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Navigating the Origins of the FFT

The Royal Observatory, Greenwich, in
London has a stainless steel strip on the
ground marking the original location of
the prime meridian. There’s also a
plaque stating that the GPS reference
meridian is now 100m to the east.

This photo is the culmination of
hundreds of years of mathematical
tricks which answer the question: How
to construct a more accurate clock? Or
map? Or star chart?

http://en.wikipedia.org/wiki/Royal_Observatory,_Greenwich
http://en.wikipedia.org/wiki/Prime_meridian_(Greenwich)
http://en.wikipedia.org/wiki/IERS_Reference_Meridian
http://en.wikipedia.org/wiki/IERS_Reference_Meridian


Time, Location and the Stars

The answer involves a naturally
occurring reference system.
Throughout history, humans
have measured their location
on earth, in order to more
accurately describe the position
of astronomical bodies, in order
to build better time-keeping
devices, to more successfully
navigate the earth, to more
accurately record the stars...
and so on... and so on...



Time, Location and the Stars

Transoceanic exploration previously required a vessel stocked with
maps, star charts and a highly accurate clock. Institutions such as
the Royal Observatory primarily existed to improve a nations’
navigation capabilities. The current state-of-the-art includes
atomic clocks, GPS and computerized maps, as well as a whole
constellation of government organizations.

This cycle of continual improvement has fueled many
mathematical discoveries and it is within this story that we find the
origins of the Fast Fourier Transform. In particular, the FFT grew
out of mathematical techniques for determining the orbit of
planetary bodies.



Orbit as a Periodic Curve

The orbit of a body like a planet can be modeled by a curve

c : [0,T ]→ R3,

For a given time 0 ≤ t ≤ T , the function produces a location

c(t) = (x(t), y(t), z(t))

in some unspecified coordinate system. We assume the motion is
periodic with period T to extend the function to any time:

c(t + T ) = c(t) (t ∈ R).

Example. The Earth’s orbit is approximately circular (eccentricity
0.01671123) with period 365.256 days.



Orbit Determination

Imagine an Earth-bound observatory as it tracks a planet. The
astronomers record a sequence of observations derived from the
(unknown) orbital curve c : [0,T ]→ R3, with the intention of
predicting the future location of the body. The problem of
recovering the function c from observations is called orbit
determination.

Because the underlying function c is periodic, the derived
observations are also periodic. Due to work in orbital mechanics,
numerous techniques were developed to approximate periodic
functions using linear combinations of trigonometric functions.

http://en.wikipedia.org/wiki/Orbit_determination
http://en.wikipedia.org/wiki/Orbit_determination


Spotting a Missing ’Planet’

The planets Mecury, Venus, Mars, Jupiter and Saturn were known
to the Babylonians. The 18th century brought the discovery of
Uranus, whose nearly circular orbit was relatively easy to
determine. The location of Uranus fit the Titus-Bode law, which
also predicted a planet between Mars and Jupiter.

At the beginning of the 19th century, Giuseppe Piazza observed an
object in this predicted location. It was smaller than any object
known to date. At 950km in diameter, Ceres is the largest object
in the asteroid belt between Mars and Jupiter. Discovered on 1
January 1801, Piazzi made 21 observations over 42 days before
losing the object in the sun. A race ensued to recover the orbit of
Ceres and capture new observations of the presumed planet.

http://en.wikipedia.org/wiki/Timeline_of_discovery_of_Solar_System_planets_and_their_moons
http://en.wikipedia.org/wiki/Timeline_of_discovery_of_Solar_System_planets_and_their_moons
http://en.wikipedia.org/wiki/Titius%E2%80%93Bode_law
http://en.wikipedia.org/wiki/Giuseppe_Piazzi
http://en.wikipedia.org/wiki/Ceres_(dwarf_planet)
http://www.lpi.usra.edu/books/AsteroidsIII/pdf/3027.pdf


Enter Gauss

After working in number theory and completing a dissertation on
the fundamental theorem of algebra, the twenty four year old Carl
Friedrich Gauss turned to the problem of determining the orbit of
Ceres from Piazzi’s limited number of observations.

Gauss developed a technique based on Kepler’s laws of motion and
the theory of conic sections. An overview of the method and
further resources can be found in this presentation. Based on his
predictions, Ceres was again observed in December of 1801.

Here are a few amazing facts about Gauss’ method.

1. Requires only three Earth-based measurements.

2. One of the first demonstrations of the method of least squares.

3. Developed the FFT to quickly interpolate periodic functions.

http://en.wikipedia.org/wiki/Fundamental_theorem_of_algebra#History
http://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
http://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
http://en.wikipedia.org/wiki/Gauss%27_Method
http://en.wikipedia.org/wiki/Kepler's_laws_of_planetary_motion
http://en.wikipedia.org/wiki/Conic_section
 http://math.berkeley.edu/~mgu/MA221/Ceres_Presentation.pdf
http://en.wikipedia.org/wiki/Least_squares
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The Discrete Fourier Transform

Problem Given N equally spaced measurements of a periodic
function, write down an interpolating trigonometric polynomial.

The answer to this problem is prescribed by the discrete Fourier
transform (DFT). Given the sequence x0, x1, . . . , xN−1 of N
complex-valued measurements, define

x̂k =
1√
N

N−1∑
n=0

xn exp(−2πikn/N) (k = 0, 1, . . . ,N − 1).

This expression defines a linear transformation F : CN → CN

called the discrete Fourier tranform.

http://en.wikipedia.org/wiki/Discrete_Fourier_transform#Trigonometric_interpolation_polynomial
http://en.wikipedia.org/wiki/Discrete_Fourier_transform#Trigonometric_interpolation_polynomial


Interpolating Polynomial

Figure: Original function in blue,
16 samples and interpolant in red.

Given the DFT of N equally
spaced samples of a periodic
function

g : [0, 1]→ C,

we can write an interpolating
trigonometric polynomial as

g̃(t) =
∑
|n|≤N/2

x̂n exp(2πint)

using that the DFT is periodic.



DFT as Coordinate Transformation

Let N = 8 and ω8 = exp(−2πi/8). Consider the vectors

u0 =
1√
8
〈1, 1, . . . , 1〉

u1 =
1√
8
〈1, ω8, ω

2
8, . . . , ω

7
8〉

...

uk =
1√
8
〈1, ωk

8 , ω
2k
8 , . . . , ω7k

8 〉

...

u7 =
1√
8
〈1, ω7

8, ω
14
8 , . . . , ω

49
8 〉

which are sampled versions of the complex exponentials. These
eight vectors form an orthonormal basis for C8.



Orthogonality

Given the definition

uk =
1√
8
〈1, ωk

8 , ω
2k
8 , . . . , ω7k

8 〉

consider the inner product

uTk u
∗
k ′ =

1

8

7∑
n=0

exp(−2πikn/N) exp(2πik ′n/8)

=
1

8

7∑
n=0

ω
(k−k ′)n
8 = δkk ′ .

This follows from the sum of the
geometric progression, or by the visual
proof to the right.

Figure: A visualization of
the roots of unity W 3n

8 ,
corresponding to k = 6
and k ′ = 3.

http://en.wikipedia.org/wiki/Geometric_progression


Basis as Sampled Complex Exponential

Figure: This graph depicts u3
overlayed on f3; the real part in
blue and the imaginary part in red.

We have sampled the function

f3(t) =
1√
8

exp(−2πi(3t))

uniformly at values

t ∈
{

0,
1

8
,

2

8
, . . . ,

7

8

}
resulting in

u3 =
1√
8
〈1, ω3

8, ω
6
8, . . . , ω

21
8 〉.



DFT in Matrix Form

Focusing again on N = 8, we can write the DFT in matrix form

x̂0
x̂1
x̂2
x̂3
x̂4
x̂5
x̂6
x̂7


=

1√
8



1 1 1 1 1 1 1 1
1 ω8 ω2

8 ω3
8 ω4

8 ω5
8 ω6

8 ω7
8

1 ω2
8 ω4

8 ω6
8 ω8

8 ω10
8 ω12

8 ω14
8

1 ω3
8 ω6

8 ω9
8 ω12

8 ω15
8 ω18

8 ω21
8

1 ω4
8 ω8

8 ω12
8 ω16

8 ω20
8 ω24

8 ω28
8

1 ω5
8 ω10

8 ω15
8 ω20

8 ω25
8 ω30

8 ω35
8

1 ω6
8 ω12

8 ω18
8 ω24

8 ω30
8 ω36

8 ω42
8

1 ω7
8 ω14

8 ω21
8 ω28

8 ω35
8 ω42

8 ω49
8





x0
x1
x2
x3
x4
x5
x6
x7


.

Or, more compactly, x̂ = W x, where W is the Vandermode matrix.
Observe that the k-th row and column is simply the vector uk .
Hence the matrix W is unitary, W ∗W = I .

This formulation yields a cost of O(N2) multiplication operations.

http://en.wikipedia.org/wiki/DFT_matrix
http://en.wikipedia.org/wiki/Unitary_matrix
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The Discrete Fourier Transform

Recall that given a vector x = 〈x0, x1, . . . , xN−1〉 ∈ CN its discrete
Fourier transform is another vector x̂ ∈ CN given by

x̂k =
1√
N

N−1∑
n=0

xnω
nk
N (k = 0, 1, . . . ,N − 1)

where ωN = exp(−2πi/N).

Problem. How to compute the DFT more efficiently?

The Trick. Focus on the case N = 2m. Then we can partition x
into even- and odd-indexed components and write the DFT as two
DFTs of length m.



The Fast Fourier Transform

Details for N = 2m:

x̂k =
1√
N

N−1∑
n=0

xnω
nk
N

=
1√
N

m−1∑
n=0

x2nω
2nk
N +

1√
N

m−1∑
n=0

x2n+1ω
(2n+1)k
N

=
1√
N

m−1∑
n=0

x2nω
nk
m +

ωN√
N

m−1∑
n=0

x2n+1ω
nk
m

When N = 2m, a divide and conquer scheme leads to the
conceptually simple, recursive radix-2 formulation.

http://www.math.ethz.ch/education/bachelor/seminars/fs2008/nas/woerner.pdf
http://en.wikipedia.org/wiki/Cooley-Tukey_FFT_algorithm#The_radix-2_DIT_case


WARNING!

DO NOT IMPLEMENT YOURSELF!

While it seems easy, refrain from reinventing the wheel (except for
educational purposes). Even the creators of Matlab have not
attempted to implement the FFT. They chose to use the Fastest
Fourier Transform in the West (FFTW).

You may also investigate hardware vendor-provided libraries.

http://c2.com/cgi/wiki?ReinventingTheWheel
http://www.fftw.org/
http://www.fftw.org/
https://software.intel.com/en-us/articles/the-intel-math-kernel-library-and-its-fast-fourier-transform-routines


Computational Cost of FFT

Let’s count the number of multiplications for the case N = 24.

16-point DFT 162 = 256 multiplies
Two 8-point DFTs 2 ∗ (82) = 128 multiplies
Four 4-point DFTs 2 ∗ 2 ∗ (42) = 64 multiplies
Eight 2-point DFTs 2 ∗ 2 ∗ 2 ∗ (22) = 64 multiplies

The recursive formulation of the radix-2 algorithm has a
complexity of O(N log2N) multiplication operations. In fact, this
is the complexity for a general value of N.

The efficiency of the FFT can also be viewed as a special
factorization of the Vandermonde matrix.

http://www.cs.cornell.edu/~bindel/class/cs5220-s10/slides/fft.pdf
http://www.cs.cornell.edu/~bindel/class/cs5220-s10/slides/fft.pdf


Variations of the FFT

There are numerous variations of the FFT algorithm.

1. Cooley-Tukey (arbitrary length)

2. Rader (prime length)

3. Bluestein (arbitrary length)

The recursive nature of the FFT depends on the factorization of
the length

N = N1N2 . . .Nm.

FFTW is fast partly because it cleverly combines the above
algorithms based on N and the machine architecture.

http://en.wikipedia.org/wiki/Cooley-Tukey_FFT_algorithm
http://en.wikipedia.org/wiki/Rader%27s_FFT_algorithm
http://en.wikipedia.org/wiki/Bluestein's_FFT_algorithm
http://www.fftw.org/faq/section4.html
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Recording Sound

Figure: Hendrix image source.

http://en.wikipedia.org/wiki/Jimi_Hendrix#mediaviewer/File:Jimi_Hendrix_1967_uncropped.jpg


Recording Sound

A description of the previous schematic.

1. Sound is the propagation of mechnical waves through the air.

2. A microphone converts pressure variations into voltage
fluctuations.

3. An analog-to-digital converter creates a sequence of samples
from electrical signal. For CD-quality sound, 44100 samples
occur each second and each is measured with 16-bit accuracy.

4. The samples are commonly encoded in a PCM format like
WAV or AIFF.

We model a (single-channel) sound file as an element of RN where
each component has value in the range [−1, 1]. Note that N is the
product of the length of the recording and the sample rate.

http://en.wikipedia.org/wiki/Sound
http://en.wikipedia.org/wiki/Microphone
http://en.wikipedia.org/wiki/Analog-to-digital_converter
http://en.wikipedia.org/wiki/Pulse-code_modulation


Compression of Data and Sound Perception

The MP3 format is a lossy compression scheme; information is
discarded to acheive smaller file size. But how to decide what data
to through away? In the time-domain, it’s not clear how to
proceed without significantly affecting sound quality.

The key insight for the MP3 format relies on perception of sound
in the human brain. The first step is to understand that the brain
essentially performs a Fourier transform on sound. If one played a
pure sinusoidal sound through a speaker, a listener would recognize
the sound as consisting of a single frequency.

http://en.wikipedia.org/wiki/Lossy_compression


Frequency Masking

This signal exhibits two clusters of
energy, close together in frequency but
one of much greater amplitude. Due to
a phenomenon called auditory masking,
the average human would have
difficulty perceiving the frequencies
highlighted in red.

Using spectrum analysis and limitations
of human hearing, we can decide what
data in frequency space to discard!

Figure: Magnitude of
DFT of signal of length
N = 100.

http://en.wikipedia.org/wiki/Auditory_masking


The Basic MP3 Algorithm

Input: sampled sound as a vector in RN .

1. Subdivide sound file into small snippets called ’frames’.

2. For each frame:

2.1 Compute DFT vector.
2.2 Apply frequency masking to approximate spectrum.
2.3 Losslessly compress (zip) modified DFT vector.

To decode, unzip and perform an inverse DFT on each frame.
Both encoding and decoding require the FFT.

The JPEG algorithm is structurally similar, using knowledge of
human vision to decide which Fourier coefficients to discard.
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The Fourier Transform

The DFT is one of many version of a very general tool called the
Fourier transform, which is used in many branches of modern
mathematics. We considered the DFT as a linear operator on the
vector space CN , but we could also consider the vector x as a
discrete complex-valued function

x : ZN → C.

That is, x is a map from the cyclic group ZN into the complex
numbers C. Here ZN is the set {0, 1, 2, . . . ,N − 1} with modular
addition as the operation. We were able to decompose the
function x into a linear combination of special functions

uk : ZN → C (k = 0, 1, 2, . . . ,N − 1)

called characters.

http://en.wikipedia.org/wiki/Fourier_transform
http://en.wikipedia.org/wiki/Cyclic_group
http://en.wikipedia.org/wiki/Character_group


Harmonic Analysis

In general, we may begin with any locally compact abelian group
G and consider complex-valued functions

f : G → C.

The field of harmonic analysis studies the characters of G and
attempts to decompose functions like f in terms of the characters
(which also forms a locally compact abelian group).

The most familiar choices of G are

1. ZN

2. Z
3. T = [−π, π]

4. R.

http://en.wikipedia.org/wiki/Harmonic_analysis


Theory of Fourier Series

For a periodic function
f : T→ C

the Fourier transform is given by

c(n) =
1√
2π

∫ π

−π
f (x) exp(−inx) dx (n ∈ Z).

This expression defines a function c : Z→ C, so we say that T is
the dual group to Z. We can invert the transform by the formula

f (x) =
1√
2π

∞∑
n=−∞

c(n) exp(inx).

The Fourier transform on T and R is an essential tool in the theory
of partial differential equations, as discovered by Joseph Fourier in
his work on the heat equation.

http://en.wikipedia.org/wiki/Pontryagin_duality


Linear Partial Differential Equations

An evolution equation is a partial differential equation which
describes the time evolution of a physical system starting from a
given initial configuration.

Example. The solution to the initial value problem{
∂tv + ∂3xv = 0

v(x , 0) = v0(x)

with x , t ∈ R is provided by Fourier analysis

v(x , t) = [e−itξ
3
v̂0]∨(x) = V (t)v0.

That is, we take Fourier transform of initial data, multiply the
spectrum by e−itξ

3
and then take inverse transform. It can then be

proved using this formula that many properties of the solution are
inherited from the initial data.

http://www.encyclopediaofmath.org/index.php/Evolution_equation


Nonlinear Partial Differential Equations

What about the nonlinear KdV equation?{
∂tu + ∂3xu + u∂xu = 0

u(x , 0) = u0(x)

Using Duhamel’s principle for inhomogeneous differential
equations, we can represent the solution (implicitly) as a
combination of a linear and inhomogeneous term

u(x , t) = V (t)u0 +

∫ t

0
V (t − t ′)(u∂xu)(x , t ′) dt ′.

Using the linear theory and the contraction mapping principle, one
can prove existence of solutions to this integral equation. This
representation also allows one to show that many properties of the
solution are inherited from the initial data.

http://en.wikipedia.org/wiki/Korteweg-de_Vries_equation
http://en.wikipedia.org/wiki/Duhamel's_principle
http://en.wikipedia.org/wiki/Picard-Lindelof_theorem


Fourier Transform in Applied Mathematics

Signal Processing
Much of the history of the FFT is tied to the field of signal
processing, from Gauss’ work to that of Cooley and Tukey. The
later were concerned with analyzing seismographic data to detect
Soviet nuclear tests. The DFT and related Z-transform are
essential in designing digital filters. Computer scientists study the
discrete Fourier analysis of boolean functions.

Analysis
In functional analysis, the Gelfand representation is a
generalization of the Fourier transform. The Hilbert transform
provides a connection between complex and Fourier analysis. The
Kakeya problem has connections to harmonic analysis and
geometric measure theory.

http://en.wikipedia.org/wiki/Signal_processing
http://en.wikipedia.org/wiki/Signal_processing
http://www.cs.dartmouth.edu/~rockmore/cse-fft.pdf
http://www.cs.dartmouth.edu/~rockmore/cse-fft.pdf
http://en.wikipedia.org/wiki/Z-transform
http://en.wikipedia.org/wiki/Filter_design
http://theoryofcomputing.org/articles/gs001/gs001.pdf
http://en.wikipedia.org/wiki/Gelfand_representation
http://en.wikipedia.org/wiki/Hilbert_transform
http://www.math.ubc.ca/~ilaba/kakeya.html


Fourier Transform in Pure Mathematics

Algebra and Topology
The Fourier transform may be viewed as a specific case of
representation theory. The theory can be easily extended to
arbitrary finite groups and, with more work, to compact topological
groups via the Peter-Weyl Theorem.

Number Theory
Fourier analysis can be used to understand the Hardy-Littlewood
Circle Method, which has been used to attack Goldbach’s
conjecture. Shor’s algorithm is a technique for factoring integers
using the quantum Fourier tranform. The discrete Fourier
transform may also be generalized for functions taking values in
arbitrary fields. This so-called “number theoretic transform” finds
application in efficiently multiplying large integers using a version
of the FFT.

http://en.wikipedia.org/wiki/Representation_theory
http://en.wikipedia.org/wiki/Fourier_transform_on_finite_groups
http://en.wikipedia.org/wiki/Peter%E2%80%93Weyl_theorem
https://terrytao.wordpress.com/tag/circle-method/
https://terrytao.wordpress.com/tag/circle-method/
http://en.wikipedia.org/wiki/Goldbach's_conjecture
http://en.wikipedia.org/wiki/Goldbach's_conjecture
https://en.wikipedia.org/wiki/Shor%27s_algorithm
http://en.wikipedia.org/wiki/Discrete_Fourier_transform_%28general%29
http://en.wikipedia.org/wiki/Discrete_Fourier_transform_%28general%29
http://en.wikipedia.org/wiki/Schonhage-Strassen_algorithm


[1] James W. Cooley and John W. Tukey, An algorithm for the machine
calculation of complex Fourier series, Math. Comp. 19 (1965), 297–301.
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[2] Michael T. Heideman, Don H. Johnson, and C. Sidney Burrus, Gauss and
the history of the fast Fourier transform, Arch. Hist. Exact Sci. 34 (1985),
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