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1. Review of Math 122A

Convention. We use i to denote the scalar such that i2 = −1. Then

C = {z := x+ iy | x, y ∈ R}

and the conjugate z̄ = x− iy.

1.1. Notions of regularity.

Definition 1.1. Let f : D ⊂ C → C be a function defined in a neighborhood of a point z0 ∈ C.
Then, the derivative of f at z0 is given by

df

dz
(z0) = f ′(z0) = lim

h→0

f(z0 + h)− f(z0)

h

provided this limit exists.

Remark 1.1. Note that unlike the case for R, h tends to zero from possibly a complex direction
as well.

Definition 1.2. A complex-valued function f continuous in an open set D ⊂ C is called holo-
morphic if it has a derivative at every point of D.
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2 SHO SETO

Lets first consider an example of a non-holomorphic function.

Example 1.1. The function f(z) = z is continuous for all z ∈ C. However this function is
nowhere differentiable. Without loss of generality, let z0 = 0. Then for h ∈ R

lim
h→0

f(h)

h
= lim

h→0

h

h
= 1

and

lim
h→0

f(ih)

ih
= lim

h→0

−ih
ih

= −1.

Since we have found two paths with different limits, f is not differentiable.

Let us now investigate the conditions required for (complex) differentiability. Since f is dif-
ferentiable, say at z0, the limit of the difference quotient must be equal for any path. Let
f(z) = f(x+ iy) = u(x, y)− iv(x, y) and h ∈ R such that h→ 0. Then

lim
h→0

f(z0 + h)− f(z0)

h
= lim

h→0

f(z0 + ih)− f(z0)

ih
.

So that
∂u

∂x
+ i

∂v

∂x
=
∂v

∂y
− i∂u

∂y
.

Matching the real and imaginary parts, we obtain a set of equations, called the Cauchy-Riemann
Equations. {

∂u
∂x
− ∂v

∂y
= 0

∂v
∂x

+ ∂u
∂y

= 0.

We see that a (complex) differentiable function necessarily satisfies the Cauchy-Riemann equation.
It turns out that these are also sufficient conditions for differentiability.

Theorem 1.1. Let f(z) = u(x, y) + iv(x, y) be defined in a neighborhood of the point z0 =
x0 + iy0 ∈ C. Then, f is differentiable at the point z0 if and only if both the real and imaginary
part of f are differentiable at the point (x0, y0) and satisfy the Cauchy-Riemann equations

Proof. We already showed the necessary direction. Assume now that u and v are differentiable at
the point (x0, y0) and satisfy the Cauchy-Riemann equations. By Taylor expansion,

u(x0 + h, y0 + k)− u(x0, y0) =
∂u

∂x
(x0, y0)h+

∂u

∂y
(x0, y0)k + ε1(h, k)

and

v(x0 + h, y0 + k)− v(x0, y0) =
∂v

∂x
(x0, y0)h+

∂v

∂y
(x0, y0)k + ε2(h, k)

where εi is a function such that lim
(h,k)→(0,0)

εi(h,k)√
h2+k2

= 0 for i = 1, 2. Then

lim
h+ik→0

f(x0 + h, y0 + k)− f(x0, y0)

h+ ik
= lim

h+ik→0

∂u
∂x
h+ ∂u

∂y
k + i( ∂v

∂x
h+ ∂v

∂y
k) + ε1 + iε2

h+ ik

=
∂u

∂x
+ i

∂v

∂x
+ lim

h+ik→0

ε1 + iε2

h+ ik

=
∂u

∂x
+ i

∂v

∂x

where we used the Cauchy-Riemann equations in the second line. �
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Example 1.2. Consider the function f(z) = 1
z
. This function is differentiable on C − {0}. We

compute the real and imaginary parts:

1

z
=

1

x+ iy
=

x

x2 + y2
− i y

x2 + y2
:= u+ iv.

The Cauchy-Riemann equations are easily seen to be satisfied by symmetry.

Definition 1.3. A continuous function f which is defined in an open set D ⊂ C is called analytic
if it admits at every point of D a power series expansion: For every z0 ∈ D, there exists R > 0
such that

f(z) =
∞∑
k=0

ak(z − z0)k, ∀z ∈ B(z0, R).

The largest R > 0 for which the power series converges is called the radius of convergence and
is given by the formula

R =
1

lim sup
n→∞

|an|
1
n

We will see later that holomorphic functions are in fact analytic, hence we can use the terms
interchangeably in this course.

An alternative characterization for holomorphic can be given by first defining the differential
operators

∂

∂z
=

1

2

(
∂

∂x
− i ∂

∂y

)
∂

∂z̄
=

1

2

(
∂

∂x
+ i

∂

∂y

)
.

Note that for z = x+ iy, we have

∂

∂z
(z) = 1,

∂

∂z̄
(z) = 0,

and similarly for z̄. Then

Proposition 1.1. The Cauchy-Riemann equations hold if and only if

∂f

∂z̄
= 0.

Proof. Let f = u+ iv. Then

∂f

∂z̄
=

1

2

(
∂

∂x
+ i

∂

∂y

)
(u+ iv)

=

(
∂u

∂x
− ∂v

∂y

)
+ i

(
∂u

∂y
+
∂v

∂x

)
= 0.

�
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1.2. Integration. Given a curve C ∈ C and a function f whose domain contains C, the contour
integral of f along C can be evaluated by taking a parametrized curve z(t) : [a, b] → C whose
image is C: ∮

C

fdz =

∫ b

a

f(z(t))z′(t)dt.

The contour integral is invariant under reparametrization, which follows from the change of vari-
ables theorem.

Example 1.3. Let z0 ∈ C, we compute the contour integral of f(z) = 1
z−z0 along the boundary

of the ball B(z0, R) for some R > 0. The boundary of the ball can be parametrized by the curve

z(t) = z0 +Reit, 0 ≤ t ≤ 2π,

so that
z′(t) = iReitdt

Then ∮
∂B(z0,R)

dz

z − z0

=

∫ 2π

0

iReit

Reit
dt

= 2πi.

Note that the value does not depend on R.

In practice, when we want to evaluate certain contour integrals, we apply the fundamental
theorem of line integrals

Theorem 1.2. LetD ⊂ C be an open connected set, and let C be a smooth path with parametriza-
tion z(t), a ≤ t ≤ b. Let f be holomorphic in D and f ′ be continuous on D. Then∫

C

f ′(z)dz = f(γ(b))− f(γ(a)).

Remark 1.2.

In fact, the following theorem holds

Theorem 1.3. Let D ⊂ C be open and connected and let g be continuous in D. A necessary and
sufficient condition for g to have a primitive in D, i.e. G such that G′ = g is that∮

C

g(z)dz = 0

holds for every closed path C in D.

Relating to holomorphic functions, we have that

Theorem 1.4. If f is holomorphic at all points interior to and on a simple closed contour C, then∮
C

f(z)dz = 0.

A rigorous proof of the above uses the fact that the Cauchy-Riemann equations are exactly the
integrability conditions required for a function to have a primitive, however, here we present a
quick and dirty “proof”.
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Proof. By Green’s Theorem,∮
C

f(z)dz =

∮
C

(u+ iv)(dx+ idy)

=

∮
C

(u+ iv)dx+ (−v + iu)dy

=

∫∫
D

−vx + iux − uy − ivydA = 0

where the last equality follows from the Cauchy-Riemann equations. �

Remark 1.3. The “proof” would only hold for sufficiently nice curves C.

Also useful for computations is the following independence of path theorem

Theorem 1.5. Let γ1 and γ2 be positively oriented, simple, closed contours with γ2 interior to
γ1. If f is holomorphic on the closed region containing γ1 and γ2 and points between them, then∫

γ1

f(z)dz =

∫
γ2

f(z)dz.

Sketch of proof. We simply connect the two contours by two lines to create two closed contours.
The integral along this closed contour vanishes. By splitting the integral into pieces, we can solve
for “half” of the integral of γ1 in terms of the lines and “half” of the integral of γ2. �

The above theorems lead to the central theorem of complex analysis,

Theorem 1.6 (Cauchy’s Integral Formula). Let γ be a simple, closed, positively oriented contour.
If f is analytic in some simply connected domain D containing γ and z0 is any point inside γ, then

f(z0) =
1

2πi

∫
γ

f(z)

z − z0

dz.

Proof. The function f(z)
z−z0 is analytic everywhere in S except at the point z0, hence we can deform

the contour to a circle centered at z0 with small radius R i.e.,∫
γ

f(z)

z − z0

dz =

∫
∂BR

f(z)

z − z0

dz.

Now
1

2πi

∫
∂BR

1

z − z0

dz = 1

hence

f(z0) =
1

2πi

∫
∂BR

f(z0)

z − z0

dz.

Since the values of the integral are invariant under change of radius R, we will show that

lim
R→0

∫
∂BR

f(z)− f(z0)

z − z0

dz = 0.

Let ε > 0 be fixed. Since f is holomorphic, in particular, it is continuous, hence there is some
δ > 0 such that |z − z0| < δ implies that |f(z)− f(z0)| < ε. Choose R such that 2R < δ, then∣∣∣∣∫

∂BR

f(z)− f(z0)

z − z0

dz

∣∣∣∣ ≤ ε

∫
∂BR

1

|z − z0|
dz ≤ ε

2πR

R
= 2πε.

�



6 SHO SETO

We can extend the Cauchy integral formula to derivatives of holomorphic functions as well

Theorem 1.7. Let f be holomorphic in and on a simple closed contour C, with positive orienta-
tion. Then

f ′(z) =
1

2πi

∫
C

f(w)

(w − z)2
dw,

for z contained in the region interior of the contour.

Proof. Formally, this is essentially moving the derivative inside the integral and differentiating
with respect to the z variable. However, we need to justify this step and so we will show that f ′

exists and is equal to the expression given.
By Cauchy’s integral formula, we have

f(z + h)− f(z)

h
=

1

h

∫
C

(
1

w − (z + h)
− 1

w − z

)
f(w)dw

=

∫
C

f(w)

(w − z − h)(w − z)
dw.

Here we choose h such that |h| is sufficiently small. Then∫
C

f(w)

(w − z − h)(w − z)
dw −

∫
C

f(w)

(w − z)2
dw = h

∫
C

f(w)

(w − z − h)(w − z)2
dw.

Let M = maxC |f(w)| and let d = dist(z, C) so that |w − z| ≥ d > 0 for all w on C. Also assume
that |h| < d

2
. Then

|w − z − h| ≥ |w − z| − |h| ≥ d

2

for all w on C, hence ∣∣∣∣ f(w)

(w − z − h)(w − z)2

∣∣∣∣ ≤ 2M

d3

hence ∣∣∣∣h∫
C

f(w)

(w − z − h)(w − z)2
dw

∣∣∣∣ ≤ 2hML(C)

d3

where L(C) is the length of the contour. Let h→ 0 and we obtain our result. �

By induction and similar technique, we obtain the general derivative formula

f (n)(z) =
n!

2πi

∫
C

f(w)dw

(w − z)n+1
.

An immediate consequence of this theorem is the following

Theorem 1.8. If f is holomorphic at z0, then it is infinitely differentiable and its derivatives are
also holomorphic at z0.

Hence if f is holomorphic, the extra assumption f ′ is continuous may be dropped.
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1.3. Power series. Now we are ready to show that holomorphic functions are analytic.

Theorem 1.9. Suppose that a function f is holomorphic on a ball B(z0, R). Then f(z) is analytic
in B(z0, R).

Proof. We need to show that f(z) has a power series representation

f(z) =
∞∑
n=0

an(z − z0)n

for z ∈ B(z0, R). Without loss of generality, let z0 = 0. Now, By Cauchy integral formula,

f(z) =
1

2πi

∫
C

f(w)

w − z
dw

where C is the contour of ∂B(0, R). By finite geometric series expansion, we have

1

w − z
=

N−1∑
n=0

1

sn+1
zn + zN

1

(w − z)wN
.

Hence ∫
C

f(w)

w − z
dw =

N−1∑
n=0

∫
C

f(w)

wn+1
dwzn + zN

∫
C

f(w)

(w − z)wN
.

By the Cauchy derivative formula, we know that

1

2πi

∫
C

f(w)

wn+1
dw =

f (n)(0)

n!

so that

f(z) =
N−1∑
n=0

f (n)(0)

n!
zn +

zN

2πi

∫
C

f(w)

(w − z)zN
dw.

Now we bound the remainder term, let M be the maximum of f on C. We have

|w − z| ≥ R− |z| > 0

and so ∣∣∣∣ zN2πi

∫
C

f(w)

(w − z)zN
dw

∣∣∣∣ ≤ MR

R− |z|

(
|z|
R

)N
→ 0

as N →∞. �

Suppose f is not holomorphic at a point z0 but is holomorphic in its neighborhood. While
we cannot directly find a Taylor expansion, we may be able to still find a series expansion with
singularities i.e. one with positive and negative powers. Such is series is called a Laurent Series.

Theorem 1.10. Let f(z) be analytic in an annulus domain A = {z | R1 < |z − z0| < R2}. Then
f(z) can be represented by the Laurent series

f(z) =
∞∑
j=0

aj(z − z0)j +
∞∑
j=1

bj
(z − z0)j

, z ∈ A,
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where the coefficients can be computed by

aj =
1

2πi

∫
C

f(w)

(w − z0)j+1
dw, j ∈ Z

and

bj =
1

2πi

∫
C

f(w)(w − z0)j−1dw, j ∈ N,

and C is any positively oriented, simple closed contour around z0 lying in A.

Proof. Let z ∈ A. Let C1 and C2 be two circles, positively oriented, inside A such that z in
contained between them and assume C1 is the “outer” circle. By Cauchy’s integral formula, we
have

f(z) =
1

2πi

∫
C1

f(w)

w − z
dw − 1

2πi

∫
C2

f(w)

w − z
dw

w ∈ C1, we have that |z − z0| < |w − z0|, hence

1

w − z
=

1

w − z0

1

1−
(
z−z0
w−z0

) =
1

w − z0

∞∑
j=0

(
z − z0

w − z0

)j
uniformly on C1, hence we can change the integral and the summation so that

1

2πi

∫
C1

f(w)

w − z
dw =

∞∑
j=0

(
1

2πi

∫
C1

f(w)

(w − z0)j+1
dw

)
(z − z0)j.

and similarly, for w ∈ C2, we have |w − z0| < |z − z0| and so

− 1

2πi

∫
C2

f(w)

w − z
dw =

1

2πi

∫
C2

f(w)
∞∑
j=0

(w − z0)j

(z − z0)j+1
dw

=
∑
j=1

(
1

2πi

∫
C2

f(w)(w − z0))j−1dw

)
1

(z − z0)j
.

�

1.4. Classification of singularities. A point z0 is called singular point of the function f(z) if
f(z) is not analytic/holomorphic at z0 but is analytic at some point in B(z0, r) for all r > 0. It is
an isolated singularity if there exists R > 0 such that f(z) is analytic on some punctured open
disk 0 < |z − z0| < R.

Suppose f is holomorphic in a punctured neighborhood N(z0) of an isolated singular point.
Isolated singularities are further classified as follows:

(1) Poles If f(z) has the form

f(z) =
∞∑
j=0

aj(z − z0)j +
a−1

z − z0

+ . . .+
a−n

(z − z0)n
,

with a−n 6= 0, then z0 is a pole of order n. If n = 1, it is called a simple pole.
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(2) Removable singularity If a single-valued function f(z) is not defined at z = z0 but
lim
z→z0

f(z) exists, then z = z0 is called removable singularity.

(3) Essential singularity If f(z) is single valued, then any singularity that is not a pole or
a removable singularity is called an essential singularity.

We will investigate these singularities later.

2. Cauchy’s Residue Theorem

Suppose f is a holomorphic function in a punctured neighborhood of some isolated singular

point z0. Then it has a Laurent series expansion
∞∑

j=−∞

aj(z− z0)j. The coefficient a−1 is called the

residue of f(z) at z0 and is denoted by Res(f, z0).

Example 2.1. Since

e1/z = 1 +
1

z
+

1

2z2
+ · · ·

we have Res(e1/z, 1) = 1.

Example 2.2. To compute Res(ez+1/z, 0), we have

ez+1/z = eze1/z =

(
∞∑
j=0

zj

j!

)(
∞∑
k=0

1

k!zk

)

and the coefficient of 1/z is when k = j + 1 hence
∑∞

j=0
1

j!(j+1)!
.

We can see that instead of explicitly computing the integral formula for a−1, we can expand
simpler functions by their series and look at the coefficients.

Theorem 2.1. If f(z) has a removable singularity at z0, then Res(f, z0) = 0

Proof. Since the coefficients of the negative powers of z− z0 in its Laurent expansion are zero, the
residue is zero. �

Theorem 2.2. If f(z) has a pole of order m at z0, then

Res(f, z0) = lim
z→z0

1

(m− 1)!

dm−1

dzm−1
((z − z0)mf(z)).

Proof. Since z0 is a pole of order m, the Laurent series for f(z) around z0 is given by

f(z) =
a−m

(z − z0)m
+ · · · a−1

(z − z0)
+
∞∑
j=0

aj(z − z0)j.

So that
(z − z0)mf(z) = a−m + a−m+1(z − z0) + · · ·+ a−1(z − z0)m−1 + · · ·

Differentiating m− 1 times, we have

dm−1

dzm−1
((z − z0)mf(z)) = (m− 1)!a−1 +m!a0(z − z0) + · · ·

hence z → z0 gives the result. �
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Corollary 2.1. If f(z) = P (z)
Q(z)

where P and Q are both holomorphic at z0 and Q(z) has a simple

zero at z0, i.e. Q(z0) = 0 and Q′(z0) 6= 0, and P (z0) 6= 0, then

Res(f, z0) =
P (z0)

Q′(z0)
.

Proof. f(z) has a simple pole at z0 hence

Res(f, z0) = lim
z→z0

(z − z0)
P (z)

Q(z)
= lim

z→z0
(z − z0)

P (z)

Q(z)−Q(z0)

�

Example 2.3. For f(z) =
z

zn − 1
, there is a simple pole at each n-th root of unity, αk = e2iπk/n.

Hence

Res(
z

zn − 1
, αk) =

αk

nαn−1
k

.

The residues are useful when computing contour integrals:

Theorem 2.3. If C is a postively oriented simple closed contour and f is holomorphic inside and
on C except at the points z1, z2, . . . zn inside C, then∫

C

f(z)dz = 2πi
n∑
j=1

Res(f, zj).

Example 2.4. Evaluate

∫
C

dz

z4 + 1
, where C is the contour

2.1. Residue at infinity. Now suppose f(z) is holomorphic in a punctured neighborhood of

z =∞, i.e., f(z) =
∞∑

j=−∞

ajz
j holds for R < |z| <∞. We can compute by considering a change of

variables z = 1/w. Then its Laurent series changes by

· · ·+ a1z + a0 +
a−1

z
+ · · · = · · · a1

w
+ a0 + a−1w + · · ·

hence to obtain the a−1 coefficient, we multiply by −1/w2 so that

Res(f,∞) = −Res(
1

w2
f

(
1

w

)
, 0).
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Let Cr = {z | |z| = r}, r > R. We can still apply the residue theorem for singularities at z = ∞
by considering a positively oriented curve around∞ as a one with the orientation reversed so that∫

Cr

f(z)dz =

∫
Cr

a−1

z
dz = −2πia−1.

More precisely, if we use the change of variables w = 1
z
, then

f(w) =
∞∑

j=−∞

ajw
−j

and the singularity is now at w = 0 so∫
Cr

f(z)dz =

∫
C1/r

f(w)d(1/w) = −
∫
C1/r

f(w)

w2
dw = −

∫
C1/r

a−1w

w2
dw = −2πia−1

This leads to the following theorem

Theorem 2.4. Let the function f(z) be holomorphic in the extended complex plane, except at
isolated singular points. Then, the sum of all residues of f(z) is equal to zero.

Proof. The function f(z) can only have a finite number of singularities otherwise, there would
be a limit point, possibly at infinity, which will be a nonisolated singularity. Thus there exists a
positively oriented circle CR such that all the finite singularities, z1, . . . , zn are contained in CR.
Then by the residue theorem, ∫

CR

f(z)dz = 2πi
n∑
j=1

Res(f, zj)

and applying the residue theorem at infinity, we have

−
∫
CR

f(z)dz = 2πiRes(f,∞).

�

Example 2.5. Consider ∫
C

dz

(z − 7)(z23 − 1)

where C is given by the positively oriented curve |z| = 3. By the residue theorem, we have∫
C

dz

(z − 7)(z23 − 1)
= 2πi

2∑
j=1

3 Res(f, ωj)

where ωj are the 23 roots of unity. This is difficult to compute however since the sum of the
residues is zero, we have

2πi
2∑
j=1

3 Res(f, ωj) = −2πi(Res(f,∞) + Res(f, 7) =
−2πi

723− 1
.
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2.2. Evaluation of real integrals by contour integration. We can apply the Residue theorem
to evaluate real integrals.

2.2.1. Trigonometric Integrals. First we discuss how to integrate integrals of the form∫ 2π

0

R(cos θ, sin θ)dθ,

where R(x, y) is a rational function with real coefficients and whose denominator does not vanish
on [0, 2π]. Let C be a positively oriented unit circle |z| = 1. This can be parametrized by z = eiθ

and so

cos(θ) =
1

2

(
z +

1

z

)
, and sin(θ) =

1

2i

(
z − 1

z

)
.

Also, by change of variables,

dθ = −idz
z
.

Hence we can change the real integral into a contour integral∫ 2π

0

R(cos θ, sin θ)dθ =

∫
C

R

(
z + z−1

2
,
z − z−1

2i

)
dz

iz
.

Example 2.6. Evaluate I =

∫ 2π

0

dθ

1 + a sin θ
, 0 < |a| < 1. By the transformation formula above,

we get

I =

∫
C

2

az2 + 2iz − a
dz =

2

a

∫
C

dz

[z + i(1 +
√

1− a2)/a][z + i(1−
√

1− a2)/a]
.

Since |(1 +
√

1− a2)/a| > 1 and |(1−
√

1− a2)/a| < 1, by residue theorem we have

I =
2π√

1− a2
.

2.2.2. Rational Improper. Next we evaluate improper integrals of the form∫ ∞
−∞

P (x)

Q(x)
dx,

where P and Q are polynomials. We must make further assumptions that Q(x) 6= 0 for x ∈ R
and degQ ≥ 2 + degP , which is natural if we want to ensure that the integral converges. Let CR
be the closed contour consisting of the real line segment from −R to R and the upper semi-circle
centered at the origin of radius R.
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Assume that R is large enough so that it contains all the complex zeroes of Q(x) in the upper half
plane.. Then by the residue theorem,∫

CR

P (z)

Q(z)
dz = 2πi

∑
k

Res(
P

Q
, zk)

where zk are the complex zeroes of Q. We can split the contour integral as∫
CR

P

Q
=

∫ R

−R

P

Q
+

∫
ΓR

P

Q

where ΓR is the upper half of the circle CR. By our assumption, for large R, we have∫
ΓR

P

Q
≤ A

R

for some constant A, hence letting R→∞, we obtain∫ ∞
−∞

P

Q
= 2πi

∑
k

Res(
P

Q
, zk).

Example 2.7. ∫ ∞
−∞

dx

x4 + 1
= 2πiRes(

1

z4 + 1
, zk).

Of the four 4-th roots of unity, z1 = eiπ/4 and z2 = ei3π/4 are in the upper half plane, hence

Res(
1

z4 + 1
, eiπ/4) =

1

4z3
1

=
−z1

4
= −1

8
(
√

2 + i
√

2).

and

Res(
1

z4 + 1
, e3iπ/4) =

1

8
(
√

2− i
√

2),

hence ∫ ∞
−∞

dx

x4 + 1
=
π
√

2

2
.

2.2.3. Rational function times a trigonometric function. Next we compute integrals of the form∫ ∞
−∞

R(x) cos(x)dx,

∫ ∞
−∞

R(x) sin(x)dx

where

R(x) =
P (x)

Q(x)

such that P and Q are polynomials and Q(x) 6= 0. The above converges as long as degQ > degP .
We will show that ∫

ΓR

R(z)eizdz → 0

so that ∫
CR

R(z)eizdz →
∫ ∞
−∞

R(x)eixdx.
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Then its real and imaginary parts are the trigonometric functions we wanted to evaluate. Now
consider the two regions of ΓR:

A = {z ∈ ΓR | Im z ≥ h}
B = {z ∈ ΓR | Im z < h}.

Since degQ > degP , we have |R(z)| ≤ K
|z| for R sufficiently large. Also note |ez| = eRe z, hence∣∣∣∣∫

A

R(z)eizdz

∣∣∣∣ ≤ C1e
−h.

Also ∣∣∣∣∫
B

R(z)eizdz

∣∣∣∣ ≤ K

R

∫
B

dz ≤ C2
h

R
.

Hence, combining the two, we have∣∣∣∣∫
ΓR

R(z)eizdz

∣∣∣∣ ≤ C1e
−h + C2

h

R
.

Choosing h =
√
R, we have ∫

CR

R(z)eizdz ≤ C1e
−
√
R +

C2√
R
→ 0

Example 2.8. Evaluate ∫ ∞
−∞

sin(x)

x
dx

This is the imaginary part of ∫ ∞
−∞

eix

x
dx,

which has a pole at x = 0, hence we need to consider

Im

∫ ∞
−∞

eix − 1

x
dx.

Note that

0 =

∫
CR

eiz − 1

z
dz =

∫ R

−R

eix − 1

x
dx+

∫
ΓR

eiz − 1

z
dz

where the first equality is from Cauchy integral theorem, since z = 0 is a removable singularity.
Therefore, ∫ R

−R

eix − 1

x
dx =

∫
ΓR

1− eiz

z
dz =

∫
ΓR

1

z
dz −

∫
ΓR

eiz

z
dz

= πi−
∫

ΓR

eiz

z
dz → πi.
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2.2.4. Contour integrals involving multi-valued functions. We will investigate how to evaluate in-
tegrals of the form

I =

∫ ∞
0

xa−1f(x)dx, 0 < a < 1,

where f(z) is a single-valued analytic function, except for a finite number of isolated singularities
not on the positive real axis, has a removable singularity at z = 0 and f has a zero of order at
least one at z =∞.

Consider the domain S : 0 < arg z < 2π, which is the z-plane cut along the positive real axis.
Then za−1 is single valued in S. Consider the contour C given by

where γρ is a circle large enough to contain all the singularities and γr is small so that it contains
no singularities.

By residue theorem, we have

2πi
∑
k

Res(za−1f(z), zk) =

∫
C

za−1f(z)

=

∫ ρ

r

xa−1f(x)dx+

∫
γρ

za−1f(z)dz

+

∫ r

ρ

za−1f(z)dz −
∫
γr

za−1f(z)dz.

Since the zero at ∞ as order at least one, we have that∣∣∣∣∣
∫
γρ

za−1f(z)dz

∣∣∣∣∣ ≤ 2πMρa−1 → 0

for some M as ρ → ∞. Since z = 0 is a removable singularity, it is bounded near z = 0 as well
hence ∣∣∣∣∫

γr

za−1f(z)dz

∣∣∣∣ ≤ Cra−12πr → 0

as r → 0. Since arg z = 2π for the ray on the bottom of the real axis, we parametrize z = xe2πi so∫ r

ρ

za−1f(z)dz = −e2πi(a−1)

∫ ρ

r

xa−1f(x)dx
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Combining these, we get∫ ∞
0

xa−1f(x)dx =
2πi

1− e2πai

∑
Res(za−1f(z), zj).

Example 2.9. When evaluating the integral

∫ ∞
0

√
x

x3 + 1
dx, we rewrite in the above form so that

∫ ∞
0

√
x

x3 + 1
dx =

∫ ∞
0

x1/2−1 x

x3 + 1
dx

=
2πi

1− eπi
3∑

k=1

Res(

√
z

z3 + 1
, αk)

where αk are the third roots of unity.

Next we evaluate integrals of the form

I =

∫ ∞
0

f(x) Log(x)dx

where f is an even function and holomorphic on the upper half plane and assume for sufficiently
large |z|, we have |f(z)| ≤ M

|z|2 for someM . Here Log(x) is the real log and Log(z) = Log |z|+iArg z

is the principal (complex) log.
Let Γ be the closed contour

We then split the integral into the following pieces:∫
Γ

f(z) Log zdz = 2πi
∑

Res(f(z) Log z, zj)

=

∫ ρ

r

f(x) Log xdx+

∫
γρ

f(z) Log zdz

+

∫ ρ

r

f(x)(Log x+ πi)dx−
∫
γr

f(z) Log zdz.

For the upper half circle, we have∣∣∣∣∣
∫
γρ

f(z) Log zdz

∣∣∣∣∣ ≤ M

ρ2

∫ π

0

|Log ρeiθ||ρeiθ|dθ

≤ M

ρ

∫ π

0

|Log ρ+ iθ|dθ ≤ Mπ

ρ

√
Log2 ρ+ π2 → 0
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as ρ→∞. Similar bounds from the previous show that the integral over the smaller circle γr goes
to 0 as r → 0. By residue theorem, we can conclude that∫ ∞

0

f(x) Log xdx = Reπ
∑

Res(f(z)(Log z), zj)

Example 2.10. ∫ ∞
0

Log x

(x2 + 1)2
dx = ReπiRes(

Log z

(z2 + 1)2
, i) = −π

4
.

2.3. Summation of series.

Theorem 2.5. Let f(z) be holomorphic on C except at finitely many points z1, z2, . . . zk, none
of which is a real integer. Furthermore, suppose there exists some M such that |z2f(z)| ≤ M for
|z| > ρ, for some ρ > 0. Consider the functions

g(z) = π
cos(πz)

sin(πz)
f(z)

h(z) =
π

sin(πz)
f(z).

Then the following holds:

∞∑
n=−∞

f(n) = −
k∑
j=1

Res(g, zj)

∞∑
n=−∞

(−1)nf(n) = −
k∑
j=1

Res(h, zj).

Proof. We will show this for g(z). Suppose first that f(n) 6= 0 for all n. Then g(z) has simple
poles at each n ∈ Z and singularities at z1, z2, . . . zk. Let γ be a large rectangle containing
all singularities z1, z2, . . . zk of f and integers −n, . . . − 1, 0, 1, . . . n and not passing through any
integers. By residue theorem,∫

γ

g(z)dz = 2πi

(
k∑
j=1

Res(g, zj) +
n∑

m=−n

Res(g,m)

)
.

Computing the residues, we have

Res(g,m) = lim
z→m

(z −m)g(z) = lim
z→m

f(z)
π(z −m)

sin(πz)
cos(πz) = f(m).

Therefore, ∫
γ

g(z)dz = 2πi

(
k∑
j=1

Res(g, zj) +
n∑

m=−n

f(m)

)
.

If f(m) = 0 for some m, then g(z) has a removable singularity at m, hence has no contribution to∫
γ
g(z)dz and f(m) has no contribution as well.

Now we show that the contour integral goes to zero as the rectangle grows larger. Let Rn be
the rectangle
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For large n, we have |f(z)| ≤ M

n2
for some M .

Next we have ∣∣∣∣cos(πz)

sin(πz)

∣∣∣∣ =

∣∣∣∣eπix−πy + e−πix+πy

eπix−πy − e−πix+πy

∣∣∣∣
≤ |e

πix−πy|+ |e−πix+πy|
||e−πix+πy| − |eπix−πy||

≤ e−πy + eπy

eπy − e−πy
=

1 + e−2πy

1− e−2πy
.

For y ≥ 1
2
, we have

1 + e−2πy

1− e−2πy
≤ 1 + e−π

1− e−π
.

We can do a similar estimate by switching the terms in the denominator so that for y ≤ −1
2
,∣∣∣∣cos(πz)

sin(πz)

∣∣∣∣ ≤ e−πy + eπy

e−πy − eπy
≤ 1 + e−π

1− e−π
.

For |y| < 1
2

and z = (N + 1
2
) + iy, we have∣∣∣∣cos(πz)

sin(πz)

∣∣∣∣ = | cot(
π

2
+ πiy)| = | tanh(πy)| ≤ tanh

π

2

and the same bound will hold for z = −(N + 1
2
) + iy so that∣∣∣∣∫

RN

g(z)dz

∣∣∣∣ ≤ π

∫
RN

∣∣∣∣cos(πz)

sin(πz)

∣∣∣∣ |f(z)|dz ≤ πAM

N2
L(RN) ≤ πAM4(2N + 1)

N2
→ 0y

�

2.4. Argument principle.

Theorem 2.6. Let f(z) be meromorphic (ratio of holomorphic functions) inside and on a posi-
tively oriented contour γ. Furthermore, let f(z) 6= 0 on γ. Then

1

2πi

∫
γ

f ′(z)

f(z)
dz = Zf − Pf

where Zf is the number of zeroes and Pf is the number of poles, both up to multiplicity of f inside
γ.
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Lemma 2.1. Suppose that f is continuous and assumes only integer values on a connected domain
S. Then f(z) is constant on S.

Theorem 2.7 (Rouché’s Theorem). Suppose f and g are meromorphic in a domain S. If |f(z)| >
|g(z)| for all z on γ where γ is a simple closed positively oriented contour in S and f(z) and g(z)
have no zeroes or poles on γ, then

Zf − Pf = Zf+g − Pf+g.

Proof. First we claim that f(z) + g(z) has no no zeroes on γ. If f(z0) + g(z0) = 0, then |f(z0)| =
|g(z0)| on γ, contradicting |f | > |g| on γ. Now, since |f(z)|− |g(z)| is continuous on γ, there must
be some m > 0 such that |f | − |g| ≥ m > 0 on γ. Hence

|f(z) + tg(z)| ≥ |f(z)| − |g(z)| ≥ m > 0

for t ∈ [0, 1] and z ∈ γ. Therefore,

J(t) =
1

2πi

∫
γ

f ′(z) + tg′(z)

f(z) + tg(z)
dz

is continuous in t. By the argument principle, J(t) = Zf+tg − Pf+tg which is an integer, hence
J(0) = J(1), which is what we wanted to show. �

Corollary 2.2. Suppose f(z) and g(z) are holomorphic in D. If |f | > |g| for all z ∈ γ, where γ
is a simple closed contour in D, then f(z) and f(z) + g(z) have the same number of zeroes inside
γ counting multiplicities.

Example 2.11. Consider the function φ(z) = 2z5 − 6z2 + z + 1. We shall compute how many
zeroes φ has in the annulus 1 ≤ |z| ≤ 2. Let f(z) = −6z2 and g(z) = 2z5 + z + 1. On |z| = 1, we
have that |f | = 6 and |g| ≤ 2 + 1 + 1 = 4. Hence |f | > |g| on |z| = 1. Since f has two zeroes in
|z| < 1 (counting multiplicity), by Rouché’s theorem, φ = f +g has two zeroes there as well. Next
let f(z) = 2z5 and g(z) = −6z2 + z + 1. On |z| = 2, we have |f | = 64 and |g| ≤ 24 + 2 + 1 = 27.
Hence |f | > |g|. Since f has five zeroes in |z| < 2, we have that φ must have the same. Then on
the annulus, φ has 3 zeroes.

Example 2.12. Consider the function φ(z) = 2 + z2 + eiz. We shall show that this has exactly
one zero in the open upper half-plane y > 0. Let f(z) = 2 + z2 and g(z) = eiz. Let γ be the
contour [−R,R] ∪ {z | Im z ≥ 0, |z| = R}, R >

√
3. On [−R,R], we have |f(z)| ≥ 2 > 1 = |g(z)|

and for z = Reiθ, 0 ≤ θ ≤ π, |f(z)| ≥ R2−2 > 1 ≥ e−R sin θ = |g(z)|. Then φ has the same number
of zeroes as 2 + z2 on the upper half plane, which is one.

Using this, we can give a proof of the Fundamental Theorem of Algebra,

Theorem 2.8 (Fundamental Theorem of Algebra). Every nonconstant polynomial

Pn(z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0

where ai are complex and an 6= 0, has at least one zero in C, and hence by induction, has exactly
n zeroes, counting multiplicities.

Proof. Let f(z) = anz
n and g(z) = an−1z

n−1 + · · · + a0 on |z| = R. Then |f | = |an|Rn and
|g(z)| ≤ |an−1|Rn−1 + · · ·+ |a1|R + |a0|. Choosing R large so that

|an−1|
|an|

+ · · ·+ |a1|
|an|

+
|a0|
|an|

< R

we have that |f | > |g| on |z| = R. Then f has n zeroes in |z| = R and so Pn = f + g has n
zeroes. �
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3. Behavior of mappings

The set of equations

T (x, y) = (u(x, y), v(x, y))

defines a transformation or mapping between points in (x, y) and points in (u, v).

Definition 3.1. The Jacobian of the transformation T is given by

∂(u, v)

∂(x, y)
= uxvy − uyvx.

A special case that we are interested in is when the transformation is holomorphic, i.e. if u and
v are holomorphic. Then for f(z) = (u(z), v(z)), we have

∂(u, v)

∂(x, y)
= |f ′(z)|2.

Suppose we have two intersecting curves C1 and C2 in the (x, y) plane. This curve will be
mapped by the transformation f to curves C ′1 and C ′2 in the (u, v) plane. If the angle and
orientation between C1 and C2 are the same as the angle and the orientation of C ′1 and C ′2 at the
point (x0, y0) and (u0, v0) respectively, then the map f is said to be conformal at (x0, y0).

Theorem 3.1. If f is holomorphic and f ′(z) 6= 0 in a region R, then the mapping w = f(z) is
conformal at all points of R.

Proof. Let C : z(t) = x(t) + iy(t) be a smooth curve with z(t0) = z0. Then the tangent line at C
at z0 has the direction vector z′(t0) = x′(t0) + iy′(t0) and its angle of inclination with the positive
real axis is Arg z′(t0). Let Γ = f(C) be the image curve. It is parametrized by w(t) = f(z(t)) and
the angle of inclination of its tangent line at f(z(t0)) is given by

Argw′(t0) = Arg(f ′(z0)z′(t0)) = Arg f ′(z0) + Arg z′(t0).

Hence the angle of inclination increases by f ′(z0), hence is conformal. �

3.1. Elementary Transformations. First we consider w = az + b.
This is a linear map which is a 1-1 holomorphic map of the entire plane onto itself, for a 6= 0.

Example 3.1. The mapping w = (1 + i)z + 2 is given by first a dilation and rotation

(1 + i) =
√

2eiπ/4

then translate by 2.

Next we consider the transformation w = 1
z
.

We can think of this transformation as a composition of z
|z|2 and conjugation. In terms of (x, y)

to (u, v) coordinates, we have

T (x, y) =
1

z
=

(
x

x2 + y2
,
−y

x2 + y2

)
= (u, v).
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3.2. Bilinear transformation.

Definition 3.2. The transformation

w =
az + b

cz + d
, ad− cb 6= 0

is called a bilinear or fractional transformation.

It can be shown that a bilinear transformation maps circles and lines into circles and lines. The
inverse transformation is given by

z =
−dw + b

cw − a
, for (ad− bc 6= 0).

There is always a linear fractional transformation that maps three given distinct points z1, z2, and
z3 onto three specified distinct points w1, w2, and w3, respectively.

Example 3.2. Suppose we want to compute the map which sends the points

z1 = −1, z2 = 0, z3 = 1

onto
w1 = −i, w2 = 1, w3 = i.

Plugging in z2 = 0, we have 1 =
b

d
so b = d. Plugging in the other two, we get the relation

ic− ib = −a+ b, and ic+ ib = a+ b.

Combining, we get

w =
iz + 1

−iz + 1
.

Example 3.3. Suppose we want to compute the linear fractional transformation that sends the
points

z1 = 1, z2 = 0, z3 = −1

onto
w1 = i, w2 =∞, w3 = 1.

Plugging in z = 0, we need to set d = 0 and c 6= 0. Hence

w =
az + b

cz
, (bc 6= 0).

Plugging the other two pairs, we have

ic = a+ b, −c = −a+ b;

so that
2a = (1 + i)c, 2b = (i− 1)c.

Substituting, we have

w =
(i+ 1)z + (i− 1)

2z
.

We can also compute by using the cross ratio formula

(w − w1)(w2 − w3)

(w − w3)(w2 − w1)
=

(z − z1)(z2 − z3)

(z − z3)(z2 − z1)
.



22 SHO SETO

3.3. Automorphisms of the disk.

Definition 3.3. A conformal mapping of a region onto itself is called an automorphism of that
region.

The following lemma is straightforward.

Lemma 3.1. Suppose f : D1 → D2 is a conformal mapping. Then

(1) any other conformal mapping h : D1 → D2 is of the form g◦f , where g is an automorphism
of D2;

(2) any automorphism h of D1 is of the form f−1 ◦ g ◦ f , where g is an automorphism of D2.

Here we record some more properties of holomorphic functions

Theorem 3.2. If f is holomorphic in D and a ∈ D, then f(a) is equal to the mean value of f
taken around the boundary of any disc centered at a contained in D, i.e.

f(a) =
1

2πi

∫ 2π

0

f(a+ reiθ)dθ.

Proof. One simply parametrizes the Cauchy integral formula using polar coordinates to obtain the
identity. �

Theorem 3.3 (Maximum modulus principle). Suppose that f(z) is analytic in an open disc
centered at z0 and that the maximum value of |f(z)| over this disk is |f(z0)|. Then, |f(z)| is a
constant in the disc.

We now begin classifying automorphisms.

Lemma 3.2 (Schwarz’s Lemma). Suppose that f is holomorphic in the unit disc, |f | < 1 and
f(0) = 0. Then

(1) |f(z)| ≤ |z|

(2) |f ′(0)| ≤ 1

with equality if and only if f(z) = eiθz.

Proof. Consider the function

g(z) =

{
f(z)
z
, for 0 < |z| < 1

f ′(0), for z = 0.

Then g is holomorphic. Since |g| ≤ 1
r

for all r < 1, hence letting r → 1 and by the maximum
modulus principle, we have |g(z)| ≤ 1 throughout the disc. If |g(z0)| = 1 in the interior, then by
maximum modulus principle, then g is a unit constant, i.e., g = eiθ. �

Lemma 3.3. The only automorphisms of the unit disc with f(0) = 0 are given by f(z) = eiθz.
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Proof. By Schwarz’s lemma, we have

|f(z)| ≤ |z|, for |z| < 1.

Moreover, f−1 also maps the disc onto itself with f−1(0) = 0, hence

|f−1(z)| ≤ |z|, for |z| < 1.

hence, f(z) = |z| so that f(z) = eiθz. �

If we want to relax the condition that f(0) = 0, we look for automorphism of the unit disc such
that f(a) = 0 for some 0 < |a| < 1.

Theorem 3.4. The automorphisms of the unit disc are of the form

f(z) = eiθ
(
z − a
1− āz

)
with |a| < 1.

Proof. Let g(z) = z−a
1−āz . Then |g| = 1 for |z| = 1. Since g(a) = 0, it follows that g is an

automorphism of the unit disc. Let f be any other automorphism of the disc such that f(a) = 0.
Then h = f ◦ g−1 is an automorphism with h(0) = 0, hence h = eiθz, hence solving for f , we get
our conclusion. �

Appendix A. Differentiable functions of two real variables

Definition A.1. A real-valued function u(x, y) defined in a neighborhood of the point (x0, y0) ∈ R2

is said to be differentiable at (x0, y0) if there exist real numbers a and b such that

lim
(x,y)→(x0,y0)

u(x, y)− u(x0, y0)− a(x− x0)− b(y − y0)√
(x− x0)2 + (y − y0)2

= 0.

It is a necessary but not sufficient condition for differentiability that the first partial derivatives
exist at the point (x0, y0). However, if they are continuously differentiable, then it is a sufficient
condition i.e.,

Theorem A.1. Assume that the function u(x, y) admits partial derivatives in a neighborhood of
(x0, y0) and that they are continuous at the point (x0, y0). Then u is differentiable at the point
(x0, y0).
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