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1. Introduction

On a compact Riemannian manifold (M™, g), for 1 < p < oo, the p-Laplacian is defined by
Ap(f) = div([VfPV ). (1.1)

It is a second order quasilinear elliptic operator and when p = 2 it is the usual Laplacian. The p-Laplacian has
applications in many different contexts from game theory to mechanics and image processing. Corresponding
to the p-Laplacian, we have the eigenvalue equation

{Ap<f> = AP on M 12)
V.f =0 (Neumann) or f =0 (Dirichlet) on OM '

where v is the outward normal on M. The first nontrivial Neumann eigenvalue for M is given by

s fM |vf|p 1,p p—2,
1 p(M) = inf ¢ =i——5= [ f € WHP(M)\{0}, [ [fP7"f =0 (1.3)
Jar 11 M
and the first Dirichlet eigenvalue of M is given by

Ju VA

A“’(M)mf{ [MLiG

| F e W)\ {0}} . (1.4)
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Though the regularity theory of the p-Laplacian is very different from the usual Laplacian, many of the
estimates for the first eigenvalue of the Laplacian (when p = 2) can be generalized to general p. Matei [11]
generalized Cheng’s first Dirichlet eigenvalue comparison of balls [5] to the p-Laplacian. For closed manifolds
with Ricci curvature bounded below by (n — 1)K, Matei for K > 0 [11], Valtora for K = 0 [17] and
Naber—Valtora for general K € R [12] give a sharp lower bound for the first nontrivial eigenvalue. Andrews—
Clutterbuck [1,2] also gave a proof using modulus of continuity argument. L.F. Wang [18] considered the
case when the Bakry—Emery curvature has a positive lower bound for weighted p-Laplacians. Recently Y.-Z.
Wang and H.-Q. Li [19] extended the estimates to smooth metric measure space and Cavalletti-Mondino [4]
to general metric measure space. For a general reference on the p-Laplace equation, see [10]. See also [20)]
and references in the paper for related lower bound estimates.

In this paper, we extend the first eigenvalue estimates for p-Laplacian given in [11] to the integral Ricci
curvature setting.

For each © € M™ let p(z) denote the smallest eigenvalue for the Ricci tensor Ric : T, M — T, M, and
Ric®(z) = (n— 1)K — p(x)), = max{0,(n— 1)K — p(z)}, the amount of Ricci curvature lying below
(n—1)K. Let

1
q
[|Ric® ||,.r = sup (/B( R)(RicK)qdvol> . (1.5)

xeM

Then ||Ric” ||, r measures the amount of Ricci curvature lying below a given bound, in this case, (n — 1)K,
in the L9 sense. Clearly ||Ric® ||, r = 0 iff Ricps > (n — 1)K. Denote the limit as R — oo by ||Ric® ||,
which is a global curvature invariant. The Laplace and volume comparison, the basic tools for manifolds
with pointwise Ricci curvature lower bound, have been extended to integral Ricci curvature bound [15], see
Theorem 2.1.

We denote || f ||Z o the normalized g-norm on the domain {2. Namely

. 1 2\
1150 = (o [ 1)

Under the assumption that the integral Ricci curvature is controlled (||Ric® HZ is small), we give the
following first eigenvalue estimates:

Theorem 1.1 (Cheng-type Estimate). Let (M",g) be a complete Riemannian manifold. For any xo € M,
KcR r>0p>1,q> %, denote ¢ = max{q,5}, there exists an ¢ = e(n,p,q, K,r) such that if
0B(zo,7) # 0 and ||Ric[_(||:;B(x0 ry <& then

1

Ay (Blwo,)) < Ay (B (1) + Cnp, @ K, v) (IRie 7 0 7

where M is the complete simply connected space of constant curvature K, By (r) C MY is the ball of radius
T and A1 p 15 the first Dirichlet eigenvalue of the p-Laplacian in the model space M, .

This generalizes the Dirichlet p-Laplacian first eigenvalue comparison in [11]. When p = 2, this is proved
in [13].

Theorem 1.2 (Lichnerowicz-Type Estimate). Let (M™,g) be a complete Riemannian manifold. For q > %,
p>2and K >0, there exists € = €(n, p, q, K) such that if ||Ric1_(||: <eg, then

Vnlp—2)+n
(p—1(/nlp—-2)+n-1

>

ui, ) [(n 1)K - 2||Ric{<||;} . (1.6)
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In particular, when Ric > (n — 1)K, we have

uf Vip=2)+n  (n-DK _ (n-1K
b= n(p-2)+n—-1 p-1 = p-1

(1.7)

Under these assumptions, Aubry’s diameter estimate implies that M is closed [3]. That paper also has
the proof for p = 2.

2
The explicit estimate (1.7) improves the estimate in [11, Theorem 3.2], where it is shown that (u1,)? >
(n—-1)K
p—1
estimate (1.6) is optimal when p = 2, but not optimal when p > 2. For optimal estimate we have the

following Lichnerowicz—Obata-type estimate.

. When p = 2, the estimate (1.7) recovers the Lichnerowicz estimate that p; o > nK. The explicit

Theorem 1.3 (Lichnerowicz—Obata-Type Estimate). Let M™ be a complete Riemannian manifold. Then
forany a>1, K >0, q> % and any p > 1, there is an € = £(n,p, q,a, K) > 0 such that if HRlCIfH:; <eg,
then

aprp(M) = pp (M ).

When HRicI_(HZ =0, we can take a = 1 and this gives Theorem 3.1 in [11].

This result is obtained from the following Faber-Krahn type estimate. Recall the classical Faber-Krahn
inequality asserts that in R™ balls (uniquely) minimize the first eigenvalue of the Dirichlet-Laplacian among
sets with given volume.

Theorem 1.4 (Faber—Krahn-Type Estimate). Under the same set up as in Theorem 1.3, let 2 C M be a
domain and Bx C MY}, be a geodesic ball in the model space such that

vol(2)  vol(Br)

vol(M) — vol(Mp)’

Then
Oép/\l,p(.Q) Z )\17p(BK).

Again when ||Ricl_(||; =0, we can take o = 1 and this gives Theorem 2.1 in [11].

To prove these results, since we do not have pointwise Ricci curvature lower bound, one key is to control
the error terms.

We now give a quick overview of the paper. In Section 2 we prove the Cheng-type upper bound using
the first eigenfunction of A, for the model case as a test function in the LP-Rayleigh quotient and using
the Laplacian comparison and volume doubling for integral curvature (Theorem 2.1) to control the error.
In Section 3, we prove the Lichnerowicz-type lower bound by using the p-Bochner formula and the Sobolev
inequality. In Section 4, to prove a Faber—Krahn-type lower bound, a necessary tool we need is an integral
curvature version of the Gromov—Levy isoperimetric inequality, which we first show. The proof of the
eigenvalue estimate then follows from an argument using the co-area formula.

2. Proof of Theorem 1.1

First we recall the Laplace and volume comparison for integral Ricci curvature proved by the second
author joint with Petersen [14,15].

Let M™ be a complete Riemannian manifold of dimension n. Given 2o € M, let r(z) = d(zo,x) be the
distance function and (z) = (Ar — AKr) ,» where AX is the Laplacian on the model space M%. The
classical Laplace comparison states that if Ricys > (n — 1)K, then Ar < Agr, i.e., if Ric® =0, then ¢ = 0.
In [15] this is generalized to integral Ricci lower bound.
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Theorem 2.1 (Laplace and Volume Comparison [14,15]). Let M™ be a complete Riemannian manifold of
dimension n. If ¢ > %5, then

1
* . * 2
10130, 50) < Clrsa) (IRICEN 5 0)" (2.1)
There exists € = e(n, q, K,r) > 0 such that, if ||Ric[_(||; Bler) <6 then
vol(B(z,r)) volBk ()
<2 Vrg < r. 2.2
vol(B(z,r9)) ~ volBg(rg)’ ro="r (2:2)
For p-Laplacian of radial function, we have the following comparison.
Proposition 2.1 (p-Laplace Comparison). If f is a radial function such that f' <0, then
Apf = S+ 110 (23)
Proof. From the definition of the p-Laplacian (1.1),
Apf = div([VII" PV F) = VIV V) + VP 2Af , (2.4)
= (p—2)|Vf[" " Hess f(Vf, V) + VI[P Af.
Hence when f = f(r) is a radial function
Apf = (=221 + 1P+ A
= =D+ AP
= (= DI+ AT (A= A £
= AKr 4 (Ar — AK7) £ fP72 (2.5)

When f <0, (Ar — AKy) FIF1P~2 = o f!|f/|P~2, which gives the estimate. [

Let f > 0 be the first eigenfunction for the Dirichlet problem for A, in Bx(r) C M. By [7] f is radial.
Below we show that f is a decreasing function of the radius. For p > 2, this was shown in [11]. Our proof is
much shorter.

Lemma 2.1. Fort € (0,7) and p > 1, f'(t) <0.

Proof. Write the volume element of M, in geodesic polar coordinate dvol = A(t)dtdfgn—1. As the first
eigenfunction f is radial, by (2.5) it satisfies the ODE

(AIF72 ) = =MAfP2. (2.6)
As A(0) = 0 and p > 1, integrating both sides from 0 to ¢ we get
t
AFPFO=-x [P A0 O
0
Now we are ready to prove Theorem 1.1.

Proof. Let f be a first eigenfunction for the Dirichlet problem for A, in By (r) C M} with f(0) = 1.
Hence 0 < f < 1. Let r = r(2) = d(mo,gg)p be the distance function on M centered at the point zg. Then
f(r) € WeP(B(z,7)). Denote Q = jf “Vfﬂ) , where B := B(z,r). By (1.4) we have,

B

A p(B(zo, 7)) < Q. (2.7)




64 S. Seto, G. Wei / Nonlinear Analysis 163 (2017) 60-70

Using integration by part, f/ < 0,0 < f < 1 and the p-Laplacian comparison (2.3), we have

_fB Apf' f

Iz 1l
YR R ]
- Il fF

. Jaof 1P F
= X1,(B _BY L <

1,p(Bk (7)) (AT

=, p—1
A ELLi
511l

/Bw\f’\”’lg (/ngp)(/B)l

Let o = ro(n, K,r) € (0,r) such that f(ro) = . Then f

Q=

< A1p(Br (1)

By Holder inequality

Lir=([ f|”)1’1’-< / (wo,m)|f|”>;> (f |f|p)1’1’~(V013<x0,m>2—p)i.

Hence the error term

waf”"l<2< [ ) L
fB |f_|p - VOIB({E(), 7‘0) fB |f_|p
o (f gr) (0BG |
-9 (]{3 ¢P> (VOIB(xO,ro))
~Il® 1B(z0,7) \ 7
<2q! pran,B(%,T)(W) |

Choose ¢ < g in Theorem 2.1, using (2.1) and (2.2), and combining above, we have

*

1
- bl 1
Q < Mp(Bi(r) + C(n,p, G, K,7) (||Ricqu’B(wo’r)) it
Applying Young’s inequality to the last term, we have

< 1 _ . * % p— 1
Q S Al,p(BK(T)) + Ec(napﬂ]a Ka 7') (HRICI—(”*’B(IO’T)> + TQ

q

Moving @ to the left hand side, we obtain

p

— _ . * bl
Q < PAp(Bi() + Cln,p @, K, ) (IR 0 )7

1
Applying this to (2.8) so that the Q'™ % can be bounded in terms of the fixed quantities, we obtain

1

— _ . * 5
Q < My (Bre(r) + Cln.p, 1. K.) ([Riek| o )P O

(2.8)



S. Seto, G. Wei / Nonlinear Analysis 163 (2017) 60-70 65

3. Proof of Theorem 1.2
To prove Theorem 1.2, we need the following Bochner formula for p power.

Lemma 3.1 (p-Bochner).

A(IV ")

bR

(3.1)
= (0 -2V 2VIVAR + 51977 [Hess 2 + (VF, VAS) + Ric(V £,V )}

One can find this implicitly in the literature, see e.g. [6,12,16]. The proof is very simple, for completeness,
we present it here.

Proof. One computes

ya
2

CAVS) = SA(SYE = (0= 2TV + VANV, (32)

Recall the Bochner formula

1

SAVIP) = [Hess fI” + (Vf, VAS) + Rice(Vf, V).
Plugging this into (3.2) gives (3.1). O

We also need the following Sobolev inequality, which follows from Gallot’s isoperimetric constant estimate
for integral curvature [8] and Aubry’s diameter estimate [3].

Proposition 3.1. Given ¢ > § and K > 0, there exvists € = £(n,q, K) such that if M™ is a complete

manifold with HRchfHZ < g, then there is a constant Cs(n,q, K) such that

(][M f) T e K) fviPe2f (3.3)

for all functions f € W12,
Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. When p = 2 the result is proved in [3]. In the rest we assume p > 2.
By Aubry’s diameter estimate [3], M is closed. Integrating (3.1) on M we have

0= ][ VP {0 = 29IV S|P+ [Hess I° + (Vf,VAS) + Rie(Vf, V) } (3-4)
M
For the Hessian term, using the Cauchy—Schwarz inequalities
[Hess(Vf, V.f)[* < |V f[*[Hess 1%,

|Af|* < n|Hess f|”
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and the formula for p-Laplacian (2.4), we have

f vt = f @S
M M n

1 -2 _

o ARA T2 AV Hess (V15
1 -2 _
o arag -T2 ARV Hess

n

1 -2 _
o ara -T2 v s

v

Y

Hence

p—2 2
][M 72 Hess /] 5 Fara,g (3.5)

>
~n+vnlp
For the third term,

VI VRVAN) =~ Auaf

For the curvature term,

f VPR Rie(VS, V) > (n— DK ][ T f [RicX ||V 7P
M M M

> -0 f 9 - IR (f w1

Applying the Sobolev inequality (3.3) to the function |V f |§ gives

hQ
|
—

~
.

—1

2\ T .
<]€W<|Vf|2) ) §Cs][M|V\Vf|2| +2][M|Vf|p

2
p _
:03—4][ ik 2|V|Vf|\2+2][ Mg
M M

Plugging these into (3.4), we have

n—1+n(p P
A D A par (0K 2Rt ) £ 9

+ (-2 -cames ) 2) £ oo

Choosing ||R1(:K|| small so that ((p -2)—C; ||Ricl_{||:%> > 0. Then we can throw the last term away and
get

”ni}f” 2) ][ A FAS +((n— DK —2|RicX]) ][|Vf|p (3.6)
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Let f be the first eigenfunction for A,, that is, A, f = —,u|f\p72f. Then
F o Auang=-uf 1172 5ar
M M
—uf (VU0
M
—ulp-1)f 17P7AVIF
M

<o-ou(fur) (f )
==} { V5P,

where we use the fact that f is the first eigenfunction, so we have
p_ 1 P
1P == [VfI".
M K J M

g n+v/n(p—2)

This gives

S

(1)

} > (n— 1)K = 2||Ric’ ]|,

which is (1.6). O

4. Proof of Theorem 1.4

To prove the Faber—Krahn-type estimate, we will need a version of the Gromov—Levy isoperimetric
inequality for integral curvature. The inequality follows from the following volume comparison for tubular
neighborhood of hypersurface of Petersen—Sprouse.

Proposition 4.1 ([13], Lemma 4.1). Suppose that H C M is a hypersurface with constant mean curvature
n > 0, and that H divides M into two domains (2o, where (24 is the domain in which mean curvature
is positive. Furthermore, let di > 0 such that dy + d_ < diam(M) < D and 2+ C B(H,dy). Let
H = S(zg,70) C M%, a sphere of constant positive mean curvature n, and let 2, = B(zg, D) — B(zq,70),
Q2_ = B(xo,70). Finally assume that dy < D — rg and d_ < ro. Then for any o > 1, there is an
g(n,p,a, K) > 0 such that if ||Ricl_{||; <e¢, then
area(H) ~
vol(f2+) < a———==vol(f24).
() < area(H) (€2:)
Using this, the Gromov—Levy isoperimetric inequality for the integral curvature case can be shown by
following the original proof given in [9] page 522 and keeping track of the error term coming from the integral
curvature.

Proposition 4.2. Let 2 C M be a domain. Then for any o > 1, there is an € = e(n,p,a, K) > 0 such
that if ||R1cif||; < e, then

1(B
area(0Bk (rg)) < aarca(aﬁ)w,
where By (rg) C M is the ball of radius o in constant curvature K space. When ||Ric®
K

a=1.

||; =0, we can take
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Now we prove Theorem 1.4, the Faber—Krahn inequality.

Proof. Without loss of generality, we can suppose that our test functions are Morse functions to ensure
that the level sets of f are closed regular hypersurfaces for almost all values. Let 2, .= {x € 2| f > ¢} and
consider the decreasing rearrangement of f defined by

f(s) =inf{t > 0] || < s}.

It is a non-increasing function on [0, |£2|]. We define the spherical rearrangement {2 of 2 as the ball in M,

centered at some fixed point such that 3|2| = |£2|, where 3 := V‘;ﬂ%))
K

. By abuse of notation, we define the

spherical decreasing rearrangement f : 2 — R to be
f(a) = f(Cnla|™)

for 2 € 2, where |z| is the distance from the center of 2 and C,, is the volume S7. Note that

vol({f > t}) = vol({ > t}). (4.1)

Now by construction, we have

/Q fr = /  Feyras =5 [ .

(7]

Next we want to compare the L? norm of Vf and Vf. Now 042, = {z € 2 | f =t} and since f is a radial
function, we have

_ af
V==
vl =3
which is a constant on 942;. By Holder’s inequality, we have

vol({f = 1}) = /{ )

p—1

_/ VS

= -

=t |\VfI P
p—1

< ( [ ;ﬂ)”( /{f_t}mw) |

avol({f =t}) > vol({f = t})

Sl

By Proposition 4.2

for some o > 1. We have

vol({f = 1}) = /{ .

(/{ - vlﬂ> N ( /. |Vf|“> §

-
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By the co-area formula, we have
0 0
—vol({f >t}) = —/ 1
0 /°° / 1
= — —— | dc
ot J (f=c} IV Sl

__/ 1
=ty IV

/ L_/ R
= VI Ji=ny IV

Combining and applying the co-area formula once more to integrate over 2, we obtain

o [vsr= [ @i
2 Q
and by the Rayleigh quotient, we have

Jo VP 1 JpIVFF 1
[ = ar [ fF = ar

and similarly for f with (4.1) so that

Mp(2). O

To get Theorem 1.3 from Theorem 1.4, one follows the argument given in [11]. One first shows the relation
between the first non-trivial Neumann eigenvalue and the first Dirichlet eigenvalue of its nodal domain.
Namely, let f be a first nontrivial Neumann eigenfunction of A, on M with p > 1, let Ay = f~!(R;) and
A_ = f~1(R_) be the nodal domains of f. Then

Nl,p(M) = Al,p(A+) = Al,p(Af)

Using the fact that the nodal domains of A, for the first nontrival Neumann eigenfunction on spheres Mp
are hemispheres Sp ., in particular we have

pp(ME) = A1 p(SE +)-

Applying the Faber-Krahn-type estimate (Theorem 1.4) to the nodal domain, we get Theorem 1.3.
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