricci curvaturc is also positive and by Myers’
Theorem [5], we know that M is compact. Let Uy C CP™ as before then we
can show that ¢ is an isometry from Uy onto its image in exactly the same way
as before. Now because Uy is dense in CP™ and because M is compact we can
extend ¢ to all of CP™ so that ¢ rcmains an isometry. O
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Lemma 1.13 If the bisectional curvature is constant, then

A .
' _ —35€i, ife; Le,Jey
R(el, ez)el { _2)\eia zf e; = Jel'

Proof. As before, we write u; = %(ei —+/—1Je;). Then

R(uia aia Uk, 77'l) = _R(ei7 Je’i) €k, Jel) + v _1R(€i, Jeia €k, el)-
Since the bisectional curvature is constant A, we have

_f 2Xbp, k=i
—R(e;, Jei, ek, Jer) + V—1R(e;, Je;, ex, €) = { N, ik £
Comparing the real and imaginary parts of both sides, we get

200, ifk=1
_R(ei’JCi,ek,Jel) = { )\é‘:l:l 1fk7é'b

and
R(e;, Je;, e, e1) = 0.

For any i # j, if we replace e; by %(ei + ¢;) in the above arguments, we get
R(e;, Jej, ex, Jer) = R(e;, Jej,ex,e1) = 0.
It follows from the above that
R(ey,ei,e1,Je;) =0, Rlei,eier,e)=0,1+#4.
So R(e1,e;)e1 = pe; for some p. If e; = Jey, then p = —2A, since
R(ey, Je1, Jei,e1) = R(uy, U1, u1,T1) = 2.

Now we may assume that e; L ej, Je;. Replace ey, Je; by cosfe; + sinfJe;,
—sinfe; + cosfJe;, as above, we can deduce

R(cosfe; +sinfJey, e;, J(cosbe; +sinbJeq),e;) = 0.

This is the same as

digR(cos Hei +sinfJe;,e;, J(cosfe; +sinbJei),e;) = 0.

Hence) R(ela €4, €1, ei) = R(Jela €y Jel, ei)) then by R(u17 Uy, uy, 77'1) = )‘a we
have u = —%. Then the lemma is proved. O
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Extremal Kahler metrics

2.1 The space of Kahler metrics

£ 3

In this section, we introduce the Calabi functional on the space of Kahler met-
rics. We will start with a simple lemma.

Lemma 2.1 (80-Lemma) Let (M,g) be a Kdihler manifold and let ¢1,¢2 €
HY(M,C) and suppose that ¢, is cohomologous to ¢3. Then there exists a
function f € C°(M,R) such that ¢1 — g2 = 0.

Proof. We know that ¢; — ¢o = d¢p for some v € H'(M,R) and that we can
write ¢ = Y10 + 90! with 99! = G¢10 = 0, so we want to find functions f, f
satisfying 9! = 8f and ¢1° = 8f. We will show how to do this for 9! and
by taking conjugates, one can do this also for 9!:0. Write 4%! = 6, then locally,

6 = 0;dz; and 0*0 = —gi303i.
The following equation can be solved for u,

= - - 0%u
* —_ * — 'l]_________
00 =0"0u = —g Bziazi’

because [,, 3*0w? = 0. So 8*(6 — Ou) = 0 and we also have that d(f — ou) = 0.
We claim that 8(@ — du) = 0. Suppose this claim werc truc. Then writing
%! = 0 — Ou + du, we see that dyy®! = H0u, which proves the lemma. So it
remains to prove the claim. Set ¢ = 6 — Ou, then we have the identity

\/—_1 2 AT n—2 _ 1 ok |2 n
(T) 6¢>/\6¢>/\wg = m(l@(ﬁﬁ — [3 ¢| )wg.
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Integrating this, we get

0< / 1062w
M

- n -1 = —
=/M|6 ¢>|2w9—?—(n4—)/MB¢>/\B¢>/\wg 2

. -1 _ _
= / |0 ¢’|2w; - _____n(n4 ) / 5<6¢) A ¢’/\w;’_2)
M M
_nn=l) / 80P NP Awl 2.
4 M g
Therefore, ¢ = 0, so the lemma is proved. O
Note that this lemma is also true for any (p, ¢)-forms (compare [3]).
Corollary 2.2 Given 2 € HYY(M,C) N H?(M,R), define
Kq = {all Kahler metrics w with [w] = Q},

then

Ka = (o + Y5 0005 6 € C2UR), [ puy=0)
M

~{¢c€ coo(M,R);/M pwli =0, wg + ~‘/§__—165¢> > 0}.

In what follows we will use results and definitions from Calabi (1980) in [4].

Definition 2.3 The scalar curvature of a metric w is defined to be

2
Bziﬁzj

s(w) = Ry;5 = —g¥

log det g;7-

Definition 2.4 The Calabi functional Ca is given by

where V = [, w™.

Note that V only depends on the class of w and is independent of the partic-
ular representative that we choose. Fix now a metric w = 3@ gi7dz; N dz;
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and calculate the Euler-Lagrange equatlons for the Calabi functional. Let
Wip = w + —Ea&ﬁ, then

s
8

0%¢
IOg det (gkl + ta kagl)

02;0%;
62¢ k:J 2
)+t ( az—ka—_‘ R; ) + O(t%).

s(wigp) = f;

And so we get

Ca(wiy) = Ca(w) + %/M 2s(w) ( A%¢ — @Ry + s(w )A¢>) w™ + O(t?).

Here the last term under the integral comes from the fact that we have also
changed the volume form and we have

at (w t\/_

68¢>) lt= o—n\/2_1 "1 AB0p = Apuw™.

Integration by parts gives us then the following Euler-Lagrange equation for the
Calabi functional.

—2A%s — 2(sRyg)r + A(s?) =

Here, for any covariant tensor ¢ given by {¢;, ; 7, ;. } in local coordinates, we
deﬁne

- k
¢ _ _ _ 6¢1[1pjqu _ Z ..
i]...ipjl...jq,i - 621: 1,1,Q¢1.1 Z’x —ipJ1...0q"?

a=1

these ¢;, . ; 7,..5,, are components of the covariant derivative V1%¢ of ¢. Sim-
ilarly, one can define ¢; ;7. ;. > representing V*!¢. We know

A(5%) = 2|Vs|? + 25As.
So we can use the second Bianchi identity
Rijkim + Rijimk + Rijmey =0
to reduce the above to
A?s+|Vs]® + R;zs;; = 0.

This is still an cquation of too high order, but now using that M is compact,
we can reduce the equation to a second order one in s. We will show that the
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above equation is equivalent to s; Sijsi = = 0, which again follows from taking and
switching some derivatives and using the second Bianchi identity, namely

Si54i = S7iji = S3j% + (Rkﬁjsl})i = 0.

And so we see that

_— . n o __ e, 12, n
0—/ 57345W —/ 5778iw —/ |s33]"w™.
M M M
Therefore, s;; = 0.

Definition 2.5 A Kdhler metric w is called extremal if s(w)z; = 0.

We can also give this a geometrical interpretation: Define a vector field on M
by Xt = g% s3. Then w is extremal is equivalent to saying that X = 0 (since
the metric is parallel) and this is equivalent to saying that X is a holomorphic
vector field.

Corollary 2.6 If M has no non-zero holomorphic vector fields, then the extremal
metrics are the metrics with constant scalar curvature.

2.2 A brief review of Chern classes

Given a Kihler metric wy, we can define a matrix valued 2-form Q = (@),
which is actually of type (1,1), by

QJ = gJ Rlpk'ldzk AN dz_l.

Then we have that det(] + %Q) =1+ tp1(g) + t2¢p2(g) + - - - which has the
following well-known properties (compare [3]):
- d¢z(g) =0 and [d’z] € Hi,i(M’ (C) n H2i(Ma R)a
[¢#:(g)] is independent of g,
— ¢;(M)R is represented by ¢;(g).

Here the c;(M) denotes the i*® Chern class of the manifold M. We will mainly
be interested in ¢; (M) and co(M) and will only check the second property for
Ci (M ) .

_\/— \/_
27

v—1 -
¢1(9) szdzk ANdZ = — ?68 log det(gyr)

and hence
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Clearly, 10g(%§%%> is a well-defined function. Moreover, if
ki

dV =v,dzy AdZy A\ ---dz, NdZ,
is any volume form on M, we can also represent c; (M) by
—~00logv,.

Definition 2.7 We say that ¢;(M) > 0 (< 0) if c1(M) can be represented by a
positive (negative) form. In local coordinates, this means that

¢ =V —1¢pdz, A dZ

where ¢y 1is positive (negative) definite. We say that cy(M) = 0 if the first
Chern class ¢1(M) is cohomologous to zero.

Example 2.8 Let M = CP™ and let

V=1 2
wps = ~o—00log(1 + > lzl?) >0,

then we have

S = v—1 nn!dzl/\-'-/\dfn
ST 2 1+ 3 )t
This implies that

n+1

1
RiC(wFs) = nt WEs and so Cl(M) = [wpsl,
where 1 [wpg] is the positive generator of the cohomology H?(CP™,Z) = Z. One
can show that o 0
n+
Tcz(M) = c;(M)%

Here we mean by squaring that we take the cup product of ¢;(M) with itself.
This implies that

/M (2(_nn+_1)C2(M) - CI(M)2> Awks? =0.

As a side remark, we would like to mention here the concept of an index
of a symplectic manifold (M,w). Recall that a symplectic manifold (M,w) is a
differentiable manifold M with a non-degenerate, d-closed 2-form w. The index
of M is r if ¢; (M) = r¢ for some primitive symplectic form ¢, that is, ¢ is not
an integer multiple of another form. So the index of CP™ is n + 1.
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For n > 1, one can prove that for an n-dimensional Kahler manifold M,
r < n+ 1, and the equality holds if and only if M = CP™ and that r = n if
and only if M is a quadratic hypersurface in CP™. For n = 2, this is a classical .
result, the case n > 2 was proved by S. Kobayashi and Ochiai (see [15]). A
plausible conjecture is that the inder of any compact symplectic manifold of
complex dimension n is no more than n + 1. It may also be true that if a
compact symplectic manifold of complex dimension n is of index n + 1, then it
is CP™. This conjecture is indeed true in the case that n = 2 and the underlying
manifold is already diffeomorphic to CP?2. This was a result of C. Taubes.

Example 2.9 Let My = {z € CP"*}; f(2) = 0} where f is a homogeneous
polynomial of degree d. It follows from the Implicit Function Theorem that M;
is a smooth manifold if and only if

ny:01{§i=o}={(o,...,0)}.

Z

So assume this is the case. We have seen before that we can equip CP™*! with
the Fubini-Study metric so that

== ——2 log(l + |z|2)
9ij 02,0%; '
We claim that

n+2-—-d
c1(My) = —7r———[wFS]-

Set of 12
LA
v= 1°g( iz|2<d—1>>

and note that 1 is globally defined. We will now calculate wig. It suffices to
do this on the open and dense subset

Uoﬂ{ of ;éo}an,

O0zn41

so we get

2 nwﬁs
v—1 n!
n+1

=Y (1) det(gap)r<a.p<nttakioki
i,j=1

dzy NdZ A Adzg N2 A -+ Adzj AdZj A+ Adzn 41 AdZng
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=det(gaﬁ)1§a,55ndz1 Adzy A ANdzy, ANdZ,

n

+2Re(2(_1)n+i+1det(QaE)lSaSn—H,a#i,lgﬁgn
=1

dzi AdZy A ANdzi AdZi A+ Adzn AdZp Ad2zn sy

+ Z 1)"9 det( (9ap)1<0.8<n a5, 8%
i,7=1

17

dzy AdZy A Ndzg Ao Adzj NdZ A+ Adzn gy AdZnir

n

. 0z
= <det(9aa)1ga,agn —2Re (2:(—1)’“errl det(gaﬁ)ISaSn+1,a¢i,1SQSnL+1>

i=1

Bz 02
+ nt+l Y<n41
+ JZI )" Jdet gaﬂ)1<a B<n,a#i,f#£] 82 azi

dzy ANdZL A~ Ndzp ANdZ,.

Using now that 82"“ = — 2L (8L -1 the above

621', 6zn+1

2 \"wh of ntl
( 1) TII,;"S - |az 41 | 2det(9z])1<z,g<n+1 Z
/- ! -

i,j=1

Now recall that

1 2%
P B F SO
& 1+IZ|2< ! 1+IZ|2>

g7 = (1 + |2?)(855 + 2:2;),
so it follows that

n

9f D n+1 n+1
> 28 e (Z1oar+ 3=

i,j=1 i,5=1

But now we can use that on My,

and therefore

M:
Q)|\

1

I

1’7‘7

oL 1+||>(§f|‘9f ).

82!]'

expression reduces to

8f df

—d -dz,.
0z; 0z; 2N A

af 6f>

% 0z;

Z
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Because the determinant of the metric is given by

1

detgz‘; = ——(1 + |z|2)n+2,

we see that

——Zlgzi‘ - — 8blog | of |2

(14 |z|2)n+1 Ozn i1

= —0loge¥ (1 + |z|)4 "2

2(n—d+2)

VAT I

Because the above expression equals the Ricci curvature, we have proved the
above claim about the first Chern class.

It follows that the first Chern class ¢;(My) is positive, zero or negative
according to whetherd < n+2,d=n+2o0rd >n+ 2.

—-80logwhg = —88log

= —80y +

2.3 Uniformization of Kahler-Einstein manifolds

In this section, we collect a few facts on Kéahler-Einstein manifolds (compare
(3], [27]). The main theorem gives a characterization of Kihler manifolds of
constant curvature in terms of Chern numbers.

First we introduce

Definition 2.10 We say that g is a Kihler-Einstein metric if there exists a real
constant X such that Ric(g) = Mg, where Ric(g) is the Ricci form defined in
any local coordinates as

v-1
—2— Z Rzgdzz A dfj.
i.J

A Kdhler manifold (M, g) is Kdhler-Einstein if g is a Kdhler-Einstein metric.

For simplicity, we will denote a Kéhler metric by its Kéhler form.
. . S
A
Lemma 2.11 The average of the scalar curvature depends only on |wg] and
Cl(M).

Proof. Given any point £ € M, we can choose coordinates z1,..., 2z, such that
at z, we have

v—1 ~
Wg = T E dzi A dzi
and

v—1
Ric(g) = 5 Z Ridz; A\ dZ;.
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It follows that at =z,

Ric(g) Awj ™!

(n— 1)!(—V2_1> S Rgdz Adz A+ Adzn AdZn

1
=-7—ls(wg)w;.

So we get
- 1 n
ra (M =+ [ sy}, O
nJMm

Proposition 2.12 If wei(M) = AMw] and w is a Kdhler metric with constant
scalar curvature, then w is Kdhler-Einstein.

Proof. We know that 1 Ric(w) represents the first Chern class of M and that it
is a (1,1)-form. So by the 89-Lemma, we have that Ric(w) — Aw = 89f. Now
taking the trace of this, we have that s(w) —nA = Af, but note now that by the
above lemma, s(w) = nA, so f is a harmonic function on a compact manifold
and therefore f is constant. (]

Theorem 2.13 Given any Kdihler-Einstein manifold (M,g). Then (]T(f ,w) ~
CP™,C™ or B™ if and only if

(%_F—l—)-CQ(M) - cl(M)2> w2 =0.

Here by ~, we mean isometric up to scaling.

Proof. By Theorem 1.10, it suffices to prove that the last equality is equivalent
to M being a manifold of constant bisectional curvature, that is, there exists a
constant A such that R;z.; = A(g;59x7+ 9:19x;)- Recall that we defined the Chern
classes by taking

tv/—1

Y

det <I + Q) =1 +t¢1(2) + t29o () + -,

where (2 is defined in last section. The ¢; represent the Chern classes of M , in
particular, ¢;(£2) = trQ represents the first Chern class.

Viewing () as a matrix valued 2-form and using the properties of trace and
determinant, we see that

2
$1()?* — 2¢(Q) = (%;) tr(Q A Q).
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So we have that

2
v—1
(e1(M)? — 2co(M))[w]™" 2 = (——) / tr(Q A Q) Aw™ 2,
27 M
Denote by R°(g) the traceless part of the curvature R(g). Because M is Kéahler-
Einstein, we have Ric(g) = Mg and so in local coordinates, we get
o A

Riikl‘ = R — n—H(Qij'ng + 9i19k3)-
The tensor R° measures how much the metric deviates from having constant
bisectional curvature. So it now suffices to show that R° = 0 is equivalent to
the equality in the statement of the theorem. If we denote by | — | the norm
given by the metric, then by direct computations, we have

v —1 2 )\2

1
|R°P2w] = — (T) r(QAQ) A2+

n(n —1)

w?.
n+19

It follows that the Chern number

2
72(cy(M)? — 2e5(M))[wy]" "2 = /M A Wy — ﬁ/MW%g.

n+1
We also know that

Nwp = 72er(M)?[wg]™ 2
M
and therefore

7 (o002 - 2 ey 00 g2 = s [ R

nmw
n+1

So we have shown that M is a manifold of constant bisectional curvature if and
ounly if

(c1(M)? —

2—(%1)@(1\4))[&;]"—2 —0.

More generally, we have shown that for any Kahler-Einstein manifolds, not nec-
essarily of constant bisectional curvature, the following Chern number inequality
holds (cf. [28]).

<01(M)2 - 2(—"n+—1)02(M)> w2 <o0.

O

Note that if A = £1, we have that [wg] = £7e; (M), but if A = 0, we have
more freedom in choosing [wy].
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Remark 2.14 Any Kéhler manifold M with ¢;(M) > 0 is simply connected. It
follows from Yau'’s solution of the Calabi conjecture (see Chapter 5) that there
is always a Kahler metric w with positive Ricci curvature on M. It follows then
from Kobayashi (see [13]) that M is simply connected. This is because Ric(w) >
0 implies that the fundamental group of M is finite. But for a compact Kahler
manifold with positive first Chern class, we know that h%° =0 forg=1,...,n.
Defining the holomorphic Euler characteristic by x(M) = 37 ,(—1)7h9°, then
a compact Kahler manifold with ¢; (M) > 0 has holomorphic Euler characteristic
equal to 1. If M is the k-fold covering of M, then x(M ) = kx(M), but because
both M and M have positive first Chern class, they have the same holomorphic
Euler characteristic and thercfore we have a one-fold covering. This then implies
that the fundamental group of M has no proper subgroups of finite index. Since
the group is finite, this implies that M is simply connected.

Remark 2.15 In general, if (M, g) is a compact Kahler manifold with the Kihler

form w, and constant scalar curvature s(wy), then

2 (e (M) = ea(M) ) o2 < s Pl

~ n?(n+ 1)8

and the equality holds if and only if g is of constant bisectional curvature.






Chapter 3

Calabi-Futaki invariants

3.1 Definition of Calabi-Futaki invariants

In this section, we will introduce a holomorphic invariant for K&hler manifolds,
which was first done by Futaki for manifolds with positive first Chern class and
then by Calabi and Futaki for general Kéhler manifolds. We will take a slightly
different approach from the original one taken.

Definition 3.1 We define the Kdhler cone Ka(M) to be the set of all cohomology
classes [w] € H*(M,R) N HY“'(M,C) which can be represented by a Kdhler
metric.

Let n(M) be the space of all holomorphic vector fields on M. That is, all
sections X € I'(Tg M), which can locally be written as X = X ia%i, where the

X are holomorphic functions on M. We will define a complex valued function
fa on Ka(M) x n(M) in the following way: Given any |w] € Ka(M) and any
X € n(M), pick a Kahler metric wy € [w]. Let hg be the function defined by

5@ = [ (0 = Aok

This is well defined since integrating the left-hand side of this expression over
M equals 0 and hg is unique up to addition of a constant. Using results from
the last section, we can define

L[ mme (M)

Define the Calabi-Futaki invariant fas by

Fur (], X) = /M X(hg)ul-
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Next we will prove that the Calabi-Futaki invariant is well defined and does
not depend on the particular representative we choose. We will need various
steps to prove this. First note that because wy is a closed form and because X
is holomorphic, we have that d( xwq) = 0. It follows from the Hodge Theorem
that we can find a smooth function 8 x and a harmonic 1-form « such that

ixwg = a—é()x.

Clearly, Oa = 0 and we also have that 0*a = 0, so we see that
(ol X) = [ X(ho)wy

/Xz helid '} n
oh = 00x Oh
TF e 9 _ jZraFtg n
/ (g Yon 7 5z az,)“’g

/ hgAg0xwy,

and therefore, without loss of generality, we may assume that a = 0. So from
now on, we have that ixwy = —00x. Defining the auxiliary function

F(g,X) = (n+ 1)2~*! hoAOxw?,
99X

it remains to show that this is independent of g. Note that F' does not change
if we replace 0x by 0x + c or hy by hg + c for any constant c. In the following
lemma, we will prove that F' can be written without any terms involving h,.

Lemma 3.2
- J 1 : : n+1
P00 =Y (1 s [ (=8 + Riclg) + (n = 27)(0 +0,)

=0

— (Agfx — Ric(g) + (n — 25)(8x + wg»"“)

__u2n+1/ (9X+wg)n+1
M

Proof. In order to prove this, we need the following binomial identities

l
(1 Nk 0 ifk<lork=10+1
2 (=1 <j>(l‘27) :{ M if k=1

=0
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and the fact that |,  DgOxwy = 0. Realizing that only degree 2n terms will
contribute to the integral, by a straightforward computation, we can show that
the right side of the above is equal to

(n+1)27H! /M(nHX Ric(g) Awy ™" — Oxpuwy).
On the other hand, we can write
F(g,X) = (n+ 1)2"*! /M Ox Aghgwly
~ (412 [ 0x(sl0) —
= (n+ 1)2m+1 /M(nOX Ric(g) A wlt — O p?).

This proves the lemma. O

We know that 80x = —ixw, and we claim that
5A90X = iX Ric(g).

- This foliows from

2

D i 0 5
ix Ric(g) = —-X m log det(gxr)dz;
X

; 0
3% log det(gyr ))

1

dg
X gkl ZIRl
9 821‘

<
<
<
(

]
-0
]
]

0 I )&
Kkl 13
95, X'9y) — g gi—— PR )

9
(X

?r'

e B
_ kil Y Y
- (9 Bzx 07 0")

Here the second line follows from the first because X* is holomorphic and the
fourth line follows from the third because w, is closed.
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Now we are ready to show that the Calabi-Futaki invariant fy; is independent
of the particular representative wy chosen in [w].

Since the space of Kéhler metrics is simply connected, it suffices to show
that %(gt,X )t=0 = 0 for any family of metrics {g;} in a particular Kéhler
class.

Now we have that

80X,t = —'I:Xwgt

= —ix(wg + 85¢t)
= 00x,0 — (X (¢r))

and therefore we can write

Ox,: = 0x,0— X(P¢),

because of the remark we made earlier about adding constants to 6. To simplify
notations, we introduce

Yxt=—08g,0x:+ (n—25)0x,,
Vot = Bg,0xt + (0 — 25)0x¢

R(g:) = Ric(g) + (n — 25)wy,
¢($) _ xn—i—l

which yields
F(ge, X) = (n+1)2™+! / Ox,tAg g, wy,
M

= Z(—l)jﬁ(—nl—_jﬁ /M ¢(x,t + R(gt))

We will only do the calculations for the first term because the calculations for
other terms are the same. We want to show that F is independent of ¢ and in
order to deduce this, we must differentiate with respect to t, so

n

S X) = =P [ g+ Rlg) e+ Rlg) +

j=0
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Here we have used that ¢ is a symmetric function. From the previous calcula-
tions, we know that

51/1X,t = —iXR(gt)

and we can define o; by ) ~
R(g:) = Oaxs.

Then we have
g'ﬁbx,t = —’iXR(gt) = —ixéat = —5(ixat),

because X is holomorphic. So we can deduce that 7,0 x,t = —ix 0y, again because
of the remark made earlier that adding constants has no effect on F'. Therefore,

|| St Rlo bt Rl b+ RlaD)
~ [ $(ixau+Oa et Rlgn) e+ Rla0)
= [ bloixauixet R(@) b+ Rian)
= (s Olane R Bl R0t Rla) +.)
=—/Mixd>(at,¢x,t+R(gt),---,¢x,t+R(gt))-

To go from the one but last line to the last one we have used that OR(g;) = 0
and that

Mxr = —ixR(g) = —ix(¥x,. + R(ge))-
Now ¢ is a polynomial of degree n + 1, so

n = ¢las, Yx,t + R(ge)s - -, ¥x,t + R(ge))

can be written as yo + -+ + v2, and ixn = Bg + B1 + ---. The only term in
the above integral that will not give zero is the fSa,, but Be, = ixv2ny1 and
Yon+1 = 0. Therefore, this integral is zero. So are the integrals of the other
terms.

Thus we have proved the following theorem, which is due to Calabi and
Futaki

Theorem 3.3 The integral
X (hg)w;
M
is independent of g and defines a holomorphic invariant

fv: Ka(M) x n(M) — C.
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In particular, there is a Kahler metric in [w] with constant scalar curvature only

lf fM([w]’ _) =0.

Proof. We only need to prove the last statement, but this is clear because
constant scalar curvature implies that h, = constant and hence fa; =0 a

Remark 3.4 The proof of Theorem 3.3 here is different from the original ones
by either Calabi or Futaki. This proof here is not simpler, however, it is more
general, for example, let E be a hermitian bundle with a metric h over M and
let ¢ be a symmetric polynomial of degree n + 1. Then

/¢(9X +R(B),....0x + R(h))

is independent of h if 00x = —ix R(h), where R(h) denotes the curvature form
of h. To see this, one needs the Bott-Chern classes and a good reference is [2].

Corollary 3.5 If fm([w],—) = 0, then any extremal Kdhler metric g in |w] has
constant scalar curvature.

Proof. If g is extremal, then X = g% 3(9)35% is a holomorphic vector field. So
we get

Pullel ) = [ g9s(a); 50

ij Oh n
=A49”(8(g)—u)58—;wg

- [ (s(9) - k]
M
= [ (st9)~ e
M
and therefore s(g) = p. O

Corollary 3.6 If X = [Y, Z] € [n(M),n(M)], then fp([w],X) =0 and therefore
fu : Ka(M) x n(M)/n(M),n(M)] — C.

Proof. Re(Z) generates a one parameter family of holomorphic transformations
¢: so that ¢; g is still a Kéhler metric that lies in the same class as g. Hence we
have that F(¢fg,Y) = F(g,Y) and differentiating this with respect to ¢, we see
that F(g,[Y,Re(Z)]) = 0 and similarly F(g,[Y,Im(Z)]) = 0. This proves the
claim. |
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3.2 Localization formula for Calabi-Futaki invariants

In this section, we state without proof a localization formula proved in [11].
The proof of this formula is similar to that of Bott’s residue formula for Chern
numbers. We will also compute the Calabi-Futaki invariants for three explicit
Kéhler manifolds.

Definition 3.7 A holomorphic vector field X is non-degenerate if the zero set of
X is the disjoint union of smooth connected complex submanifolds {Z}xea and
if at each z € Z), the linear map

DX :T,M|T,Z\ - T,M|T,Z),
is non-degenerate, that is,
det(DX|r,m/1,2,) # 0.
In the case that Z) = {z} and X = Xii—%, we have

px()- (%) o

and so the non-degeneracy here means that

ox:
det < ) (2) #£0.
0z; 1<i,5<n

Furthermore, if we are given a Kahler metric wy, we can make the following
identification

TZM/TZZ)\ ~ NM|Z,\a

where Ny z, is the normal bundle to Z) with respect to the metric wg, and
hence

DX|r,mr.z, = (VX) [ Npg 2, -
Given any Kahler class Q € Ka(M), we will define a “trace”
tro(X) : {Z,} - C

which is only well defined up to addition of constants. Fixing wy with [we] = €,
we may, as above, assume that ixwy = —0f0x and we set

tI’Q(X)(Z)\) = 0x(Z)\).

Because X|z, = 0, we see 86x = 0 and hence 0 x|z, is constant. For a different
metric wy in the same Kéhler class Q, we have wy = wy + 009, so

0% =0x — X(¢) + ¢,
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where ¢ is a constant independent of A. It follows that
0% (Zx) = 0x(Z>) + ¢,

since X vanishes on Zy. Therefore, the trace is well defined up to addition of
constants.

In the special case that Q = mwe; (M), the form wy is the curvature of a
hermitian metric on the line bundle L = A®T'9M and we have the induced
vector field X* on A®T*°M, which is the canonical lifting of X on M.

At z€ Z,, L, = z x C. If we denote by £ the coordinate on C, then we can
write the vector field X* as

X*=a BE’

where a = tr(DX)(z). So in this case, we have

ey (X)(2) = 1(DX)(2) = 3 ().

Theorem 3.8 For any (2, X) € Ka(M) x n(M) with X being non-degenerate,
we have
fM(Qv X) ="
/ (tr(LA(X)) +er (M) (tra(X)(2x) + )" — oty (tra(X) (Z3) + 79"+
det(L)\(X)—I— K,\)

reA’ %x
Here Ly (X) = (VX)L|M|ZX and K is the curvature form of the induced metric
on Nz, by wy.

If Q = mwc; (M), then this theorem is duc to Futaki [10] and rcads

Vsl / tr(La(X) + e (M))"H

n+1= /7, det(La(X) + 42Ky)

fu(a(M), X) =

We first of all need to explain why this expression is well defined. For simplicity,
set for the moment, Ly(X) = z, ¢1(M) = y and gK,\ = u, then the above

yields
fu=Zq 2 [ FEv)

AEA

where F is of the form _f; E;Z; Here both f and ¢ are analytic functions, so we

can write down a power series for F,

F(z,y,u Zauka: v uf




3.2. Localization formula for Calabi-Futaki invariants 31

This is an infinite series, but because only terms of a certain degree contribute
to the integral, this becomes a finite expression.

We will not prove the theorem (see [22] for the proof), but we will con-
sider two special cases and then compute the Calabi-Futaki invariant for certain
examples.

Case 1 Assume that X only has isolated zeroes, so dim (Zy) = 0 and hence

the only terms that will contribute to the integral are the degree 0 terms and
therefore

n tr(L)\(X)) trQ(X)" — n_i‘_ tro (X)n+1
ful@X) =72 det(LJ\(X)SLl ;

A

and if Q = mc¢y (M), then this reduces to

tl‘(L (X n+1
fM(Cl(M)’X) +1Z det?L)\(X))

In particular, if M has a Kéhler-Einstein metric, then we know that fiy = 0

and therefore this puts a constraint on the zero sct of any holomorphic vector
fields.

Case 2 Assume that M is a complex surface (dim M = 2), then A = Ag U A4,
where A; = {\ € A;dim Z = i}. Assume that Q = 7¢; (M), then

Farler(M),X) = % gAjLA (261 (M)(Z3) +2-29(Z2)-

To see this, we will consider the two terms separately. The first term follows
from the case above. To understand the second term, we must do a little bit
more work. Because A; consists of 1-dimensional submanifolds, we can omit
the trace and determinant, so we have

/ tr(LA(X)+c1<M))3

Zx det(Lx(X) + 1K)

_ / (LA(X>+c1(M>>3
zx (La(X) + 1K)

=/ Lx(X)3 + 3¢1(M)Ly(X)?
zx Ly(X)(1 + L2 KLy (X))

- /Z (LA(X)2 + 3C1(M)LA(X)> (1 _ %KALA(X)ﬂ)

=/Z (301(M)L)\(X)— QKALA(X))
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= L)\(X) (301 (M)(Z)\) - X(NlMIZ,\))
= Ly (X) (201(M)(Z)\) +2 - QQ(Z)\)),

where we have omitted all terms that are not of a degree so that they can
contribute to the integral. Furthermore, we used the fact that
v—1
g ?KA = X(NlMlz,\) = Xx(TM|z,) — x(2») = c1(M)(Z») +2 — 29(Z)).
A
Example 3.9 Let M = CP", then Aut(M) = SL(n + 1,C)/ ~, where A ~ \A
for some non-zero complex number A, then

n(M) = Lie(Aut(M)) = si(n+1,C) = {4 € C**1*"*+1.4r 4 = 0}.

Because any A € sl(n + 1,C) can be written as A = BC — C'B, we have that
n(M) = [n(M),n(M)] and so from Corollary 3.5, we know that fas = 0.

Example 3.10 Let M be the blow up of CP? in a point. Without loss of gen-
erality, we may assume that we blow up in [1 : 0 : 0] because we can always
move points around by the automorphism group of CP2. Topologically, we see
that M ~ CP2#CP2?, where the bar denotes the reversed orientation. Now
CP2\{[1:0:0]} = M \ E and in local coordinates, we get

M=CP*\{[1:0: 0]} U{[g:n] x [1: z: y]; €y = na},

where E = {[¢ : g] x [1: 0: 0]} ~ CP! is the exceptional divisor. Note that E
has self intersection ENE = —1.

Claim (M) = {X € n(CP?); X([1:0:0]) = 0}.

Proof. Let X be a vector field on CP? which vanishes at [1: 0 : 0]. Then X
induces a one-parameter subgroup ¢; on CP? which fixes [1: 0 : 0]. Clearly ¢;
lifts to a one-parameter subgroup on M so that %(ﬁt defines a holomorphic vector
field Y on M. Conversely, let Y be a holomorphic vector field on M and ¢; be its
integral flow of holomorphic automorphisms of M. Since F has self intersection
—1 and other holomorphic curves always have positive self intersection numbers,
the flow ¢ must fix E and hence can be descended to a flow of automorphisms
of CP2, these automorphisms must fix [1 : 0 : 0]. Then the derivative of ¢;
along t gives rise to the required vector ficld on CP2. This vector field vanishes
at [1:0:0]. O

We will now consider the flow ¢ : [1: 2 : y] — [1 : ez : e’'y] which is defined
on Uy. We can define it on all of CP? by taking the limit of ¢¢ ([1: Az : Ay])
as A — oo. Since ¢ fix [1 : 0 : 0], they lift to a one-parameter subgroup of
automorphisms of M, still denoted by ¢;. One can then see that

Fix(¢;) = CPL UE,
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where CPL = {[0 : z : y]}. Let X be the vector field associated to ¢; on M.
Then the zero set of X is CPL U E, which is the union of two one-dimensional
submanifolds. It is not hard to see that Lx(X) = —1 on CPL and Ly(X) =1
on E (¢; flows out of E and towards infinity). Therefore, we can now read off
that

s uler(M), X) = 526 (M)(E) + 2 ~ 261 (M)(CPL,) - 2

- g(cl(M)(E) — &1(M)(CPL))

= g(X(E) +ENE~x(CPy) — CP,, NCPL)
2 4

:5(2—1—2—1)=—§,

so fa # 0 and therefore M does not admit a Kahler-Einstein metric.

Example 3.11 Let M = CP2#2CP? be the blow up of CP2 in two points. Again
without loss of generality, we may assume that we have blown up in [1: 0 : 0]
and [0 : 1 : 0] with exceptional divisors E; and E,, respectively. Analogously to
the above example, we have that

n(M)={X en(CP?);X([1:0:0]) = X([0:1:0]) =0}.

We will consider the same flow on CP? as that in the last example. Let X be
its associated vector field on M.

Let I be the line through [1:0:0] and [0: 1 : 0], then [ is preserved by the
flow. The picture on the following page shows that

Fix(¢;) = By U FU {IN E,},

where F is the image of CPL after blowing up in [0: 1 : 0].
Now at {I N E,}, we have

1 0
L)\(X)—tr <0 _1) =0.
So again we can read off that

e (M), X) = £ 2es(M)(By) ~ 201 (M)(F))

2 2
=-2-1-(2-0))=—,
S2-1-(2-0) = —
because FNF = 0 as blowing up CP! in a point reduces the intersection number
by one. And once more we can deduce that fy; # 0, so M does not admit a
Kéhler-Einstein metric.
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(CP2 (CP2

first blow up

Remark 3.12 Note that ¢;(M) > 0 if M is the blow up of CP? in m points
in general position for m < 8. If m > 4, we have that n(M) = {0} and if
m = 3, n(M) ~ C® and one can check that fas = 0. In fact, these M admit
Kihler-Einstein metrics (see [23]).
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Scalar curvature as a moment map

Let (V,w) be a simply connected symplectic manifold and let G be a group
acting on V preserving the symplectic form. Let g be the Lie algebra of G
which consists of all left-invariant vector fields on G. Then any v € g induces
a one-parameter subgroup {¢:} of G. Since G acts on V,¢; induces a vector
ficld X, on V. It is well known that there exists a map m, called moment map,
m:V — g*, satisfying

- m is G-equivariant with respect to the co-adjoint action on g*,

—forallvegandal ue TV, w(u,X,)=dn(u)(v).

Our goal in this section is to prove that the scalar curvature of Kéhler metrics
is a moment map with respect to Symp(AM), the group of symplectomorphisms
of a compact Kéhler manifold M. I learned this from [6]. In [8], Fijiki and
Schumacher also studied moduli spaces of Kéahler manifolds as quotients by
symplectic diffeomorphism groups. Qur prescntation here follows closely the
discussion by S.K. Donaldson in [6]. We should point out that though we as-
sume for simplicity that M is simply-connected and Kéahler in the following
discussions, all calculations are still valid with small modifications in the gen-
eral case of symplectic manifolds. Also it is not necessary for the readers to go
through this section in order to understand other sections.

Let M be a simply-connected, compact Kahler manifold and fix a Kahler
form w. Set

J={J:TM - TM;w(Ju, Jv) = w(u,v), w(u,Ju) > 0 for u # 0}
and let Jint C J be defined as
Jint = {J € J; J isintegrable},

which are both infinite-dimensional manifolds once appropriate norms are given.
However, we will skip these technical difficultics. Let G be the group of exact
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symplectomorphisms of w, G acts on J by

(¢, ) = ¢!

which still lies in J. Note that for ¢ € G, we get that ¢jw = w, so if X is the
vector field induced by ¢:, then Lxw = 0 and by the Cartan formula for the Lie
derivative, this implies that d(ixw) = 0. Therefore, we can find a function Hyx
such that ixw = dHx. By requiring that f m Hxw™ = 0, such an Hy is unique,
so the Lic algebra of G is

g:{H:M—»R;/ Hw™ =0} = C°(M).
M

Secondly, observe that
T;9 ={A:TM - TM;AJ + JA = 0,w(JAu, v) + w(u, JAv) = 0},

in other words, JA is g -symmetric, where g is the metric induced by J, that
is
9s(u,v) = w(u, Jv).

Given A € T;J, we can define p4(u,v) = w(Au,v) and we see that p4 is
anti J-invariant, that is pa(Jy, Jv) = —u(u,v), and symmetric. The tangent
space T7J can be characterized to be the space of all such pu4’s. Finally for the
orbit G(J) = {¢«Jb, ;¢ € G}, we have

T;G(J)={LxJ; X € g}
Let now D be the distribution given by
Dy = {ExJ, LijxJ; X € g}.

Remark 4.1 In what follows we will always assume that the complex structure is
integrable. We can also prove everything for arbitrary almost complex structures
(see [6]), but we then need to take the Nijenhuis tensor into account and hence
for simplicity we assume integrability.
Claim D; C T;7.
Proof. 1t is clear that both LxJ and L;xJ satisfy AJ + JA = 0. Because
X € g it is also clear that Lx J satisfies the second condition to lie in 7;J, and
hence it suffices to show that £ ;xJ does so, too. Now we have
(Lax )Y =Lyjx(JY)—JLsxY

=[JX,JY]| - J[JX,Y]

= [X,Y] + J[X, JY]

=LxY +JLx(JY)

= —Lx(J2Y)+ JLx(JY)

= —(LxJ)(JY).
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It shows that (LyxJ)Y = —(LxJ)(JY) and therefore, we have

w(J(LyxT)u,v) + w(u, J(LyxJ)v)
= —w(J(LxJ)Ju,v) — w(u, J(LxJ)Jv)
=w((LxJ)Ju, Jv) + w(Ju, (Lx J)Jv)
=0,

SO EJxJ eT;J. O

Remark 4.2 This also shows that D is a holomorphic distribution, this means
that it is invariant with respect to the almost complex structure J on 777
induced by J.

Proposition 4.3 D is integrable.

Proof. Fix J € Jiny and let K = {Kéhler metrics within a fixed Kéhler class}.
It suffices to construct an integral submanifold 7 of D through each Kéhler
metric w in K. Any Kéhler metric in K near w is of the form

wf =w —dJdf =w+2v/-100f

for some small f € Cg°(M).

We now define a bundle S over K as follows: The fiber Sy over wy consists
of all exact symplectomorphisms of wy. Note that each wy is J-invariant and
So=G.

By a lemma of J. Moser, we can always find a diffeomorphism 9 such that
Yjws = w, and so given ¢ € Sy we have that wf"ldnpf € Sp.

Define the function I : C§°(M) x Sp — J which associates to the pair
(f,9) € C(M) x Sp the complex structure ¢(1pf_1(J)). We must check that
this is well defined

w(;  (T)u, v7 ' (J)v)
= w((¥7 e (Yr)ats, (W7 ) (f)a0)
= wr(J(Yr)ett, J(¢5)av)
= ws((Y5)a, (Yy5)av)

= w(u,v)

and since ¢ is a symplectomorphism, this shows that I is well defined. At a
given point (f,¢) € C§°(M) x Sp, we will compute the derivative of I applied
to (Hy, Hy). Here we use the exponential to identify the symplectomorphisms
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with the Hamiltonian functions

d
Dil g, 1) = 5 (0607, ()

d
~dt <(¢em2)*(¢fjtm)*J(¢f+tH1)*e*_tH2¢:1))

t=0

d
= ¢x (E(wf_-}l—tHl )ed (W 4em, )*)
+ d)*EXHz (wf_*l‘]wf*)qszl'

We will consider both terms scparately. First note that

e Lx s, W7l TVp )05 = Lo, X, ((0F 1 (T))),

we now want to find a nice expression for ¢.Xn,, so

i X, W (Y) = w(¢sXH,,Y)
= ¢*"w(Xn,, 4, 'Y)
= w(Xm,, ¢, 1Y)
= dH,(¢;'Y)
= ¢, ' (Y)(Hy)
=Y((¢*) ' Hy)
=d(Hz0¢™")(Y)

-1
P
=0

t=

and therefore
d)*XHz = XH2°¢_1‘
For the first term, we need to do a bit more work. Observe that

d d, _ . —
S OFtem) T @riem ) = — (Wr e, ) ¥se(r) TUs JWE, (U5 pam )
= Lx, (W5, Jsa),

where X is the vector field

I f+tH, :
dt d t=0

Again we want to find a nice expression for X;. This will show that the distri-
bution is integrable. First of all
(V7 "y yirn) W = Uf e, w5
= Y} p, (W — tdJdHy + tdJdH,)
=w + tp}, g, dJdH.
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Since we can ignore sccond order terms in ¢, we have
Lx,w =¢idJdH; = d(y; ' (J))dyHy.
As Lx,w = d(ix,w) and since M is simply connected, we get that
ix,w =97 (J)dypiH1 + dh
for some h. So we sce that on the one hand,
W(X1 = Xp,Y) = g(X1 — X, 7 (J)Y),

where ¢ is the metric corresponding to the complex structure 1/);1(] ), on the
other hand,

w(X1 = Xp,Y) = o5 (J)(dg; Hi)(Y)
= dy i Hi (v (J)Y)
=7 (I)Y (v} Hy)
= g(V¢iH1, ¥;  (J)Y)
and hence X; = Vw;Hl + X}, It follows

D1l Ha) = 0. (Lsmox, (U7 ()64 £,y (6107 )
which reads by the same argument as above

DI|(s,4)(Hy, H2) = Ly ty06-1)+X, 51 8@7 () + Lx,, 2 (@07 ().

This shows that
DI|(4,4)(H1, Hz) € Dyyr1(ay
and that DI is surjective, hence the distribution is integrable. O

Consider now the following two operators
P:Cy°(M)—T;J,
Q:T;J — C°(M),

where P represents the infinitesimal action of g on Jj,; and @ represents the
derivative of the map that associates to J € Jin the scalar curvature of the
metric gy induced by J. To achieve the goal that we stated at the beginning
of this section, to relate the scalar curvature of a Kahler metric to the moment
map, we will prove that the following two L2-pairings are the same:

(P(H), Jp) = (H,Q(p))-
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Here H € Cg°(M) and p € Ty J. The pairing on the left-hand side equals

1 n
§/M<P(H)7M>9Jw ’

where we have used the inner product defined by ¢, and the pairing on the
right-hand side is the standard L? inner product on functions, that is

/M HQ(p)w"

In order to prove that the two pairings are the same, we will compute both.
Let us first of all consider P. Since P is linear in H, we can assume that H

has small compact support and so we can do the calculation in a local coordinate

chart. Choose local coordinates z1, ..., 2, compatible with J so that J = (JJ’f),

97 = (gi) = (wi;J{) and

0o 0
PU) = (55 = PUD) e 50) )
? J
0 0H
(X5 ) = 5y
on the other hand,

] 8\ .
w (XH,B—%_) =g (JXH,B—%) = gijk(JXH)",

Then we have

S0

OH
= Jigik ——
= Jig dx;
Writing for the moment
Lx,J = B i Bz, —dz;,
we see that
, 0 0 0 0
R ) R e R
and so ' '
= —JFJ 9P Hpr — g Hpy;.
Therefore,

P(H) = (—Jj’ink - Jijk)
< Xl\
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so that the pairing on Ty Jint reads
(P(H), Jp) = _/Hijﬂklgikgﬂw" = - /Hijﬂklgikgﬂw".

Now we will compute ). Since Q(u) is a tensor, there are no problems
with the choice of coordinates. Let J; be a family of almost complex structures
with Jp = J and %Jtltzo = p. Let g; be the metric induced by J;. Then the
Christoffel symbols of the metric g; are as follows,

1 5 (095 n Ogix 09tk
2gt 8xk axj a:L‘l ’

U
Lige =

where (g’ ) is the inverse of (g ;;) and

(2 9
gt’” ~ g BCL',L" Bmz '

At p € M, we can assume that

0 -1
9ij(p) = 65, dgi;(p) =0 and J(p) = (I 0 ) ,

. C ot
o e bes Hewr L 0o

where g = gg. Then Fi, jx are of order ¢, and the curvature of g, at p is given by

Rﬁjkl(p):gt<Vavii_v v 0 8)

3z;  d=; Oxy agj azi Oz’ Ox
ors . ars
gk t,ik 2
= Gt,sl = gt,sl + O(t
k. 81‘1 Gt.s ail,‘j ( )
82 X 82 .
_ 99tk gt il + O(tz),

- 8m18ml 8xj8xk

SO
o 6%, 820, ;
_ ik il 9it.jk at,il 9
s(g:) = 9;"gi (81‘1'81‘[ Crkvjaxk) + O(t7).

Differentiating it on £, we get

d
3 509t) = 20k R + fik ks — Hisikk-

and Q(u) = %S(Qt)lho-

Claim MikRijkj =0 and Hi; = 0.

Proof. The first expression reads p;rRijr; = pix Ricsy and since p is anti J-
invariant and Ric is J-invariant, we can deduce that (u, Ric) = 0. Furthermore,
@ being anti J-invariant implies that the trace of y vanishes, so p;; = 0. O
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The corollary tells us that Q(u) = pjkk; and hence we have the following
pairing wh by gk

/
(H,Q0) = [ HQw" = - [ Hymjo™
Comparing this to the above pairing for P, we have shown that the two pairings
are equal and we have found a relation between scalar curvature and moment
maps. To be more precise, we have shown that the Calabi functional equals the

square of the norm of the moment map m for the symplectic group G defined
by scalar curvature as above. So we can deduce the following

Corollary 4.4 g; is an extremal metric if and only if

c(M)w™? )

JEm_l( o

and therefore

n—1
{ extremal metrics}/holomorphic isometries = m~1 (——-CI (M)w ) /G.
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Kahler-Einstein metrics with
non-positive scalar curvature

5.1 The Calabi-Yau Theorem

We have seen that the Ricci curvature represents the first Chern class. In this
section, we will consider the converse problem, namely, given a Kéahler class
[w] € H3(M,R) N HY'(M,C) on a compact Kéhler manifold M and any form
Q) representing the first Chern class, can we find a metric w € {w] such that
Ric(w) = 2?7 This is known as the Calabi conjecture and it was solved by Yau
in 1976. We will state it here as a theorem and refer to it as the Calabi-Yau
Theorem.

Theorem 5.1 (Calabi-Yau) Let M be a compact Kihler manifold and let [w] €
H?(M,R)U H"(M,C). Given any form Q representing wci (M), there exists a
unique Kdhler metric w € [w] such that Ric(w) = Q.

Before proving this theorem, we will first discuss some corollaries and an exam-
ple.

Corollary 5.2 Any compact Kdhler manifold with c1(M)gr = c2(M)g = 0 is flat
(this means M = C"/T).

Proof. The Calabi-Yau Theorem tells us that ¢;(M) = 0 implies that there
exists a Ricci-flat metric (that is Ric(w) = © = 0). By the Uniformization
Theorem (2.13), we know that M = C™ and thereforc M = C"/T. O

This shows that the flatness is characterized by the first two Chern classes.

Corollary 5.3 If c;(M) > 0, then M has a Kdhler metric with positive Ricci
curvature (this implies that M 1is simply connected, see [13]).
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Proof. If ¢;(M) > 0, then there is a form 2 > 0 representing wc;(M) and by
the Calabi-Yau Theorem, we can find w such that © = Ric(w) > 0. O

Remark 5.4 It is unknown whether this result is also true for symplectic mani-
folds.

Corollary 5.5 Assume that c;(M) = 0. Given any Kdhler class [w], then
Aut(M, [w]|) = {¢ : M — M; o isbiholomorphic and ¢*[w] = [w]}
is a finite-dimensional Lie group.

Proof. By the Calabi-Yau Theorem, there exists a unique Ricci-flat metric
w € [w]. Observe that o*w is still Ricci-flat and is also Kéhler (since o is
biholomorphic). By assumption

[o"w] = 0" [w] = [w]

and therefore, by uniqueness,
ot'w=uw.

So ¢ is contained in the isometry group Isom(w) of w and we have shown that
Aut(M, [w]) = Isom(w) and the latter one is a finite-dimensional Lie group (see
[14]). O

Remark 5.6 There exists a compact K3 surface M (that is a complex surface
with m (M) = 0,¢1(M) = 0) such that Aut(M) is an infinite discrete group.
Hence, the extra assumption o*[w] = [w] is neccessary.

’

Example 5.7 Let M C CP3 bg defined by a quartic (that is degree 4) homo-
geneous polynomial. Example 2.9 tells us that ¢;(M) = 0 and it follows from
the Lefschetz Hyperplane Theorem that m;(M) = 0. The Calabi-Yau Theorem
says that M has a Ricci-flat metric, but M is not flat (if M were flat then
M = C™/T and hence m;(M) = T'). A question that arises is whether it is
possible to construct this metric in terms of classical functions.

We will now give the proof of the Calabi conjecture due to Yau (see [27]).

Proof. Choose any Kéhler metric w € [w]. For convenience, we will drop the
normalization factor 3@ in w. Then, in local complex coordinates zi,..., 2,

w = g;;dz; N dZ;

and B
Ric(w) = —00 log det(g;3).
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Both the Ricci curvature and €2 represent the first Chern class and therefore the
00-lemma, tells us that we can find f such that

Q — Ric(w) = 99f,

where f is unique after normalizing to

/M(ef —1w™ =0.

Note that f only depends on w and (2.
Again using the 00-lemma, we know that any other metric in [w] is of the
form w + 80¢. Suppose that we have found the right function ¢, so

Ric(w + 00¢) = Q = Ric(w) — 99f.

This reads in local coordinates,

- 9%¢ - -
—00log det <g,-j + m_:) = —00logdet(g;;) — 00 f.

Although this is only locally defined, the following is globally defined

2
det(g;; + 3—23%)
det(gij)

6510g< ) = 90f.

Therefore

- %9
det(gij + 3zi35].) _ ofte

det (gij ) ’

which is equivalent to _
(w+ 88p)™ = efTeum.

In order to determine ¢, observe that

/Mef+c ”=/M(w+85¢)”=/Mw"+6(...)=/Mw”,

which follows from the Stokes Theorem. This implies that ¢ = 0.
So we have shown that Ric(w + 80¢) = 2 implies

(w + 39¢)™ = efw™,
which is known as the complex Monge-Ampéere equation. In fact, it is true that

Ric(w 4 80¢) = Q <= (w+ 90¢)™ = efw™.
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Calabi proved in the 50’s the uniqueness part of his conjecture using the
Maximum Principle.
Assume that there are two metrics w; and w, with

Ric(wy) = Ric(we) = 0,
then
W) =W+ 65(]51
and
wo =w+ 65(]52
Without loss of gencrality we can assume that ¢ = 0, we = w and ¢; = ¢ s0
that we have
0=wy —w}
=w" — (w+ 00¢)™
=(w—(WHIOPNA (W T+ w2 Aw + -+ w AW WY
=00 A (WM + w2 AW 4+ WP

and multiplying by ¢ and integrating, we see that
0= —/ OO A (W™ -+ WP =/ OPAIPA (Wt 4 +wPh).
M M
Now because w; and w, are Kéhler metrics and w;,ws > 0, we get that
1 = 1 ~
vaqb/\aqb/\(w”_l +otwH > v@qﬁ/\aqb/\w”_l,

where V = [ A W™ Here we say that two top degree forms u = fdz; A--- Adz,
and @ = fdzl A---NdZ, satisfy u > @ if f > f So we have

1

1 = 1
> — n—1 _ ___ 2 n_ - 2. n
0> V/Maqb/\aqbf\w nv/laqbf w QnV/MWqﬂ w

and we can deduce that V¢ = 0, so ¢ = constant and therefore w; = ws.
Hence we have proved the uniqueness part of the theorem and we now con-

sider the existence part, so we want to solve (w+804)"™ = efw” for ¢. The proof

will follow by the continuity method: Define f; = sf + ¢; for ¢, constants and

0 < s < 1. Requiring that | M(ef s —1)w™ = 0 determines the constants uniquely.
Observe that fo = 0 and f; = f. Consider the following family of equations

(w+ 80¢)™ = efsw™. (15)
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The solution of (1) is unique up to constants. Define
S = {s € [0,1};(1;) issolvablefor ¢t < s}.

To prove that (1;) is solvable, it suffices to prove that S is non-empty, open and
closed. Clearly, 0 € S (set ¢ = constant).

We will first show that S is open. This means that assuming s € S, we must
solve (1;) for ¢ close to s. Let ¢s be the solution of (1), then

ws = w + 00¢,

and
Wl = efewm.

Suppose that ¢; is what we look for, so
(@ + 801)" = efeur,

then B
(ws + 00(Ppr — ps))" = eft=foum,

Setting ¥ = ¢; — ¢bs, all that remains to do is to show that we can solve this for
t close to s. Note that this is a perturbation problem and yields

log (ws + 00Y)

1
ws

=ft—fs-
Since 7 is small, we can expand the left-hand side and get
fe—fs =log(1+ Au, ¥ + Q(D*Y, D*) +--+)
= Do ¥+ QD DY) — 2 (Bu v + ..

where () denotes the quadratic terms and the dots denote the higher order
terms, f; — f, is of order ¢t — s.
Introduce

k _ Dk
Ck’%(M, R) = {u: M — R;uis C*-smooth, sup | Du(z) — D uly)| <

oo},
Ty d(.’E, y)%

| D*u(z) — DFu(y)]
d(z,y)? '

We denote by Cy' (M, R) the subspace consisting of all « in C" (M, R) with the
extra linear condition
’ / wwy =0,

k
lvllg, =) sup|D*v(x)| + sup
=0 = T#Y
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whereas C' (M, R)o denotes the subset of all u in C"" (M, R) satisfying the extra
non-linear condition

/(e” — w? =0.

Note that

/(ef:—fs — 1 = /(eft_fs _ l)ef‘*wn — /((eft -1)- (efs _ 1))w” =0

implies that
op (ws+83u)T ~
0=/<e‘g oF —1>wQ=/(ws+65¢)n—wg.

By the above, it follows that we can define an operator
@ : C23(M,R) — C%} (M, R),

by ~
ws + 00Y)"
®(y) = log (_s__r_lw_)
8
This is well defined. We must prove that for ||f¢ — fs|lo,1 sufficiently small, we
can find a 1) with

®(y)=fi— fs and ||¢||2,% <Cllfe - fs“o,%-

We will apply the Implicit Function Theorem and hence it suffices to check
that
D®|y— : C2%(M,R) — C% (M, R)

is invertible (note that the tangent space to C%% (M,R)o at u = 0 is Cy 3 (M, R)).
Now
D®|y—p(u) = A, u

and it follows from [12] that
A, : C*¥(M,R) — CO¥ (M,R)

is invertible. Therefore, ®(y) = f; — fs is solvable for |t — s| sufficiently small
and so we have shown that S is open.

It remains to prove that S is closed, that is, suppose that we have a sequence
s; € 8 with lim;_, ., 8; = So0, then we must show that s, € S. Now the s;
correspond to solutions ¢; of (1,,) which are unique up to constants. We must
prove that by taking a subsequence if necessary, there exist ¢; such that ¢; — c;
converge to some @, in the Cz’%-topology. Since

(w + 80(¢; — ¢;))" = efs™,

we know that _
(w+ 00¢o)" = efeow™
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and hence s, € 5. By the Arzela-Ascoli lemma, it suffices to show the following
a priori estimate ||¢; —¢;||s < C. Let ¢ be any solution of (x),. We will establish
an a priori estimate for ||¢@||s.

We will first state the following two facts that can be found in [1]

— Let g be the metric corresponding to w = wy, then there exists a Green
function G(z,y) on M x M \ A satisfying

C
< <
0<Glmy) < d(z,y)?"2

and for all ¢ € C*(M),

#@) = [ ") - [ 8eo)C@ 1)

To see that we have positivity follows from the fact that we can always add a
sufficiently large constant to GG to ensure positivity.

- (Sobolev inequality) For a fixed metric, there exist constants ci,c2 > 0 de-
pending on (M, w,) such that for all f € C}(M,R)

l % n E_;—l_c_z 2 n i 2 n
a(y [ ) " -2 [ e < [ i

This is true because on a compact manifold, we can use a partition of unity to
cut the manifold in pieces which are diffeomorphic to a domain in Euclidean
space and there we can apply the standard Sobolev inequality.

To show the desired estimate, we will proceed in three steps. In what follows
we will always use C to denote a uniform constant, but this capital may mean
many different constants and it should be clear from the context what is meant.

Step 1 (C°-estimate) We know that ¢ is unique up to a constant, so we can
choose the constant so that sup,,; ¢ = —1 and because M is compact, we can
assume that ¢ attains its supremum at xg so that we have

1= 9(e0) =~ [ 1"~ [ AewGlao,

where we have used that ¢ is always negative so ¢ = —|$|. Since w + 93¢
determines a metric, by taking trace with respect to w, we have

0 <n+ Ag.

Substituting this in the above gives

143 /M B)le” = /M AY(W)G w0, y)" < T /M G0, y)u™
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and therefore we have proved

1 n
= /M 6)lw" < C.

Define ¢_ = —¢ > 1 and w’ = w — 89¢_, then we see as before

(efs — D" =()" — "
=—00p_ A((W) " P+ (W) P AwE O AW

where both w and ' are metrics so w,w’ > 0. For any p > 1, we multiply it by
¢ , and integrate over M to get

—1/ ¢80 A ()" +--- +0h)
Vi im
Zi/ 0" N Op_ A"
V m
= 3/ $P10p_ AB_ AW
V I
_ 3/ 6" 09 AT Hp_ Awrl
Vu
— 4p Eéi 3 '% n—1
= Vot i) /M&;b_ NOP_? w
__ 4p P# 2 n
- Vn(p+1)2/ IVo? ['w

n—=1
Bl 2m_ n c2 BEL
> — n—1 - = 2 .
‘n(p+1 < < /| " w) V/MI"L |w>

On the other hand, we have that

_1 3 yn— n-1y_ 1 fs _ n
V/quzi@(‘)qb_/\((w) o tw )—V/quf(e 1w

C
<_ T
_V/Mqﬂw
C
< p+l n
co [ o

since the fs are uniformly bounded (this bound is independent of s) and ¢_ > 1.
Putting all these together, we get

4p 1 el 2n " 512, n c +1 7
W<C1<V/Ml¢'l w) /|¢ [ )SV/MW: "
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which after some rearranging reads

1 p+1) 2 n) = C(P+1)/ p+1
— v n—1 S_____._ T w
(3 ] ez e M

By raising both sides to the power we obtain

+1’

1 _
oIl oenr 2y < (Clp+1)7+ T ||¢-|lLoss-

We will apply Moser’s iteration method. Choose po = 1 and define p; by
n
i +1=——(pi-1+1),
D + n—1 (pz 1+ )
then

i—1

lo-lizsers < [L(Clo; + 1)) 57 p-| 2.
j=0

And if we now let ¢ — oo, then p; + 1 — o0, so

sup |¢-| = Jim [lg-[|zp.+ <H<C(pg+1>>w+1||¢ L2 < oo,

j=0

which we can see by considering

1

lOgH;"O(C(pJ-i-l))pJ +1 >ieo ;,#(1050+10g(17j+1)).

=e
So we have shown that

sup || = sup [¢_| < C||¢]| 2.
M M

Furthermore, we have

< ns 1 _ oayn
o[ ooz g [ st

_ % /M $(w" — (w + 00¢)™)
> [ Ve
A ([, o)

where the last step follows from the Poincaré inequality, so we deduce from the
above that

V

lgll> < C(ligller +1)
and hence sup,, |¢| < C.
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Step 2 (CZ-estimate) First observe that ||V2¢|co < max{n + A¢,n}. To see

this, note that the metric satisfies g;; + %:a% > 0 (positive definite, hence all

the eigenvalues are positive) and therefore
0%¢

llgi;; + m”g < trg <9i3 +

T

6zi82j> =n+ A¢p.

Our aim is now to find a bound for tr,(w') = n + A¢ where o' = w + 89¢.
We will follow Yau’s arguments [27] using the Maximum Principle.
Locally we write w' = {glf;} and w = {g;;} and we set f; = F so that we
have _
(w+ 09¢)™ = ef'w™,

which reads
0%¢
Bziﬁzj
Now differentiate both sides with respect to %
(¢')7 995 ¢\ _ 59 _ OF
Oz, 02;0%Z;0z Oz, Oz’

log det <gi; + ) = F +logdet(g,3).

and differentiating again with respect to -5% yields

(g/)i} 6291‘3 64¢ N 5 15%%_ i 3291;
02,07 Bziazjazkazl

0z Oz g 02,07
= - 6gts' 63¢ 691_ 63¢ 62F
_(ANET (AN J =
(g)7(g) < 0z + 02:02,07 ) \ Oz * 02;0Z;02, 02,07

Assume that we have normal coordinates at the given point, so g;; = é;; and
that the first order derivatives of g vanish. Now taking the trace of both sides
results in

- - 629,_, 64¢ - - L 634) 63(]5
— okl 7\ 1 PN T FRAN T NN 1
AF=g"(d) <sz621 aziazjazkazJ 99 5, 57,55 z07,0m
i %95
621965[.

On the other hand, we also have

_ 62 - 62¢
/ — (o' \F! ©J
A& =) 5 55 <g 8zi82j>
- 64¢ B 62gi3 32¢
— (o kl ij "Nkl .
(9)°9" 5r05,0m0m T 9 5208 9295,
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4
We substitute mg%ca—a in A’(A¢), so the above reads

. s_ 0% 9%
, _ Nij 2~ Iy ki ti(g')®
A'(Ag) g () 02:0% (¢)7(g) 02,0Z,0%Z; 02;0Z;02
- 6 ;5 62 i 62‘]5
Kl 5 O 95 Nkl
+g97g 02,07 +AF+(d) 8zk8zl 6Z162]
which we can rewrite after substituting ;9-—52- = — R and 5 3;-1 = R as

A'(Ag) = AF + gF (g ) (g’ Y pesidize + (g’ )9 R — ¢° Rzgkl + (g’ )H_Rijkz‘ff’ij-
Let us now rechoose the coordinates so that both g and ¢ are in diagonal form,
9i; = 65 and ¢;; = b;;¢;;, then (g’ ) = Tfff and the above transforms to
1 1
1+ 951+ 655
Set now C = inf;4x Rz and observe that
1 éi 1 (b — ¢ﬁ)2
Rﬁ_ —1+ —+ ):—Rﬁ—
’°’“< I+6s 1+ 0+ 0a) 1+ o)
C 1+ ¢x—1-¢3)?
T2 (14 )1+ dir)

1+¢5;
=C{—2* -1
<1+¢kl‘c >,

b + AF + C((n A9y

1 =
A,(A¢) ¢’ij¢_]k +AF + Rukk < + ¢2’L ) :

1+¢; 1+ di

this yields

A'(Ag) 2

1 1 2
(1+¢i2)(1 + 853) T+és )
We need to apply one more trick to obtain the requested estimates. Namely,
A(e P (n+ Ag)) = e AN/ (Ap) +2V'e V' (n + Ag) + A'(e™?)(n + Ag)
= e PA(Ag) — Ae () $i(Ag): — AT (g') (M)

~Ae A G(n + Ag) + N2 (g pidi(n + Ad)
> e A (Ag) - e (g) (n + Ag)TH(A)i(Ag);
AeT A p(n + Ag),

which follows from the Schwarz Lemma applied to the middle two terms. We
will write out one term here, the other goes in an analagous way,

(Ae™2%¢;(n + Ag)?) (e~ 3¢ (Ad)s(n + Ag)~2)
<SR 0u61(n + A9) + e A)(A)i(n + Ag) 7).
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Consider now the following

—(n+Ag)™! (Ag)i(Ag); + A'Ag

1+¢’LZ
—(n+Ag)t

S
1+ ¢ 1+ by

2
1+¢” |prrsl” + AF

¢k1]¢zk3 + C(n + A¢)

1+¢n

On the other hand, using the Schwarz inequality, we have

(n+Ag)™ |pril”

1 +¢u
2

D
(1 ¢kl_c )3

1
< (n+A¢>)_1<1 a1 +¢ ¢kkz¢kkz> (1 +¢u‘>

1
1+¢“ 1+¢ Ok Pz

1

1+¢>nl+¢>
1

<
—1+¢”1+¢

= (n+ Ag)™! (1+ dpz)?

1+ ¢;

——— ik Prik

¢’Lk] ¢kz] )

so we get

—(n+ Ag)~ ! (Ag)i(Ag); + A'A¢p > AF + C(n + Ag)

1+¢” 1+¢u'

Putting all these together, we have

A'(e™P(n+ Ag) > e ¢ <AF +C(n+Ad)7 ) —Ae A g(n + Ad).

¢1'L

Choose A now to be —C + 1, then we obtain the following estimate

AN (n+ Ag) > —c1e™*? — e *?(n + Ad)

re Y - +1¢ (n + Ag),

where we have used the fact that

14 'L’L 1
o=y i Y
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Now let us notice the following inequality
_1
. - n—1 .
Z 1 Z(Ez(l"“j’u)) =e_7'PTl(n+A¢)ﬁ,
1+¢5 IT.(1 + )

which can be verified by taking the (n — 1)-th power of both sides. So the last
term in the above can be estimated by

%

1 F A n
—Ad > e woTe noi(e 0 Ad)) 7T,
e Ei:l+¢i;(n+A¢)__e e (e (n+ Ag))
Setting now u = e~ *%(n+A¢) and recalling that ¢ < —1 and hence e=*¢ > 1,we
have finally obtained the following estimate

n
Au> —c; — cou + coun-1.

Assume that u achieves its maximum at zg, then at this point, A'u < 0 and
therefore the maximum principle gives us an upper bound u(zg) < C which in
its turns gives

0 < (n+ Ag¢)(z) < eM@u(zy) < C
and hence we found a C2-estimate of ¢.

Step 3 The final step will not be performed here, it is similar to step 2, but
the argument will be longer and can be found in the appendix of [27]. This
last step will give a bound for ||V3¢|/co. With this bound, we are done. This
last bound will namely give us the equicontinuity of ¢; and together with the a
priori estimate ||¢; — ¢;||s < C, the Arzela-Ascoli lemma now tells us that S is
compact and in particular that S is closed. O

5.2 Kaihler-Einstein metrics for manifolds with ¢; (M) < 0

In this section, we will first state a theorem proved independently by Aubin and
Yau. Its proof is easier than that of the Calabi-Yau theorem in the last section.
Then we will give a simple application of Kéhler-Einstein metrics. We will end
this section with an open question, which is a generalization of the application
to the symplectic manifolds.

Theorem 5.8 (Aubin, Yau) Let M be any compact Kdhler manifold with
c1(M) <0, then there exists a unique Kdhler-Finstein metric w with Ric(w)=
—w.

Remark 5.9 The statcment of this theorem is equivalent to the solvability of
the following Monge-Ampére equation

wo + 00¢)™ = ety where  90h., = Ric(wp) + wo.
0

The plus sign here makes life a lot easier. In fact, we can use the Maximum
Principle to get a priori C%-estimates for solutions of the above equation.
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Application (Yau, [28]) There exists a unique complex surface M homotopic to
CP2.

Proof. We already have the following information about the Euler class and the
signature, both topological invariants

X(M) = /M e2(M) = x(CP?) = 3

1
T(M) = g(cl(M)2 — 2¢(M)) = 7(CP?) =1,
which follows from the Hirzebruch-signature formula and which implies that
ci(M)? =¢,(CP*?=3%=09.

Since H%(CP?,Z) = Z, we have that H?(M,Z) = Z. Fix a generator w > 0 of
H?(M,Z) so that we have ¢;(M) = M\w and since w? = 1, we have that A2 = 9
so A= =£3.

If A = 3, then ¢;(M) > 0 and this implies that there exists a holomorphic
S? ¢ M which implies in its turn that M = CP?. For this last implication see
Chapter 4 of [11].

If A= -3, then ¢; (M) < 0 and there exists a Kahler-Einstein metric wxg.
Now 3x(CP?) = 3co(M) = c1(M)? and by the uniformization theorem, we
deduce that M = D?/T', so m;(M) =T # {id}, which gives us a contradiction,
so only A = 3 is possible and that proves the application. O

One is now automatically led to the following generalization: Does there
erist a unique symplectic surface M homotopic to CP%?

Analogously to the above, we can deal with the case A = 3, but it is not clear
how to show that A = —3 leads to a contradiction. Taubes showed that one can
use the Seiberg-Witten theory to deal with the case that M is diffeomorphic to
CP?, but the general case is still open.



Chapter 6

Kahler-Einstein metrics with
positive scalar curvature

In this chapter, we will study Ké&hler-Einstein manifolds of positive scalar cur-
vature.

We will assume that M is a compact manifold and that c¢;(M) > 0. Because
of the latter, we can choose a metric w with [w] = w¢1(M). Then

Ric(w) = w + 80h,,,

where we can choose h = h,, in such a way that

/M(eh —1)w" =0.

Suppose now that we can deform w within its Kéhler class, so that we can find
an
wg = w + 00¢
which is Kéhler-Einstein, then we have the following
w + 80¢ = Ric(w + 00¢) = —8dlog det(w + D)
3 4\
= —90log M + Ric(w)
w

+w + O00h.

= —00log (w+059)" +w0n(3¢)

This leads us to

(w+ 80¢)™ = eto—oum, (%)

Note that — log det(w + 80¢) is not globally defined, but by taking a quotient
as above, we have a well-defined notion again.

We have seen in Chapter 3 that this equation is in general not solvable and
that for example the non-vanishing of the Calabi-Futaki invariants forms an
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obstruction to the solvability of (x). It is, however, clear that the solvability of
(x) is equivalent to the existence of a Kéhler-Einstein metric on M.

The goal of this chapter is to provide sufficient and necessary conditions for
the existence of Kahler-Einstein metrics on manifolds with positive first Chern
class.

6.1 A variational approach

In this section, we will take a variational approach and find a functional for
which (x) is the Euler-Lagrange equation.
First let us discuss some interesting functionals.

Definition 6.1 Let w be any Kdhler metric. Then the generalized energy is given
by

1
where V = [, w™ = [w]"([M]) and wy = w + 80¢.

n—1
1 i+1 A i n—1—i
Jw(¢)=v E - /M6¢/\8¢/\w Nwy !
i=0

To illustrate this definition, let us compute J,(¢) forn =1,2. If n =1,

1 ~ 1
J8) = 5 /M 00 B9 = o /M 106|%w.

It follows that J,(¢) is positive on any non-constant function. In the case that
n = 2, we have

1 A 2 =
Jw(¢)—_—‘ W/M6¢A8¢AW¢+W/M6¢/\8¢/\OJ

At any point z of M, we can choose local coordinates 21, ... ,2, such that at
z, we have w = > dz; A dz;. Because w is positive definite, we can diagonalize
w and 80¢ simultaneously so that $i; = ¢pi6i; at T. Now the integrand of the
first integral reads locally

0o A 5(1) Awy = (¢,dzl) A (@di,) A ((1 + ¢Z;)dz, A dil)
2

= (10121 + §22) + 21 + 611) ) -

Again we see that J,(¢) is positive, if ¢ is not constant and w + 00¢ is positive.
In general, whenever wy is positive definite, J,,(¢) > 0. This can be easily
secn from the above definition.

Lemma 6.2 Let {¢:} be a smooth family of functions, then
d 1 iron n
gpJe(@0le=0 =~ /M d(wg — "),

where ¢ = ¢o and ¢ = %gbtlt:o.
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Proof. The proof is just a simple calculation,
n—1

d 1 i+1 i
Ju(gt) = VZ / (2gb68¢/\w A wy 1

+(n—1—1i)dd¢p Aw' Awl T2 A 6&5)

n—1
=—%Zz+1/ 2600¢p A W' ANwy™ ol

59

n—1 .
1 141 . / AR i n—i—2 3
- = n—i—1 P00 A W' Aw A(w + 80¢p — w)
Vi:0n+1( ) M ¢ ¢ (
n-1 .
—_l i+1 _ 3 ;09 i n—1-—
= Vi=0n+1(n z+1)/M¢68¢/\w A wy
n—1 .
i 1+1 o i a3 i1 n—i—2
+Vi:0n+1(n i 1)/M¢68¢/\w Awy
n—1 .
__t i+l i 95 iz m—1—
= Vl:on_*—l(n 2+1)/M¢68¢/\w ANwy
183 i
2 . Y ia o m—i—l
+Vi:1n+1(n z)/ 00 ANw* A wy
1 i
= V ¢68¢/\w ——Z/ $80¢ A w' ANwy™

= VE%/ 900 Aw' Awy ™

n 1
= /¢68¢+w w) A w' Awy —i-l

i=

n—i i+1 n—i—1
/¢w Nwy VZ/ dw Nwy

- - /M do™ — ).

If we define
1 d
F(¢) = Ju(9) — v /M¢/\w", then 7 F%¢)|¢=0 = — / ¢w¢

This functional has many nice properties. Let us list some of them.

<i |
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Let us choose another metric, say «’ = w + 809 in the same Kahler class.
In that case, we have

Wy =w+ 00¢ = w' +00(¢p — ) = wy_,.
We will now see how F2(¢) depends on the choice of representatives of [w].
Claim 1 For w and «’ as above, we have

FO(¢) — Fo\ (¢ — %) = F2(®)
and if we set FO(¢) = F%(w,wy), this yields the following cocycle relation
FOw,wy) — Fwy,ws) = FO(w,wsy).
Proof. Consider now the following difference
F3(¢) - For(o — ),
where 1 is fixed. The above lemma gives us the following

d
7 Fa(8e) = Fu(gn =) = 0

for any family {¢;}. Therefore the difference is constant, in particular, choosing
¢ = v, we see that this constant equals FO(1) and the claim is proved. d

Let P(M,w) be the following space of functions
{¢ € C®(M);w + 80¢ > 0}.

Claim 2 The functional F? is convex on P(M,w), this means that for any ¢,
¢2 in P(M, w),

N | =

FO(5(1 +62)) < 5 (FS(61) + FO(62))

Proof. Put w' = w 1(¢r+d2)" Using Claim 1, we can deduce

FO(5 61+ 62)) — 5 (ES(9n) + F(62))

-1 (Fg,(%(m — g2)) + FO(5(92 - m)))

1 ~ 1 I n—i n—i
= imtD) ; v /M(¢1 — ¢2)w" A (W] wy ")
1 n 1 n—i—1

= - _ Y i §oa o m—lei—j
B 4(n+1);V/M6(¢1 92) A O(¢r = d2) AW A Jz:(:) wy A ws ’

<0,

the claim is proved. O
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The next two claims are obvious.
Claim 3 For any constant A > 0, F{ (\¢) = A\F2(¢).

Claim 4 If 7 : M’ — M is a branched covering, then for any ¢ € P(M,w),
FS.(n*9) = F2().

The functional, which has (x) as its Euler-Lagrange equation, is given as
follows:

Fute) = F(0) ~log (7 [ eheur),

Remark 6.3 If n = 1, (x) reads 1+ A¢ = e*»~%. By the classical uniformization
theorem for Riemann surfaces, M = $2, so we get

1 1 1 _
Fw(¢>:ﬁ,—[9216¢|2—7/92¢w—10g7 [ e,

This is exactly the functional in L. Nirenberg’s problem of prescribing the Gauss
curvature equation on S2.

We also have the cocycle condition for F,: for w’ = w + 801, we have

Fou(¢) — Fur (¢ — ¥) = Fu(¥).

To see this, we first observe that

Fu(¢)=F.(¢+C)

for any constant C. So we can always normalize ¢ such that

— w " =1.
/e w

Similarly we can choose 1) such that

1
—/ eho¥ym = 1.
Viu

Then

F,(¢) = F(¢)
and

F, () = FJ(¥)-
Because

Ric(w') = —~80log(w')™ = ' + 80h.,
Ric(w) = —00logw™ = w + 80h.,
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we get after subtracting the bottom from the top equation that

— 99 log<(u/)n> = 00(% + her — ha),

wn

which then implies that
1 hyr— (=), 1 / ho—¢
p— w! no._ __ w n _ 1.
/ e (W™ = e w

Fo(¢p—v)=Fo(¢—1),

so the cocycle condition for F' follows from Claim 1.

Then

Remark 6.4 The functional F,, is only the difference of two convex functionals,
while in the case of ¢;(M) < 0, the corresponding functional is the sum of F9
and another convex functional, so it is always convex.

6.2 Existence of Kahler-Einstein metrics

In this section, we will prove an analytic criterion for the existence of Kahler-
Einstein metrics on Kahler manifolds with positive first Chern class.

Definition 6.5 We say F,, is bounded from below if there exists ¢ = c(w) > 0
such that

F,(¢) > —c.

F,, is proper on P(M,w) if there exists an increasing function
p: R — [e(w), 00)
satisfying lim;_, o, p(t) = oo, such that for any ¢ € P(M,w),

Fu(9) 2 n(Ju(9)).

Remark 6.6 It follows from the cocycle condition of F' that the properness of
F, is independent of w. More precisely, if w’ is another metric, then F,(¢) >
u(Jw(@)) implies F,(¢") > p'(Jor(¢'), where

W =w+ 00y, ¢ =¢—1
and y/ = p — ¢ for some constant ¢ depending only on w and w'.

Theorem 6.7 Assume that M has no non-trivial holomorphic vector fields, then
M has a Kdhler-Einstein metric if and only if F,, is proper on P(M,w).
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We also have the following generalization of the above theorem. We denote
by Aut(M) the automorphism group of M.

Let G be any maximal compact subgroup of Aut(M). If w is a G-invariant
Kahler metric, then we define

Po(M,w) ={p € C®°(M); w+ 00¢ >0, ¢ is G-invariant }.

Definition 6.8 Let w be G-invariant. Then F,, is proper on Pg(M,w) if there
exists an increasing function y : R — [c(w), 0c) satisfying

tlim u(t) = oo,
such that for any ¢ € Pg(M,w),

Fu(¢) = n(Ju(9)).

Remark 6.9 It follows from the cocycle condition of F' that the properness on
P;(M,w) is independent of w.

Theorem 6.10 M has a Kdhler-Finstein metric if and only if F,, is proper on
PG'(M7 OJ)

We will prove Theorem 6.7.
There are two directions to be proved and both will be done using the con-
tinuity method. First we assume that F,, is proper. Consider

(w+ 80¢)"™ = elwteym (*¢)

for ¢ € P(M,w) and 0 < ¢ < 1. We want to show that () is solvable. Now by
Yau’s solution of the Calabi conjecture, we know that (o) is solvable and this
shows that

E = {t € [0,1]; (x5) is solvable for s < t}

is non-empty. We claim that E is open. To see this, let ¢; be a solution of (x;)
and let |t —t'| < 1. Set

¢ =t + ¥, w = w + OO,
then

(w + 00¢)"™ = (w; + 8OY)™

= ehw_tl(¢t+¢)wn

= e~ (t'=p—t'b 0
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where we have used that ¢, is a solution of (x;) and we assume that 1) is small.
Define now the operator

&:C%:(M,R) — C%%(M,R)

by _
o =g (22001

) —(t' =ty — t'p.

Wi

Linearizing this operator at ) = 0 and #' = ¢, where we will write A,, as Ay,
we get

Dy®(v) = (A¢ +1)(v).

As in the proof of the Calabi-Yau Theorem, we would like to show that this is
invertible, so that we can use the Implicit Function Theorem. Unfortunately,
the extra ¢-term might destroy the invertibility. Note that

We will need some lemmas to show that the invertibility of the Laplacian is
preserved.

Lemma 6.11 We have Ric(w;) > tw; and the equality holds if and only if t = 1.
Proof. The proof of this lemma follows from the following calculation
Ric(w;) = —00logw?
— _59loe L 1 R
= —00log n + Ric(w)

= —00(h,, — t¢;) +w + 3Ok,
= w + t80¢p;

=w + t(w — w)

= (1 - tw + twy

2 twy

because w > 0. It is clear that we have equality if and only if £t = 1. (I

Lemma 6.12 The first eigenvalue of A satisfies \1(A¢) >t ift < 1.

Proof. Recall that we can characterize the first cigenvalue variationally by

S 10¢]%w

A (A:) =
1( t) fM SuwI=0,$50 fM ¢2w?

and it is well known that there exists an eigenfunction u such that A;u = —Aju.
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Set g = g; and consider
/ g g ulku]ld‘/g7
M

where dV; is the volume form of g. At a given point, we can assume that
gi; = 0ij, so that the integrand reads
uiiuz; = (Uijz); — UuyiU3

= div(uijuz) — uj5U;

= d1v(u,]u ) — uiziu; — Rgjiusy;

= div(ug;u; — uguz) + uj5u; — Ristsu;
= div(ui;u; — ugu;) + (Au)® — Risusu;
= div(uiu; — ugzuz) + (Au)? — Rizuu;.

This implies
0< / ((Au)2 — Ric(du, 5u)>thq,
M

and hence
A2 / u?dv, > / Ric(Ou, Ou)dV, >t / |Oul2dV, = th; / u’dV,,
M M M M

where we have used the previous lemma and the variational characterization of
A1, so we have that \; > ¢. O

Remark 6.13 If ¢t = 1, then Ric(w;) = w; and A; > 1. The equality holds if and
only if
/ g g ulkuﬂdV =0.
M

This is equivalent to saying u;;z = 0, which is in its turn equivalent to

(97u5)7 =0,
since the metric is parallel. This then gives us a holomorphic vector field

.9
i 0z

Conversely, if X is a holomorphic vector ficld satisfying

X = g”

ixw = Ou,

then v is an eigenfunction with eigenvalue 1. So we have established the follow-
ing identification

n(M) ~ { eigenfunctions of w; with eigenvalue 1}.
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It follows from A; > ¢ that D,® is invertible for 0 < ¢ < 1 and by the
Implicit Function Theorem, (*;) is solvable for |t — | sufficiently small, so we
have shown that E is open in (0,1). One can also prove that E is open near
t = 0 by modifying the above arguments slightly.

To prove that E is closed, we will proceed as before and we will try to find
an a priori estimate ||¢;|| o2 S C for every solution ¢, € P(M,w) of
(w+ 00P)™ = ehw—toym, (*¢)
where C = C(t, M,w).

Lemma 6.14 If ¢ is a solution of (x;), then there exrist uniform constants b,c >
0, such that
n+ A¢ < Ceb(supM ¢o—infar ¢).

Remark 6.15 The proof of this lemma uses the arguments in the C2-estimate
in Yau’s proof of the Calabi Conjecture. Note that this lemma implies

gllc < ceXeupa d=intin )
Here one needs to use the fact that w + 89¢ > 0.

Exactly as in the Calabi-Yau Theorem, we will be able to prove the following
lemma (the proof will be omitted) and it remains then to find a bound for the
CO-norm.

Lemma 6.16 There ezists a constant C = C(||¢|co), such that when ¢ is a
solution of (), we have

16l oy < C.

Lemma 6.17 (Sobolev inequality) Let (X™,ds?) be any compact Riemannian
manifold (of complex dimension n) with Ric(ds?) > eds? for some € > 0 and
Vol(ds?) > v > 0, then there erists a constant 0 = o(g,v) such that for all
feC=(X),

n

=1

( /. |f|%dV) i sU( Jowseave [ |f|2dV>-

Remark 6.18 The proof can be found in [17] and is based on a result by C. Croke.
Note that this result is stronger than the usual Sobolev incquality because here
the constant ¢ is independent of the metric. This will turn out to be very useful
because we will be comparing different metrics.
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The following lemma tells us that to bound the C%norm, it suffices to find
a bound for J,(¢) and once we have done that, we will have the required a
priori estimate to prove closedness and hence the existence of a Kahler-Einstein
metric.

Lemma 6.19 If ¢ is a solution of (), then there exists a constant C = C(t) so
that

[¢llce < C(1+ Ju(9))-

Proof. Let wy = w+ 03¢ and define the functional I,(¢), which is the difference
of two averages of ¢ with respect to two Kéhler metrics, and which satisfies the
following estimate

L) =5 [ o —up)
1 n—1 n—1
:V/M¢>(w—w¢)/\(w +otwiT)

1 3 n— n-—
ZV/M(‘?d)/\ad)/\(w 1+~--+w¢ h
< (n+1)Ju(4).

So it suffices to prove the estimate in the lemma with I,(¢) in place of J,(¢).
Use, as before, the Green formula to get

1 1
(z) = = / P + = / —Ap)G(z, yw()™,
V M V M
where G is chosen so that G > 0. Since —A¢ < n, this yields
1 n
o(z) < —/ o+ C,
V Jm

which gives us one half of the required estimate, namely,

OSsup¢>Sl/ ow™ + C.
M Vv M

. 1
0< —1?4f¢ < C(V /M(—¢)wg + 1).

Proof. Denote by A, the Laplacian of wy, where this metric will also sometimes
be denoted by w,, which should not cause any confusion. Then, because

w+ 00¢ > 0,
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we see that ~
w=uwy— 004 >0

and taking the trace of this latter expression with respect to wg, we get
n— A = tr,,w > 0.
Define now ¢_(z) = max{—¢(x),1} > 1, so that
¢7 (n— Asg) > 0.

Integrating this, we get
1
0< V/ ¢” (n— A¢p)wy
M
_n pon, L P n
v/, Pwy + v . Vidp_Vipwy .
= 2/ of Wl + 1 Vid? Vipwl
Vi =% Vi< ’
n n 1 n
= V /M ¢’iw¢ + v Al Vt¢>’in(——¢_)w¢
_r pn_1_ 4P / 5 2n
=7 [, Py [, Ve
Using the fact that ¢_ > 1 (and hence ¢?. < ¢P*!), this yields,
1 Pﬂg._l 2 n n(p+ 1)2 +1 n
e < [ o

Observe that as before, when ¢ is a solution of (x;), we have

Ric(wt) > twy.

Since w and w; are in the same Kahler class, we get

/wll:/w":V.
M M

Using the Sobolev inequality in Lemma 6.17, we see

n—1
1 @tun N 7 c(p+1 n
v(/M |p—| =T U-’t) < —(pT——)/qu’i“wt.

Once more, Moser’s iteration will show us that

supd_ = lim [[¢_[lzo+1(a,we) < Clld—llL2(M0)-
M p—0
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Recall that A;(w;) > ¢, so that the Poincaré inequality reads

1 1 ) <i/|v 2,m
V/M<¢— VM¢—U-’t> _tVM ¢ |"wy

C
<_ _ n
- tV Md) wt’

where we have set p = 1 and used the same reasoning as before. This then
implies that

C(t
max{—ijr\l/lfd), 1} = S}\l/[pqs_ < %) /M P_wy.

/ e—hu+t¢w? — V,
M

1
— owy < C/t.
V [0 ® /

Combining this together with the above, we get

Since

we can easily deduce

. C
—g¢svﬁka+a

which proves the claim.

Since
/ ehw—t¢w? = V7
M
we have )
T pw" < C/t.
V Je<o

Then the lemma follows because
|gllco = sup |¢| = max{sup ¢, — inf #} < sup ¢ — inf ¢,
M M M M M
and from the two obtained estimates, we get

gllce < Clu(e) +1) < C(Ju(¢) + 1)
O
So all that remains to be done is to show that J,,(¢) is bounded. Recall that

d 1
GIuto0 = [ don—up),

d 1
¢>t th/¢>t - ———V/d)t( )__/¢twt7
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and since
Wit = nwy A w:‘_l = ndog; A wf_l = Ay,

we obtain the following expression

d .
4 <Iw(¢t> - Jw(@)) -1 /M GuDeues?

Remark 6.20 We know that A;(w;) > ¢t for t < 1. Let {¢:} be a continuous
family of solutions of (*;), then this family is also smooth in ¢.

Let ¢ be a solution of (*;), so
(w + 00¢;)"™ = ehwtPrym,
Differentiate this expression with respect to ¢
n80¢y A (w + 80¢,)" 1 = (=g — tey)e T,

this implies that ‘ .
Arpwy = (=@ — td)wit,
which is the same as
Aer = (— ¢ — téhy).
This means that we can rewrite the above as

%(Iw(@) — Jw(¢>t)> :% /M (e + by )wy

d / ho,—to n) 1/ i Jho—tdr, 0
=—— e TN + — Pre e W,
dt(M¢t Vi

Since we know that for all £,

/ ehw—t(]ﬁgw’n — ‘/"
M

differentiating with respect to t yields

/ (¢¢ + toy)e™ W™ = 0,
M

so that we can simplify the above even further to

d —_i i n __1_ hy,—topy, ,n
2 (1uto0 - 1u000) =5 (5 [ owt) = 5 [ anehemtsan
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Multiplying it by ¢, we get
F(t00 - 1) - tor - e =3 (5 [ o). @

Integrating this from 0 to ¢ gives us

H(Lu(9) = Juld)) ~ /0 (Tu(60) — Jo(ga))ds = - (% /M ¢twf),

which is equivalent, using the definition on I, and J,, to

- /0 (L(0) - Jul@a))ds = t(wt) -7 /M @w")- (b)

An easy manipulation shows that

n—1

Iw(¢s) ¢5)_VZ +1/ 5¢>/\8¢>/\w /\w;‘ i 1>0

and therefore,

1
Jw(¢t) — v Al ¢>tw" S 0.

t(Jw(@) -2 /| @w")

is decreasing in ¢t. We may assume that ¢ is away from 0, since we know that
(*0) is solvable in any case.
However, the above translates into

1
w(Pt *—/ Prw™ ¢t)+10g(V/Meh“_¢‘w").

In fact, the function

Since
i/ ehw_qstwn:i/ e—(l—t)qstehu—tmwn:/ o~ (1=0)6. WL
V Iu V iu M |4
and n
Yt _q
MV

together with the fact that the logarithm is a concave function, we get

1 w
1 N N / — (1=t Yt
og( / e w ) og( e %

wn
> | —(1-t)g -~
_/M ( L

1—t n
——T de)twt.
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This leads to the following estimate

Fw(¢t) < —log(% /M ehw—¢twn>

LN
-_ w,
- V o tWt

since

1
Ju(¢t) — v /M prw™ < 0.

We will now, finally, use the fact the F,,(¢;) is a proper function, which is the
assumption under which we started, and which means

Fo(¢e) 2 1(Ju (1))

for some increasing function p. Furthermore, we have

1 1
v /M ehowm = v /M ehoteryn = 1.

This implies that ¢; must be negative somewhere and hence — infs ¢, is posi-
tive. So we have

1
0< —i]I\l/If¢t < C(V /M(—¢>t)w? + C’).

This follows
1 n
v perse

Since ¢ € (0, 1], we have,

1t "

This in its turn tells us that J,(¢¢) is bounded so that we have the desired
estimate

lpllco < C(1 + Ju(dr)) < C.
This yields

This final estimate enables us to deduce that the set E is open and closed. Hence,
(*1) is solvable and its solution provides us with a Kéhler-Einstein metric.

Now we prove the other part of Theorem 6.7. Assume that there exists a
Kéhler-Einstein metric. Because the properness is independent of the metric,
we can choose our metric w such that Ric(w) = w. Thus it suffices to prove the
following theorem.
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Theorem 6.21 Let (M,w) be a Kdihler-Einstein manifold with Ric(w) = w. Then
there exist constants § = 6(n) and ¢ = c(n, A2(w) — 1) > 0 such that for any
¢ € P(M,w) which satisfy ¢ L Ay, we have

Fu(¢) > Ju () —c,

which is the same as

l/ e b < Cer(cb)—% e zbw"—Ju,(q))b'
Viu

Here A, is the space of eigenfunctions with eigenvalue 1 and by ¢ L Ay, we

mean
/ Ppw™ =0
M

for all 1 € A;. Moreover, A2(w) denotes the smallest eigenvalue of w which is
greater than 1. Note that if n(M) = {0}, then ¢ L A, is vacuous and the above
inequality holds for any ¢.

Remark 6.22 This theorem is a stronger statement than just showing properness
for some increasing function, because we have the function u here explicitly.

If n = 1, then M = S? because of positivity of Cy(M). If we further
assume instead that ¢ is perpendicular to the eigenfunctions corresponding to
the eigenvalue 1, then Aubin showed

Fw(¢) Z 5Jw(¢) -C.

Conjecture 6.23 (Tian) Under the assumption of Theorem 6.21, one can find
e=¢(n) and C = C(n, A1 — 1) for all n such that

Fo(¢) = eJu(¢) — C.

Before proving Theorem 6.21, we will first explain why we make the assump-
tion on the algebra of holomorphic vector fields. Suppose that X € n(M) for
X #0. Denote by ®, the flow corresponding to Re(X), then

We will write w, for w + 85@ and as before we can choose ¢; such that

1
V /M Chw—¢twn =1.

SE(6) = Relfu (X)),

where fus is the Calabi-Futaki invariant.

Claim
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Proof. First of all, we have
Ric(w) — w = 0h,,,

S0
@} Ric(w) — ®jw = 90®} h,,.

Because ®, is a diffeomorphism, we also have

1 ; * n
v./Meq)thwq)tw =1,

1 h
= v = 1.
VAlC w

Therefore, h,, = ®;h,, which implies that

since

ho, = Re(X)(hy,)-
We also have
wi

Ric(w) — wy = Ric(w) —w — 80 log( ) — 00y,

wn

which in its turn gives

w
hw, = hy — log(bﬁn> — ¢
Differentiating the above with respect to ¢, we get
ilwt = _Awtét - ¢;t7
and therefore
GR0) =3 [ ot
=5 [ (Bt ReX) ()t
~ Re(fu(X)). O
The following corollary is an immediate consequence of this claim.

Corollary 6.24 F,, is bounded from below only if far = 0.

Proof. Suppose that fp(X) # 0, then we can assume that Re(fp (X)) < 0
(since if it was imaginary or positive we could change X to iX or —X). Then
the claim shows that F,(¢;) = t Re(fm (X)) — —oco as t — oc. d
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Proof of Theorem 6.21. For simplicity, we assume that n(M) = {0}. We refer
the readers to [24] for the general case.
For any ¢ € P(M,w), put w' = wy. Consider

(W' + OYP)™ = ehw =ty (%%)

We may assume that (+*;) has a solution ¢;. We will try to use the continuity
method backwards, that is starting at ¢;. So we set

E = {t € [0, 1]; (xx5) is solvable for all s € [t,1]}.

Clearly, 1 € E, so F is non-empty. Showing that E' is open goes as before. We
use that A\; > 1 (since A} = 1 would imply that n(M) was non-trivial) and that
w is a Kéhler-Einstein metric. Then we can use the Implicit Function Theorem
at t = 1.

To show that E is closed comes down to the following a priori estimate
14| c2.3 < C. Note that C always denotes a constant independent of ¢.

It was shown in [25] that there are é > 0, which depends only on M, and
C’', which may depend on w’, such that for any ¥ € P(M,w’),

1 / e—80b—supr V) " < .
V Ju =

It follows that if ¢; is a solution of (xx;) for t < §/2n, we have that

sup¢y < C
M

and
——/ |eh' | | W<

Put 14+ = max{—d¢, 1}, then for any p > 0, we have
1 ptl n
v, o
1 _ +1 _
23/ 811;:% AT AW
n B2 5 B2t n—l—z
<y /Ma¢+2 AByp.? /\Zw’ A (W' + 80t )

= —u/ ¢p86¢+AZw’" A (W' + 886,)

p+1

e R CAT Ay
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_ p+1)2/w+ bt _ 1y

4pV
n(p+ 1)? / +1 h o, —t n
S‘——- T A {19
4pV M + |
2 " 2nT—ll Lﬂ
Sn(p+ 1) <l w_z:énp—_tlz(y/") 2 <l/ |ehu’_t¢t _ 1|nw/"> 2 .
4p M Viiu

Using the Sobolev inequality, we can deduce from the above inequalities that

1 nngp—-b-ll m nT_l 'r;n(p+11! m 22;1
V u ’ll)+ w < C ’l[)+

Then the same arguments as in the proof of Theorem 5.1 yield ||¢:|| o2y S C
for t < 6/2n.
Now we assume that ¢t > §/2n. Then by Lemma 6.19, we have

8l 2.3 <CO+ Jur (1))
< C(l + n(Iw'(¢t) - Jw’(¢t)))

Lemma 6.25 Let {¢:} be a smooth family of solutions of (xx;). Then the func-
tion I, (pt) — Jor (1) is monotonically increasing in t.

Proof. As before, we have

d%(h((ﬁt) ~ Jw(¢'t)> = —% /M Pt Arppwy
- / (Didy + tn) Dedue?,
M

where w; = w’' +80¢;. We can write <i7t = 3" Ci%i, where 1; are the eigenfunc-
tions of A; and vy = 1 is the constant eigenfunction. So the above integrand

then reads
o

Do lel? O — 0N,

i=1
which is non-negative since A; > t. g

So we end up with

Il oy < COU+n(Lu(de) — Ju(#0))) < C.

Therefore, we have shown that (#x;) is solvable for all ¢ € [0,1] and here we
have ¢1 = —¢.
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So we have found a smooth family of solutions {¢;} defining a path in
P(M,w). This path clearly depends on the base point ¢. From Lemma 6.25, we
know that I (¢;) — J (@) is increasing with ¢.

Using the cocycle relation for F,, after Remark 6.3, when we set ¢ = 0,
P = ¢, W =wy, we get

Fo(¢) = —Fo,(—9)
= —F w’(¢71)

1 n 1 _ n
= —le (¢1) + V /M ¢1w/ + log<v /M eh,_.;l ¢1w/ >’

but because of (xx1), we know that

1 hot—¢1,,™ 1/ n
_ w! —— =1
/1;/16 w % M(.U = 1i,

so this disappears with the logarithm and therefore it follows from equation (b)
that

1
Fu(9) = /0 (Lo (1) — Jur (@)t = 0,

where we used that the integrand is positive. So we can now state the following
corollary.

Corollary 6.26 (Ding & Tian) F,(¢) > 0 for all ¢ with w + 00¢ > 0.

This implies in particular the Moser-Trudinger-Onofri inequality on $2, which

reads

L[ et < e Jea IVolPw—dk foa t
47'(' S2 -

where we have used that M = 52 and hence V = 4x. Here, however, we are
after the extra J,,(¢)%-term in the estimate.
For t > 0, we have that

Fu(9) > /t (L (6s) — Jur (60))ds
2 (1 - t)(Iw’(¢t) - Jw’(¢t))'

Now we want to show that J,,/(¢¢) ~ Jos(¢1) uniformly for ¢ close to 1, where
~ means that they are comparable, which is at first sight a difficult requirement
since ¢¢ and ¢; are solutions of different equations. But if we manage to do
this, we will have the following estimate

Fu(¢) 2 (1= t)Jur () — C.

The following lemma will be crucial but will not be proved here, see [24] for
a proof.
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Lemma 6.27 (Smoothing lemma) Let @ be any Kdhler metric representing
c1(M) > 0 with Ric(®@) > (1 — €)w, where

Ric(@) — & = 00hg

and )
= [ (e —1Dam =1
V Im
Then there exists _
&' =+ 80¢
such that
1) lplice < 3l[hsllco , ,
i) [harll gy gy < L+ lhaliZ0)e?,

where 8 = B(n) and C = C(n, \ (&), 05).
Remark 6.28 By C 3, we mean the Hélder norm which depends on the metric.

The proof uses Hamilton’s Ricci flow

Ou (& + 00u)™
5{ = log ———5"'—— — U+ h&)

with boundary condition u|;—g = 0. Setting ¢ = u; and @& = & + 80u,, this
proves the lemma.

Remark 6.29 Notice that although ||Ag || might not be small, this lemma ensures
that ||hs|| is small as long as e is sufficiently small. Also &’ is a continuous
deformation of &.

Because of the Kéhler-Einstein property and the fact that we have a solution
of (xx;), we get that

00h.,, = Ric(w;) — w;
= —00log(w' + 00¢)™ — ' — 00¢;
= —90log e 7t — 9P log(w')™ — W' — OO,
= —35(1 —8) ¢,
SO we can write
by, = —(1=t)¢: + ct,

where ¢; is determined by

/ <e_(1_t)¢l+ct _ l)wl" =0.
M
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This immediately implies the following bound on constants c;,

lee] < (1 —t)llelico-
Setting € = 1 — ¢, we get,
Ric(wy) > (1 — &)wy = twy,

and
[[hwellco < 2¢||de||co-

Therefore, the above lemma provides us with a w} = w; + 80u; which satisfies

1) |uellco < 3(1 = t)l|éellco,
2D Mhullged e < OO+ = 0Plol2o)(1 - 1),
where C = C(n, \1(w}),0,,)-
We now make the following observation:
W =w' 4+ 00¢ = w + 00¢ — 80P = w.

So in this case, we do not need to deform the metric, because at t = 1, we
already have a Kahler-Einstein metric. Since w is a Kéhler-Einstein metric, it
now follows that there exists a unique ; with w = w} + 00y; and

Wt = el _w‘wén. (% * *¢)

Similarly as above, but in addition using the Maximum Principle, we get

bt = 1 — Yy — up + ¢ +

where pu; is determined by

/ <ehut—ut+l-l-t _ 1>w? =1.
M

el <10(1 = t)l¢ell o,

It is easy to see

and hence, we have that

~ug + g+ pg ~ (1 — t)[|dtlco.

Our goal is to control the behavior of ¢, — ¢1 so that it remains to get ¢, under
control.
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The solvability of (xx;) and the Kéhler-Einstein property together imply

that
Wt = el - (¢1_¢‘)w?,

which unfortunately does not give us any control over h,,,. This makes us study
(* * %) instead.

Note that ¥; = 0 and as before, we will try to use the Implicit Function
Theorem here. Consider the following operator

&, : C>2(M,R) — C®Z(M,R)

defined by _
¢Hlog(—“’—_‘?—w) — hyy — .

w
We would like to show that D®; is invertible at ¢y = 0, so that we can deduce
that ®,() = 0 is solvable, which is equivalent to saying that —w solves (x x *;).
In order to arrive at this conclusion, we will make the following two observations.

— We know that n(M) = {0} and that this means that there are no eigenfunc-
tions corresponding to the eigenvalue 1. So A;(w) > 1 which shows that the
linearization of ®; at ¢ = 0, given by D®;|,—o(v) = —A,v — v, is invertible.
Therefore, the Implicit Function Theorem tells us that there exists a unique 1,
such that ®¢() =0 and [[¢]| ..y < Ce if [|huyl| 0,4 < € for some small e.

Suppose we are given two metrics which are comparable, that is %w <o < 2w,
then A\; (@) > 27" !\ (w) and o; > 2"*!o,. So the corresponding Poincaré
and Sobolev constants are also comparable.

Take now some C > C(n,2 "'\ (w), 2" 0,) and assume that Ce < 1,
then we can choose a tg, which may still depend on ¢, such that

(1—10)° (1 + (1 = t0)*[|beo | 20)™
= sup (1—1)%(1+ (1 —t)?||pellgo)™
to<t<1
£

T+

Claim For any ¢ € [to, 1], we have ||9¢]| 3 < e
Proof. Clearly, v; = 0 satisfies this. If there exists v, such that ¢, € [tg, 1]
with ||y, |[(,2‘% = %, then because of Remark 6.29, we get

”hwﬁ”Czl ) <e

2 (w

for some small € > 0, and since

1 _
§w§w§:w+33¢t§2w,
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the first of the above observations gives us the following contradiction

1
[0l gag < Ce< 7
This proves the claim. g
Remark 6.30 The norm ||1/)t||02,é might become bigger than 1, but this can
only happen for ¢ outside [to, 1].

For t > max{tg,1 — 616}’ we get
[8¢llco > (1 —30(1 = 1))l llco — 1.
This in its turn implies that

Fw(¢) = Fw(_¢71)
= _Fw’(_¢71)

1
- /0 (L (6e) — Jur (60))dt

1
> / (T (9) — Jur(60))dt

> min {1 — to, 610} (Lo (B25) — Jur (D15))

> min {1 —tg, %} (Lo (1) — Jur (1)) —

> %min{l —t(), 60} J ((ﬁl)

Hence,

1
Fu(d) > lmin{l - to,@} J.(¢) - C

and if 1 —¢g > this reads

60’

F, (d))ZWJ (¢) - C.

Thus, we are done. However, if 1 — ¢y < %, we need to do more. We then have

Fu(@) > -2, - C

n
' Jo(0) N
T (14 ||gllco) iEER
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where ¢’ may depend on € chosen in the first of the above two observations. If
we have

[8llce < C(1 + Ju(9)),

then it follows
Fu(¢) 2 C'J,(¢)7+2+F — C.

This would prove the theorem, but we do not want the assumption on the C°-
norm of ¢ and in order to get rid of that, we need to do more work (due to
X. Zhu and G. Tian).

Lemma 6.31 There exists a constant C > 0 such that fort > -;—, we have

oscp (s — ¢1) < C(1 + Jo(¢ — ¢1)),
where oscpys f = supy, f —infay f.

Proof. 1t suffices to prove the above estimate for I, instead of J,, because we
know how to bound I, in terms of J,. We know that

(.Un — ehwt_(d’t_d’l)w?
and that 1
Ric(wy) > twy > Wt Ric(w) = w,

which implies that we have uniform Sobolev constants for both w; and w. We
also have that B
w+ 00(ds — 1) = wy > 0,

wg +00(¢1 — ¢1) > 0,
which imply respectively that
Ay(pt — ¢1) > —n,

A (¢t — ¢1) < —n.

Set (¢¢ — 1)+ = max{e¢; — ¢1,0}, then Moser’s iteration method will provide
us with the following bound

SEID(% — 1) SC A+ |(ds — 1) llr2)

and we will obtain a similar estimate for (¢; — ¢1)- = min{¢; — ¢1,0}. Using
then the Poincaré inequality as before, we get the required bound by I,,. a

Claim Setting w; = w’ + 00¢,, we have

1 1 n
V /M ¢>tw? < 0 and le(¢t) - V /M ¢>tw’ < 0.
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Proof. From (a), we have

d

a4 (—tuw,(@) oo -3 [ wf) L () + (),

Integrating this as we did before, we see that

¢ P=— ! e ’ t t ’ — Jy! S.
7 [t = L6 = o) + [ (o) = ()

Since I,/ (¢s) — Jur(¢ps) increases with s, the integral on the right is bounded
above by

t(Iw’(¢t) - Jw'(¢t))'

Therefore, we have proved the first inequality claimed, namely,

1 n
V/M ¢>twt SO

By (b), we have

F (060~ [ aw™) = (1060 = L6

This yields upon integrating from 0 to ¢

t<Jw’ (o) — % /M ¢7tw/n> <0.

Since t > 0, this means

1 n
Jur (b1) — v /M¢tw/ <0.

The claim is proved. ]

Notice that

1 .
Farln) — Fur(n) = Jus (6) = 57 /M oo

1 (1 n 1 n
_10g<v /Me « t)¢twt) —Jw/(¢1)+V/M¢1WI .

Using the concavity of logarithm, we have

1 C(1_ n 1-1¢ n
_10g<.‘7 /Me (1 t)¢twt> S_‘—/—/Nl¢twt'
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Hence, it follows from the claim

Fw’(¢t) - Fw’(¢l)

( 6= | o ) (J @)= [ ow )
A RO
-/ 1 (Iw' (é0) - wa(@))dt
Since I (¢:) — Jur(6:) is increasing, the above gives us the following
P90 = Foron) < (1= ) on) = Ju(@n) ).
This leads us to, using that ¢, = —¢,

(hwaw:uﬁmmwmdmmo

Fw’(‘m) - Fw’(¢1)
- Fw(¢7t - ¢’1)

On the other hand, by the last lemma and what we have already proved, we get
that

Fu(¢e — ¢1) > c10sear(gp — 61)°™ — e,

and consequently,

(1 —t)Ju () > c1oscar (e — ¢1)°™ — ¢a,

therefore, for t > tj, we finally get

Fu(¢) 2 (1 = )(Lr (1) — Jur (¢1))

1—-1
> TJw’(¢t)
> %Jw'(¢1) ~2(1—t)oscm (s — ¢1)
> 2L 0u(8) ~ 200 = e (1= )u(6) + 2

and the theorem now follows by choosing (1 — ) ~ (1 + Ju(¢)) . O
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6.3 Examples

In this section, we apply Theorem 6.10 to prove existence of Kahler-Einstein
metrics on Fermat hypersurfaces in complex projective space. It was proved
that any Fermat hypersurface of degree p admits a Kahler-Einstein metric in
[25] in the case of p > n, and in [20] in the case of n — 1 > p > 21, where
n is the complex dimension of the hypersurface. We will also discuss briefly
the existence of Kéhler-Einstein metrics on complex surfaces at the end of this
section.

A Fermat hypersurface of degree p and complex dimension 7 is defined as
the zero locus

M={lzg: i 241] ECP™"" | 25+ -+ 25, =0} CCP™H.

From Example 2.9, we know that if p < n + 2, then ¢;(M) > 0. We will
confine ourselves to the cases: p < n + 2.
Consider the group Gy generated by

Oii(20:t Zpq] — (20t epz et Zpg]

where e, = e Clearly M is invariant under Gy. Let G be the maximal
compact subgroup of the automorphism group of AutM containing Gy. Choose
a G-invariant metric w. We will show that F, is proper on Pg(M,w). Let

m: M — CP!
be the projection onto
CP'={[20: :2i21:0: 2411 21|} ~CP™
Note that this map is well defined because
0:---:0:1:0:---:0] ¢ M.
So any ¢ € Pg(M,w) is of the form
(n+2-p)mip

for some ¢ € P(M,wpg), where wgg is the Fubini-Study metric on CP™. Note
that

a(M)=n+2-p)rwrs].

/ ehv=oym = V.
M

We may normalize
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By the cocycle property of F®, we have
F.(¢) = F(¢) = F}, rwps (@) — Fo(u)
w w (n+2-p)miwrs wA®/

where (n + 2 — p)7fwrs = w + 00u might not be a Kéhler metric anymore, but
u and therefore FO(u) are bounded. Using the basic properties of F0 described
in Section 6.1, we have

0 n+2-p 4 n+ 1
F(n+2—p)7r;‘wps (¢) = n——}-l—F(nH)wFs (mﬂp .

Since CP™ has a canonical Kéhler-Einstein metric (n + 1)wrg, we know that
Fini1ywps is bounded from below on P(CP™,(n + 1)wps). This implies that

Fu(¢) 2 z”L—J“—Z"—J”log(l

__ntl nox n
n+1 V/Me "+2—Pd’(n+2—p) WiWFS) —

where C' always denotes a uniform constant. Consequently,
n-1
n+2—p 1 __nl &
F (¢) > ———log| = "0+ 2—p)" Y mwpg ) —C
w((p)—— n4+1 g(V</1we P (’I’L+ p) izoﬂ'sz‘S )

. 1 g
since ?:0 miwpg > aw for some positive constant ¢ > 0, we have

2— _
F,(¢) > %‘B log(%/ e‘#‘zf_pd’ehw—¢wn) —C.
M

We may assume that p > 1.
Claim There is a uniform C > 0 such that

sup ¢ < C(l +1og(l / e—-n,f.—;—,,qscm_%n)).
M V M

Proof. It was proved in [25] that there are & > 0 and C > 0, such that for any
¢ € P(M,w),

L[ csemmuons <
VIum

Choose é > 0 such that

6(n+1)
Sn+2-p)+p—1
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Then by the Sobolev inequality, we have

1 :/ e =P
M

s O-o)niz=p)

Se—b’supM¢>(/ ea(hw—¢+supM¢)wn> (/ e p(h —¢) M wn)
M M
(A-8)(nt2-p)
n+1
<Ce—6supM¢(/ enra- p(h ¢)eh“"¢w")
M

Then the claim follows. O

It follows from this claim that F,, is proper on Pg(M,w), and consequently,
M admits a Kahler-Einstein metric.

We alrcady saw that if M has a Kahler-Einstein metric, then the Calabi-
Futaki invariant fps vanishes. It was proved in [23] that the converse is also
true for complex surfaces.

Theorem 6.32 Ifn = 2, then M has a Kdhler-Einstein metric if and only if the
Calabi-Futaki invariant far = 0.

To prove this, basically all one needs to do is check that F,, is proper along the
solutions of the corresponding Monge-Ampere equation. We refer the readers
to [23] for its proof.

Theorem 6.10 can be also used to simplify the proof of this thcorem for most
complex surfaces by showing that F,, is proper on Pg(M,w). Let us illustrate it.

By the classification theory of complex surfaces, we know that any surface
M in the above theorem is of the form either CP! x CP! or the blow-up of
CP? at k points (0 < k < 8). Clearly, CP' x CP! and CP? have homogencous
Kihler-Einstein metrics. We have shown before that the blow-up of CP? at
one or two points does not admit any Kéahler-Einstein metrics, since they have
non-vanishing Futaki invariants. It was shown in [26] that the blow-up of CP?
at k = 3 or 4 points in general position has a K&dhler-Einstein metric (k = 3
was also proved by Siu [21]). Theorem 6.10 can be used to prove the existence
of Kahler-Einstein metrics on any M with ¢, (M) > 0 which is a blow-up of
CP? at k points with k = 5,7,8. The case that k = 6 still needs to use the
proof in [23] at this moment. As an example, let us show existence of Kahler-
Einstein metrics on any blow-up M of CP? at 7 points in general position (here
C1 (M ) > 0).

Let M be a blow-up of CP? at 7 points. Then it is a double covering

7:M— CP?

with branch locus along a smooth quartic curve. Assume that G contains the
deck transformation of 7. As before, w denotes a fixed, G-invariant Kéahler
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metric with the Kahler class ¢;(M). Then for any ¢ € Po(M,w), ™ m.¢ = 2¢.
We normalize ¢ such that

1

—/ efot? = 1.

VIm

Put f = n*w%g/w?. It is non-negative and vanishes along the branch locus of
. Moreover, we have

1 ‘s,
_ -5 < < .
V/lel WP <e<oo

Using the Hélder inequality, we deduce from this

4
1 1 9
v /M 3% < ¢ (V /M e‘3¢7r*w%5) .

Note that c always denotes a uniform constant. By using Theorem 6.7 for CP?,
we can show (compare the last example) that

1 1
F(¢) > 3 log (V /M e—wﬂ'*w%s) —-c
It follows from the above inequalities that
1
Fu(p) =2 ssupp —c.
4 M

Therefore, F,, is proper on Pg(M,w), and consequently by Theorem 6.10, M
admits a Kahler-Einstein metric.



Chapter 7

Applications and generalizations

In this chapter, we will discuss some applications of theorems in previous chap-
ters. We will also give some generalizations of previous results.

7.1 A manifold without Kahler-Einstein metric

We will now consider the case n > 3 and here we will need to introduce some
new concepts.

Definition 7.1 A holomorphic degeneration of M is a fibration m : W™+t! — D
such that m71(3) =~ M and n~(t) is smooth for all t # 0. Here D is the unit
disc in the complex plane

Example 7.2 The easiest example of such a degeneration is the following: Let
W = {(21, 22) € C?} and define 7(21, z2) = 2122 then 771(t) = {z120 = t}. It is
clear that this is smooth for ¢ ## 0 but not smooth at ¢ = 0.

Definition 7.3 A special degeneration is a degeneration that in addition satisfies:
there exists a holomorphic vector field v on W such that m,v = —t% generating
a one-parameter subgroup z — etz on D).

Remark 7.4 The vector field v|,-1(4) is not necessarily tangent to 7~(t) when
t # 0, but v|r-1(q) is, because 0 is a fixed point. Note that all fibers 7~ 1(¢)
except m~1(0) are biholomorphic to M in a special degeneration.

In this section, for simplicity, we always assume that the central fiber 7=*(0) is
smooth. We refer the readers to [24] for general cases where the central fiber
may not be smooth.

Example 7.5 (Trivial product) Let W = M x D so that v = v; — t% for v; €
n(M). Observe that 771(t) ~ 7~!(s) when ¢, s are both non-zero. This is true
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because v generates a complex one-parameter group of automorphisms ¢; of
W such that 7o ¢(w) = e~ *n(w) for all w € W. So all the fibers over D are
isomorphic.

In general, 7~!(0) might not be isomorphic to 7=1(¢) for ¢t # 0 and we say in
this case that the complex structure jumps at 7—1(0).

Example 7.6 Let M, be the blow up of CP? in four points py,...,ps, where
p1=[1:0:0],p2=[0:1:0] and p3 =[0:0: 1] arc fixed. If ps is not on any of
the lines p1p2, p1Ps or P2ps, then the complex structure of M, is independent of
P4, since there is an automorphism of CP? fixing p;, p2 and ps; and bringing p4
to [1:1:1] in this case. Note that in this case, ¢; (M) > 0, which is equivalent
to the fact that there are no holomorphic CP!'’s with self intersection number
less than or equal to —2.

If, however, for example ps € pap3, then the complex structure changes. To
see this, let E be the line in M, over psp3 C CP?, that is we have blown up
in three points on pzp3 and each time we blow up, we reduce the intersection
number by 1, so E? = —2. Set now

Tm: W= UMIM(t)_)D
teD

sending M,y to t. Assume p4(0) € p2(0)p3(0), then ¢ = 0 corresponds to the
jumping of complex structure.

Remark 7.7 There is no complex surface M with ¢; (M) > 0 that admits a non-
trivial special degeneration 7 : W — D such that ¢;(7~1(0)) > 0. To see this,
use the classification theory of surfaces.

Theorem 7.8 If M has o Kdhler-Einstein metric with ¢;(M) > 0, then for every
special degeneration m : W — D we have that

Re( fr-1(0)(v[z-1(0))) = 0
with equality if and only if W = M x D.

The following example was missed by Fano in his classification of Fano 3-
folds (three-dimensional complex manifolds with positive first Chern class) and
was found by Iskovskih. The author learned this description from S. Mukai (see
[19]). It forms a counterexample to a folklore conjecture, which is none the less
true in dimension two.

Conjecture 7.9 One can always find a Kéihler-Einstein metric on M if

n(M) = {0}.
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Example 7.10 We will give two descriptions of the following manifold. First of
all, consider SI(2,C)/T", where I' is the icosahedral group. The manifold M we
are interested in is the compactification of the above quotient. Let R;o be the
space of homogeneous polynomials of degree 12 in two variables. Then

PR12 jad CPlz.
Now S1(2,C) acts on Rj2 by composition and M is defined as
Orbit of SL(2,C)f,

where f is an appropriate, I'-invariant polynomial in Rjs.

The following description is perhaps easier to understand. Consider the
Grassmannian G(4, 7) consisting of four-dimensional subspaces of C”. Take now
any 3-dimensional subspace P C A2C7 and define

Xp={E € G(4,7);7a(P) = 0}

where 7g : A°C” — A2E* is the orthogonal projection, then a dimension count
tells us that we can expect that dim Xp = 3. We make the following two
observations:

e If Xp is smooth and non-degenerate (that is no vector field v € C” vanishes
in Xp), then ¢1(Xp) = c1(Q)|x,. Here Q is the universal quotient bundle
on G(4,7) and therefore ¢(Q)|x, = +c1(G(4,7))|x, > 0.

o (M) = {v € sl(2,C); induced action by v preserves P}, where
sl(2,C) = n(G(4,7)).
Now let Py be the span of

u; = 3e; ANeg — Hes Aes + 6eg A ey
us = 3ey; Aey — 2ez Aeg +e3 Aes

uz =egNey —egNeg+eqgAes

which is invariant under the irreducible representation of si(2,C) on C” given
by

((1) _01) — diag{3,2,1,0,~1, -2, -3}

(1 o)~

SO OoOoO O OO
SO O OO~
SO oOoOoOO RO
SO O—~OO
OO OO0
SO OO OO
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(0000000
3000000
01 0500000
(00)H0060000
0006 000
0000500
0000030

Check that Xp, is smooth and non-degenerate. This implies that n(Xp,) =
sl(2,C) is semi-simple and by Corollary 3.6, we know that this implies that
fxp, = 0. We will now deform Fy to

P, = span{u; + Z aijke; Neg,i=1,2,3}
J+k>i+7

then n(Xp,) = {0} for generic a and therefore by the above observation, we
have

o(t)(P,) — Py, when Re(t) — oo,
where o(t) denotes the diagonal matrix

diag(e®, et et 1,678, e7 2 73t

for t € C. This follows that

Xotyp, =~ Xp, and X, (typ, — Xpp-

So set
W= ( U Xc,(t)pa) UXp, — D
Re(t)>0

sending X,()p, to e*. So we have here a non-trivial degeneration (since
Xp, # Xp,) and the Calabi-Futaki invariant vanishes (fx, = 0) so in this
case, Theorem 7.8 implies that X p, has no Kahler-Einstein metric.

We will not prove Theorem 7.8 in this section (see for a proof [24]), but we
will explain briefly some ideas for the proof. Fix any Kahler metric 2 on W
satisfying [Q|-1¢;] = c1(7~1(t)) and let @, be a biholomorphic map from M
onto 7 1(¢) for ¢t # 0 generated by the vector field v on W. If we set

Wt = in‘l(t)a
then one can check that ®;w; is in the class of ¢, (M), so
Piwy = w + 000, .
One can show

hm F(¢t) Re(fr-1(0)(v))-

Because F,, is proper, th1s proves the theorem. To get the equality part, one
needs to know more about the rate of convergence when ¢ — 0.
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7.2 K-energy and metrics of constant scalar curvature

In Chapter 4, we learncd that the scalar curvature of Kahler metrics is a moment
map for the action of symplectic diffeomorphisms on the space of almost complex
structures compatible with a given symplectic form. In this section, we will
introduce the K-cnergy, which was first defined by Mabuchi in [18], and discuss
its basic properties.

Let (M,w) be a compact Kéhler manifold. As before, we denote by P(M,w)
the space

{¢ € C=;w + 80¢ > 0}.

For ¢ € P(M,w), we define its K-energy by

1
Vo(9) = —V/ / de(s(we) — np)wy® A dt,
0 JM
where {¢:} is any path in P(M,w) with ¢o =0 and
¢1 = ¢,wt =w + 65@,
and s(w;) is its scalar curvature and

(M) w!
[we]™ '
Of course, in order for v, (¢) to be well defined, we need first to make sure that

the integral on the right is independent of paths connecting 0 to ¢. In fact,
integrating by parts, one can show the integral on the right is equal to

1 We\ n

n—1 n
1 ; i n—1—1i ny 1 i n—1i
_E V/MqﬁRlc(w)/\w ANwg +n+1i§:0V/M¢wz/\w¢ i

=0

It follows that v, is well defined.
From the definition, one can casily show that v, satisfies the cocycle condi-
tion as F,, does, more precisely, if w’ is another Kahler metric of the form

w + 00,

then
V() — v (¢ — ) = vy (V).
If w is a Kéhler metric with constant scalar curvature, then the K-energy
v, can be expanded as

2 _
valte) = 5 /M bi3 By + O(t2).



9 Chapter 7. App]icatioﬁs and generalizations

It follows that any Kahler metric of constant scalar curvature is a minimum of
the K-energy, moreover, it is a strict minimum if there are no functions ¢ with
#i; = 0. Note that this last condition is satisfied if and only if n(M) = {0}.

Now we let X be a holomorphic vector field and ®; be the integral curve of
its real part Re(X). Notice that ®;w has the same Kahler class [w], so we have
¢ such that ®}w = w + 80¢;. Differentiating this, we get

d(iRc(X)w) = 65@

This implies that ire(xyw = dd: + o, where « is a harmonic (0, 1)-form. From
the definition of the K-energy, we can then show

Gra(8) = = [ dulsten) = ruaha, = 3 Relfar(lo], Re(X).

v
In particular, if the Calabi-Futaki invariant is non-zero, the K-energy v, is not
bounded from below.
We have seen that the K-energy shares many properties of F,, in the case of
Kahler-Einstein metrics. However, we expect more.

Definition 7.11 We say that v, is proper on a closed subset E C P(M,w) if there
is an non-decreasing function A(t) with lim;,oo A(f) = 00, such that v,(¢) >
MJu(@)) for any ¢ € E, where J,, is defined as before.

As for the functional F,,, the properness of v, is independent of initial metric
w in an appropriate sense.

In view of the previous results in the last two chapters, it is reasonable to
expect that the following is true.

Conjecture 7.12

e If M has a Kdhler metric w of constant scalar curvature, then v, > 0,
particularly, it is bounded from below;

o Ifn(M) = {0}, then M has a Kdhler metric of constant scalar curvature
and Kdhler class [w] if and only if v, is proper over P(M,w);

e Let G be a mazimal compact subgroup in Aut(M). Then M has a Kdhler
metric of constant scalar curvature and Kdihler class [w] if and only if v,, is
proper over Po(M,w), where Pg(M,w) consists of G-invariant functions
in P(M,w).

Theorem 7.13 Let (M,w) be a compact Kdhler manifold. If either [w] = ¢ (M)
or ¢1(M) = 0, then the above conjecture is true.
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Proof. This theorem is essentially contained in results of the last two chapters.
For the readers’ convenience, we outline its proof here.

Under our assumptions, we have Ric(w) — pw = O0h,, for some smooth
function h,,. Then by a straightforward computation, we get

1
Vo (9) :“7/ IOg( )w¢+——/ W —wy)
-i_ M - 1
n+1V_/ Bt Ay ntl&V

M

Here we have used

n—i

-1

L(¢) — Ju(¢) = Z

+1V_/ dAW ANwy™

It was shown in [25] that there is an a(M,w) > 0, depending only on M and
w, such that for any ¢ € P(M,w),

~tog( 2 ) —8(o- supp &
l/ e 0g( ) SHpM )wg — i/ e—ﬁ((P—SupM d))wn S C,
V Ju Viiu

where § is any positive number which is less than «(M,w). By the convexity
of the exponential function, we deduce from this

V_/Ml()g(w_i)wd’ > -5 /,w(¢_sbp¢)“¢_

Combining this with the above inequality of v,,, we get

Vo(¢) > BL,(¢) — p(L.(¢) — Ju(9)) - C.

This implies that v, is proper on P(M w) when p < 0. Infact, evenif p = 1, 1,
is still proper whenever a(M,w) > 25. Since M has a Kéhler-Einstein metric
when ¢; (M) < 0 (compare with Chapter 5), we have proved this theorem in the
cases that p < 0.

Now we assume that g = 1. It was proved in [7] that

1 1
B = @)+ [ bz = [ hown

1 1
v /M eh“’d’wg =1, we have v /M hwd,wg <0.

Then this theorem can be easily deduced from Theorem 6.7 and 6.10. O

Since
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Remark 7.14 If we assume that w is a Kahler-Einstein metric with
Ric(w) = pw,

then the arguments in the above proof yield

(@) =5 [ 10g( 28 ) - u(1t0) - L@
w _V M g U)" w¢ lu‘ w¢ w .
This implies that if 4 < 0, then

vu(¢) 20,

and the equality holds if and only if ¢ = 0 constant. Therefore, the Kahler-
Einstein metric w attains the absolute minimum of the K-energy. The same is
true even if p = 1. This was proved by Bando and Mabuchi.

7.3 Relation to stability

Let M be an algebraic manifold embedded in a complex projective space CPY.
Let H be the hyperplane line bundle over CP. This bundle gives rise to a
Kébhler class [w], which is a positive multiple of c1(H | ).

In this section, we relate the properness of the K-energy v, to the stability
of the underlying polarized manifold (M, w). This is inspired by a conjecture of
Yau on existence of Kéhler-Einstein metrics with positive scalar curvature.

The stability of (M, w) is described in terms of the following algebraic family.

Let G = SL(r,C) (r > 2). Let w : X — Z be a G-equivariant holomorphic
fibration between smooth varieties, such that

(1) all fibers are connected subvarieties of complex dimension n and M is one
of them;

(2) there is a G-equivariant embedding of X into Z x CP" for some N. Write
L = n}H, where H is the hyperplane bundle over CPY. Furthermore,
c1(L|a) is a positive multiple of [w].

Clearly, L is a G-equivariant line bundle over X, which is relatively ample over

Z and has fixed topological type along smooth fibers. This last property can be

used to restate (2) in a more intrinsic way.

Consider the virtual bundle

E=n+D)K''-K)Q (L -L™H" —nu(L — L7H"+,

where X = Ky @ K 21 is the relative canonical bundle, and as before,

_a(M) (L)
c1(Llm)™
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We define Lz to be the inverse of the determinant line bundle det(€, 7).
By the Grothendick-Riemann-Roch Theorem, we can compute

Cl(Lz) = 2n+17l‘1* ((n i+ 1)61 (’C)Cl(L)n + n,ucl(L)""'l) .

We also denote by £, the total space of the line bundle L' over Z. Then G
acts naturally on EE%. Recall that X, = 77 1(2) (2 € Z) is weakly Mumford
stable with respect to L, if the orbit G - Z in E}l is closed, where Z is any
non-zero vector in the fiber of Lgl over z; if, in addition, the stabilizer G, of
z is finite, then X, is Mumford stable. We also recall that X, is Mumford
semistable, if the 0-section is not in the closure of G - 2. Clearly, this stability
(resp. semistability) is independent of choices of Z.

Theorem 7.15 Let w : X — Z be as above. Assume that M = X, and v, is
proper on P(M,w). Then M is Mumford stable with respect to L.

This theorem was proved in Section 8 of [24] without explicitly stating it. We
refer the readers to [24] for its proof. The arguments in Section 8 of [24] also
shows that the converse to the statement of Theorem 7.14 is true under slightly
stronger assumption on the family = : X ~ Z, namely the fibers have no
multiple components.

Remark 7.16 More generally, if n(M) is non-trivial, we may define the weak
properness of v,, which means, roughly speaking, properness of v, modulo
action of Autg(M ), the identity component of Aut(M). This weak properness
will imply the weakly Mumford stability. However, we will not discuss this
general case here.

Now we discuss implications of the above theorem for the existence of Kéhler-
Einstein metrics with positive scalar curvature. Assume that (M, w) be a com-
pact Kéhler manifold with [w] = ¢;(M). In late 80’s, Yau proposed

Conjecture 7.17 M admits a Kdahler-FEinstein metric if and only if it satisfies a
certain stability condition in the sense of Mumford.

Combining the above theorem with the theorem of last section, we have

Theorem 7.18 [24] Let (M,w) be and 7 : X — Z be as above. Assume that M =
X, admits a Kahler-Einstein metric of positive scalar curvature. Then X, is
weakly Mumford stable. If X, has no non-trivial holomorphic vector fields, then
v, s proper on P(M,w) and M is actually Mumford stable with respect to L.

This answers Yau'’s conjecture partially.

Example 7.19 Let us apply the above theorem to proving again non-existence
of Kdhler-Einstein metrics in Example 7.10. We will adopt the notations in the
previous sections.
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Recall that W = G(4,7) consists of all 4-subspaces in C7. Let Q be its
universal quotient bundle.
Let m; (i = 1,2) be the projection from W x G(3, H*(W,A%Q)) onto its
ith-factor, and let S be the universal bundle over G(3, HO(W, A2Q)).
We define
X = {(z,P) € W x G(3, H*(W, A2Q))}

One can show that X’ is smooth.
If L = det(Q), then ¢1(L) is the positive generator of H2(W, Z).
Consider the fibration # = ma|x : X +— Z, where

Z ={P e G(3,H'(W,A%Q)) | dime¢ Xp = 3}.

Its generic fibers are smooth Fano 3-folds.
Using the Adjunction Formula, one can show

a(K) = —mnjci(L) — 3nyc1(S).
Therefore, it follows that
Cl(Lz) = 167!'* (12#;01(8*)71'?61(1;)3 - 7!'?61([4)4) .

One can show that Lz is ample.
By the definition of P,, one can show that none of G - P, is closed in Cgl.
Therefore, none of generic Xp, admits Kahler-Einstein metrics.
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