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Quantum matrices

k an infinite field of arbitrary characteristic, g € k* not a root of unity.

Quantized coordinate ring of 2 x 2 matrices

O4(My) = kia, b, c, d>

ab — qba bd — qdb,

ac — gca, cd — qdc,
bc — cb,

ad —da— (q—q )bc
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Quantum matrices

k an infinite field of arbitrary characteristic, g € k* not a root of unity.

Quantized coordinate ring of 2 x 2 matrices

Oq(M2) == k(a, b, c,d)

q
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ab — gba, bd — qdb,

ac — gca, cd — qdc,
bc — cb,

ad —da— (q—q )bc

Q ——T
Q

X,'J' Xy

satisfies a
X Xui

Scale up to Og(Mm,n): every “square” of variables

copy of the 2 x 2 relations.
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‘H-primes in quantum matrices

Og(Mp ) is Z™t"-graded, with Xj; in degree € + ey ;.

Understanding the graded primes, or H-primes, in Oy(Mp, ) is a key step
towards understanding the entire prime spectrum.

S. Agarwala, S. Fryer From H-primes to physics JMM 2017



‘H-primes in quantum matrices

Og(Mp ) is Z™t"-graded, with Xj; in degree € + ey ;.

Understanding the graded primes, or H-primes, in Oy(Mp, ) is a key step
towards understanding the entire prime spectrum.

Finitely many ?-primes (Cauchon, Goodearl-Letzter).

Completely prime, i.e. prime in the commutative sense
(Goodearl-Letzter).

Generated by the quantum minors they contain (Casteels).

Indexed by a certain subset of permutations in Sp,1, (Launois), and
by Cauchon diagrams (Cauchon).
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‘H-primes in quantum matrices

Og(Mp ) is Z™t"-graded, with Xj; in degree € + ey ;.

Understanding the graded primes, or H-primes, in Oy(Mp, ) is a key step
towards understanding the entire prime spectrum.

Finitely many ?-primes (Cauchon, Goodearl-Letzter).

Completely prime, i.e. prime in the commutative sense
(Goodearl-Letzter).

Generated by the quantum minors they contain (Casteels).

Indexed by a certain subset of permutations in Sp,1, (Launois), and
by Cauchon diagrams (Cauchon).

Cauchon diagrams appeared independently as Le diagrams in Postnikov's
2006 preprint on total nonnegativity in the Grassmannian.
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Totally nonnegative matrices

Definition

A totally nonnegative (TNN) real matrix is an m x n real matrix for
which every minor is nonnegative.

More generally, a point in the real Grassmannian Gr(r, d) is totally
nonnegative if it can be represented by a matrix whose Pliicker coordinates
(r x r minors) are all nonnegative.
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Totally nonnegative matrices

Definition

A totally nonnegative (TNN) real matrix is an m x n real matrix for
which every minor is nonnegative.

More generally, a point in the real Grassmannian Gr(r, d) is totally
nonnegative if it can be represented by a matrix whose Pliicker coordinates
(r x r minors) are all nonnegative.

Can partition the set of TNN matrices (or the TNN Grassmannian) into
cells by considering which minors are zero or positive.
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Total nonnegativity and H-primes

Theorem (Goodearl-Launois-Lenagan 2011)
@ The H-primes in Og(Mpm ) are in bijection with the non-empty TNN
cells of real m x n matrices
@ A list of minors defines the zeros of a non-empty TNN cell if and only
if there is a H-prime containing those minors and no others.
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Total nonnegativity and H-primes

Theorem (Goodearl-Launois-Lenagan 2011)
@ The H-primes in Og(Mpm ) are in bijection with the non-empty TNN
cells of real m x n matrices
@ A list of minors defines the zeros of a non-empty TNN cell if and only
if there is a H-prime containing those minors and no others.

For example:

If <i g) is a TNN matrix, then at least one of b and ¢ must also be

zero, i.e. there is no TNN matrix for which d is the only zero minor.
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Total nonnegativity and H-primes

Theorem (Goodearl-Launois-Lenagan 2011)

@ The H-primes in Og(Mpm ) are in bijection with the non-empty TNN
cells of real m x n matrices

@ A list of minors defines the zeros of a non-empty TNN cell if and only
if there is a H-prime containing those minors and no others.

For example:

If <i g) is a TNN matrix, then at least one of b and ¢ must also be
zero, i.e. there is no TNN matrix for which d is the only zero minor.
In Og(M.), the ideal (d) is not a prime ideal, thanks to the relation

ad —da=(q—q %)bc.
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® Og(Mpm p) is a nice noncommutative deformation of the classical
coordinate ring O(Mp, ).

o To study the prime spectrum of Og(Mp, »), we first need to
understand the H-primes, i.e. the graded primes.
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® Og(Mpm p) is a nice noncommutative deformation of the classical
coordinate ring O(Mp, ).

o To study the prime spectrum of Og(Mp, »), we first need to
understand the H-primes, i.e. the graded primes.

@ A totally nonnegative matrix is a matrix for which every minor is
nonnegative.

o Study TNN matrices in terms of which minors are zero / positive.
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® Og(Mpm p) is a nice noncommutative deformation of the classical
coordinate ring O(Mp, ).

o To study the prime spectrum of Og(Mp, »), we first need to
understand the H-primes, i.e. the graded primes.

@ A totally nonnegative matrix is a matrix for which every minor is
nonnegative.

o Study TNN matrices in terms of which minors are zero / positive.

@ Studying which minors belong to a H-prime corresponds to
identifying vanishing patterns of minors in TNN cells.
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A very informal introduction to scattering amplitudes

N = 4 supersymmetric Yang Mills (N = 4 SYM) is a simplified model of
quantum field theory currently of great interest to physicists.

Key aim: compute scattering amplitudes, i.e. what happens when particles
smash into each other.

)
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A very informal introduction to scattering amplitudes

N = 4 supersymmetric Yang Mills (N = 4 SYM) is a simplified model of
quantum field theory currently of great interest to physicists.

Key aim: compute scattering amplitudes, i.e. what happens when particles
smash into each other. J

Highly impractical to compute this directly.

Strategy: rephase in terms of diagrams (classically, Feynman diagrams)
and identify which diagrams cancel out in the final sum.
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A very informal introduction to scattering amplitudes

N = 4 supersymmetric Yang Mills (N = 4 SYM) is a simplified model of
quantum field theory currently of great interest to physicists.

Key aim: compute scattering amplitudes, i.e. what happens when particles
smash into each other. J

Highly impractical to compute this directly.

Strategy: rephase in terms of diagrams (classically, Feynman diagrams)
and identify which diagrams cancel out in the final sum.

Two modern approaches:
@ BCFW recursion / on-shell diagrams
e MHYV diagrams / Wilson loop diagrams.
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Wilson loop diagrams

A Wilson loop diagram is a convex polygon with d vertices and r
propagators (wavy internal lines) connecting pairs of edges.
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Wilson loop diagrams

A Wilson loop diagram is a convex polygon with d vertices and r
propagators (wavy internal lines) connecting pairs of edges.

Each Wilson loop diagram defines a family of r x d matrices of rank r, i.e.
a family of points in Gr(r,d).
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Admissible Wilson loop diagrams

If we impose some fairly mild conditions on the propagators:

Can't connect adjacent edges No crossing propagators No doubled propagators

then the family of matrices attached to a Wilson loop diagram all belong
to the same TNN cell.
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Admissible Wilson loop diagrams

If we impose some fairly mild conditions on the propagators:

(W

Can't connect adjacent edges No crossing propagators No doubled propagators

then the family of matrices attached to a Wilson loop diagram all belong
to the same TNN cell.

This looks more familiar if we dualise the boundary of the diagram:

O O O

No boundary edges No crossing edges No doubled edges
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When do two different Wilson loop diagrams define the same TNN cell? I
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When do two different Wilson loop diagrams define the same TNN cell? \

Theorem (Agarwala-Fryer)

Two Wilson loop diagrams define the same TNN cell if and only if they
are flip-equivalent.

flip move
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Can we read off the TNN cell directly from the Wilson loop diagram?
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Can we read off the TNN cell directly from the Wilson loop diagram? l

Theorem (Agarwala-Fryer)

There is an algorithm for reading the Grassmann necklace of the cell
directly from the Wilson loop diagram.
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@ Compute some small examples, e.g. Gr(2,6) or Gr(3,7).
@ Classify which TNN cells are not hit by Wilson loop diagrams.

© Use ideas from H-primes to study boundaries (lower-dimensional
cells) of Wilson loop diagrams.
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