
On Almost Global Existence for 
Nonrelativistic Wave Equations in 3D 

SERGIU KLAINERMAN 
Princeton University 

AND 

THOMAS C. SIDERIS 
University of California, Santa Barbara 

Fritz John, in memoriam. 

Abstract 

Almost global solutions are constructed to three-dimensional, quadratically nonlinear wave equa- 
tions. The proof relies on generalized energy estimates and a new decay estimate. The method applies 
to equations that are only classically invariant, such as the nonlinear system of hyperelasticity. @ 1996 
John Wiley & Son\. Inc 

0. Introduction 

This article establishes the almost global existence of solutions for three- 
dimensional, quadratically nonlinear wave equations, with the use of only the 
classical invariance of the equations under translations, rotations, and changes of 
scale. Previous proofs utilized, in addition, either Lorentz invariance [6] or direct 
estimation of the fundamental solution of the linear wave equation [5] .  The ap- 
proach used here has the advantage of applying to classical equations, such as 
the system of homogeneous, isotropic hyperelasticity. We also give a simplified 
proof of John's almost global existence result for this system [4], which bypasses 
estimation of the fundamental solution of the linear operator. The development 
for the scalar and vector cases will be presented in parallel. 

In gross generality, the plan is as follows. Consider a linear hyperbolic partial 
differential operator of the form Pu = a,"u - Au, for certain second-order linear 
elliptic operators A. The crux of the matter is contained in Lemma 2.3, where it 
is shown that, simply by manipulating differential operators, I Au I and I Vatu I can 
be controlled pointwise by a decaying factor times derivatives of u with respect 
to the generators of the invariants plus a term involving Pu. From this follows 
a weighted estimate for second derivatives of u in L2,  by a simple Girding-type 
inequality in Lemma 3.1. The idea of using elliptic methods in a similar manner 
appeared in the work of Christodoulou and Klainerman on the Einstein equations 
[l]. Specially adapted Sobolev-type inequalities (see Lemma 4.2) then lead to a 
decay estimate for the sup norm of the second derivatives of u in terms of an energy 
norm plus derivatives of Pu in L2, given in Theorem 5.1. As a consequence of 
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the decay estimate we can prove almost global existence in both the scalar case, 
Theorem 6.1, and the vector case, Theorem 6.2, provided that the nonlinearities 
can be written in spatial divergence form. This is not much of a restriction in the 
scalar case, and it is the physically natural form for the equations in the case of 
elasticity. 

1. Notation and Preliminaries 

Partial derivatives will be denoted by 80 = 8, = 8 / d t  and di = 8/82, i = 
1,2,3, with V = (81,82, 83). The angular-momentum operators are given by 

(1.1) = (01,R2,R3) = X A v; 
A is the vector cross product. The scaling operator is defined by 

(1.2) 

Note too that 

X S = t 8, + r a,, where r = 1x1, and a, = - . V  
r 

X X v = -8, - - A a. 
r r2 

The eight vector fields will be written as 

The d'Alembertian is 

= (To,. . . , r7) = (a, 0, S). We will 
write r" = ra, . .Tak,  for any ordered product of order IaJ = k. 

0 = 8; - A. 
We will also consider the operator from homogeneous isotropic (infinitesimal) 
hyperelasticity, which acts on vector functions v ( t , x )  = (v ' ,  v2,  v3 )  by 

LV 8, 2 2  v - C ~ A V  - (c: - c;)V(V * v),  

with speeds 0 < c2 < CI; see 141. 

duces the generators of simultaneous rotations, 

(1.4) 

where 

(1.5) U I = ~  0 -1  0 A], U 2 = k  

Then L commutes with 6 Moreover, [S,L]  = -2L. 
For technical reasons, we need to use the operators ID1 and ID(-', whose 

symbols are and ItI-', respectively. Using the Fourier transform, it is easy to 
verify that ID1 and 1DI-I commute with 8, R, and 6. We also have that [S, IDJ] = 
(DI and [S, IDl-l] = -1DI-I. 

The operators d and R commute with 0, and [S, 01 = -20. For L, one intro- 

6 = R I  + u, 

0 0 0  0 0 -1  0 1 0  E ] ,  U3=[-1  0 0 0  0 0 1 .  
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We will be using the standard energy norm 

El(u(r)) = L3 [ Id,U(t,x)l* + IVu(t,x)12] dx = lldu(t)l12, 

with 1 1  . 1 1  the L2 norm on R3, as well as the so-called generalized energy norms 

Ek(u(t)) = C E l ( r w ) ) ,  k = 2 ,3 , .  . . . 
lalzk-l 

It is also convenient to introduce the nonlocal energy, 

and its higher-order versions, 

The Sobolev norms will be 

and the sup norm will be written as 

The solutions to be constructed will have Ek(u(t))  and i f - I ( U ( t ) )  finite on some 
interval [O,T) for some k 2 7. To describe the solution space, we introduce the 
time-independent analogue of the vector fields. Set 

A = ( A ' , .  . . , 1 2 7 )  = (V,R, dr). 

The A's have the same commutation relations as the r. By Hi we will mean the set 
of functions u on R' such that c/alck llAauII < co. (Note that IDIH: C Hi-'.) 
In the scalar case, solutions will lie in the space 

In the case of the elasticity system, it is more convenient to replace R by fi, 
because of the commutation properties of L. We note that for vector functions, all 
norms with fi in place of R are equivalent. Therefore, we make the obvious modi- 
fications in all of the preceding definitions, basing them instead on 6 Accordingly, 
we will write x, T, and f k ( T ) .  
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2. Identities for Differential Operators 

The first result separates the dominant terms of the elliptic part of the operator. 

(2.3) 

The following immediate corollary of Lemma 2.1 plays a crucial role in the 
analysis of the operator L. 

Proof of Lemma 2.1: If we expand the Laplacian into its radial and angular 
Darts. 

2 1 a = a; + -a, + -a .  R, 
r r2 

we see that inequality (2.1) follows from the fact that by (1.2) and (1 .l), 
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If we notice (2.7), we see that (2.2) holds. 
The estimate (2.3) can be seen immediately by writing 

X 1 
- A v(v .  V ( X ) )  = -n(v . V ( X ) ) ,  r r 

and noting that the commutator of s2 and V involves only V 

Using this, we now derive weighted pointwise bounds for certain combinations 
of second derivatives. 

LEMMA 2.3. Let u E C2(W X R3) and v E C’(Rt X R3)?’. Set 

Then 

Proof This lemma is based on the simple observation that 

(2.15) 8 , s ~  - i)ru = tafu + ra,d,u, 
(2.16) ~ , S U  - 8 , ~  = r@u + tararu. 

Hence, 

(2.17) t(d,Su - a$) - r(d,Su - a,u) = t”?u - r2a:u. 
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In order to get (2.9), add and subtract the term (t2 - r2)Au : 

t2#u - r2$u = t20u  + (t2 - r2)Au + r2(Au - @u). 

Thus, upon rearrangement we have 

[(t2&u - r2d;u) - r2(Au - dfu) - t 2 0 u ]  . 1 
( t  - r)Au = - 

t + r  
Inequality (2.9) now follows from (2.17) and (2.1). 

If we go back to (2.17), we can also group the terms as follows: 

t 2 d h  - r2@u = (t2 - r2)d:u + r 2 0 u  + r2(Au - dfu). 

If we use (2.17) and (2.1), we obtain (2.10). 
To check (2.11), we subtract (2.15) from (2.16) to get 

(t - r)d,d,u = -d,Su + d,u + d,Su - d,u - tOu + ( t  - r)Au + r(Au - $u). 

Thus we refer to (2.1) and (2.9) to obtain 

It - rlld,d,ul 5 ~ [ l d t ~ u l  + ldtul + l d , s~ l  + ldrul 
+ t lnu l  + It - rl lAul + rlAu - d fu l ]  

r 1 
(2.18) 

This leaves only the angular component of the gradient to be estimated. Once 
again, we exploit an algebraic relationship: 

X X X ( t  - r )  - A Rd,u = - A R(Su - rd,.u) - - A Rd,u r2 r2 r 

from which it follows that 

(2.19) It - rl I -p A ~ a , u l  5 c [ ~ V s u l +  ~ v ~ u l +  ~ d , ~ u l l ,  

with the use of (2.7). If we combine (2.18) and (2.19) and recall (1.3), we have 
proven (2.1 1). 

Of course, (2.17) holds for vectors v as well. By analogy with the above, write 

(c?t2 - r2)  r2 

X 

(2.20) t2&v - r2dfv = t2Lv + 7 . ~ v  + 7 [ ~ v  - c : d ~ v ]  , i = 1,2. 
ci Ci 

Take the dot product of (2.20) with x / r ,  set i = 1, and use (2.17) and (2.5) to 
get 
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We cross (2.20) with x / r ,  set i = 2, and appeal to (2.17) and (2.6), to obtain 

Now because dr, r )  S min(a(clt, r),a(c2t, r ) ) ,  and because IWvI2 = lx/r.wv1* + 
Ix/r A wvl2, the estimate (2.12) is seen to be a consequence of (2.21) and (2.22). 
The estimates (2.21) and (2.22) capture the two speeds of the operator L. 

In order to derive (2.13), we write 

( C y  - r2) 2 r2 r2 
t2a:v - r2a:v = * a,v + TLV + 1 [wv - c?afv], i = 1,2. 

ci ci ci 

We get the estimate (2.13) by an argument similar to the one above. 

i = 1,2, 
We turn to the proof of (2.14), and use (2.15) and (2.16) again to write, for 

(tit - r)d,d,v = - ( ~ , s v  - a,v) + c ; ( ~ , s v  - a,v) + ta,’v - cir@v 
= -(d,Sv - a,v) + c i ( d , ~ v  - a,v) + tLv + tWv - ci&v 
= - ( ~ , S V  - a,v) + q(d,Sv - a,v) + tLv 

By (2.5) and (2.6), we have 

Hence, if we proceed exactly as before, 

.r(t,r)la,d,vl 5 c C Iarav(t,x)I + t l ~ v ( t , x ) l  . [ IUlCl 1 
The angular portion of the gradient is handled as in the scalar case. The proof is 
now complete. 

3. Weighted L2 Estimates 

The previous pointwise bounds can be translated into L’ estimates, essentially 
with the use of the argument of GHding’s inequality. 



Proof If we square equations (2.9) and (2.11) of Lemma 2.3 and integrate 
over space (and suppress the fixed time variable), we see that the quantities 
IlaAu112 and l(oVdfu1)2 have the desired bound. However, integration by parts 
twice gains control of all of the second-order spatial derivatives: 

(3.3) 

The derivatives of D are uniformly bounded, and so a combination of the Cauchy- 
Schwarz inequality and Young's inequality shows that the last two integrals are 
each bounded by 

The second derivatives are absorbed on the left-hand side of (3.3), and the first 
derivatives are bounded by the energy. This proves (3.1). 

With the use of the notation (2.4), we will show that 

(3.4) 

We expand the inner product and we find that 

Il~Avll 5 C [ ~ITWVI)~ + llVv1I2] . 

(3.5) 

The middle term can be integrated by parts to give 

J r2av. V(V . v)dx = J r2 lV(V * v)I2dx - 

+ (V72 . V(V . V)(V . v)dx J 
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This proves (3.4), and thus by (2.12), we obtain from (3.5) the correct bound for 
l(~AvlI*.  The rest is as in (3.3). 

4. Sobolev Inequalities 

The following inequalities are a mild generalization, in the flat Minkowski 
space-time, of some similar results proved in [ 11. They are designed to exploit the 
degenerate weight factors o, T that arose in Lemma 3.1. 

LEMMA 4.1. Let o ( r )  2 1 be a smooth radial function whose derivatives are 
uniformly bounded. Then for all sujiciently regularfunctions 4 on R3 and any 
A 2 0. 

(Here S2 = {w E R3 : IwJ = l} is the unit sphere, and dw is sugace measure 
on S2.) 

Proof We have the following straightforward calculation: 

because o 2 1. 
Next, by the isoperimetric-Sobolev inequality (see [ 11, p. 32), we have 
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We use this to obtain 

An integration with respect to p yields 

The result now follows from (4.1) and (4.3). 

Proof Again with the use of a standard Sobolev inequality on S2, we have 

/ \ 1/4 

Multiply this by ro(A+1)/2(r) and apply Lemma 4.1. 

Actually, this result will only be used with X = 1. 

5. Main Estimate 

We now proceed to derive the L” - L2 estimates. 
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Proof In order to simplify equations, we will adopt the convention of sup- 
pressing the space variable when taking the L2 norm. Thus, for example, we will 
write Ilo(r)u(t)ll for IIo(t, .)u(t, .)II. By the classical Sobolev inequality, the bound- 
edness of the derivatives of o, and (3.1), we have the estimates 

(5.3) 5 c [E4(U(t))’ /2  + tllou(t)l12]. 

On the other hand, because the derivatives of o(t, r )  are bounded independently 
of t ,  we may apply Lemma 4.2 with C$ = Vdu and A = 1. Thus, 

ro(t, r)lvau(t,x)I 5 c C ~ l a ( t ) @ ~ a u ( t ) l l  
18152 

1 + c Ilo(t)a,n~vau(t)ll 

[ 
181‘1 

5 - c c Ilo(t)rbau(t)i i  

5 - c C Ilo(t)vdrPu(t)ll. 
18152 

181‘2 

We apply (3.1) to each derivative Ypu, and continue the estimate to obtain 

(5.4) 5 c [E4(U( t ) ) ”2  + tllou(t)l12] . 

Combining (5.3) and (5.4) completes the proof of (5.1). 
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The second case is analogous. In fact, using (3.2), estimate (5.3) carries over 
directly with u, CT, and replaced by v, r ,  and L, respectively. For the other 
estimate, we must temporarily introduce the simultaneous rotations 6 (see (1.4) 
and (1.5)) in order to have the proper commutation with the operator L. Using 
Lemma 4.2 and the equivalence of the r and T norms, the estimate proceeds as 

Now we use (3.2) to finish with 

5 

5 

r 70, r )  I Vdv(t, x) I 

(5.5) d 

Thus, (5.2) follows from the v analogue of (5.3) and (5.5). 

Proof Apply Theorem 5.1 to Tau and P v .  
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Proof A brief appearance will be made by the Riesz transformations R,, the 
operators of order zero with symbols <'/I<I. Note that I = R,R, = 8,RlID/- ' ,  and 
that the R, commute with d and S whereas the commutator of an R with an 0 
is either zero or another R. These statements can be verified with the use of the 
Fourier transform. 

So we apply Theorem 5.1 to R,ID(-'u and obtain 

( 1  + r)dt ,r) l3u(t ,x) l  = (1 + r)a(t,r)Ia~,R,IDI-'u(t,x)I 
S C [B(R,IDI- 'u(t)) ' / '  + t l l U R , ( D l ~ ' u ( t ) l l ~ ]  

5 c [E4(ID"'u(t))"2 + tllIDI-'Ou(t)ll*] 

5 c [&(u(r))"2 + tll lDl-'ou(r)l12] . 

The estimate (5.8) follows if this result is applied to P u .  The proof of (5.9) is 
obviously identical. 

6. Almost Global Existence 

We now give the almost global existence results. 
The nonlinearities considered here are slightly more restrictive than in [4]-[6]. 

Here, the initial data are not required to have compact support, and are assumed to 
have fewer derivatives than in the previous work. However, we must take a,u(O) E 

IDIH: instead of the more natural H i - '  because of the use of the nonlocal energy 
8A-I. 

THEOREM 6.1. Let Ctp be constants for a ,  = 0,. . . , 3  and i = 1,2,3.  Let 
ug E HZ and uI E IDIH: for k 2 7. Then there exist positive constants A > 0 
and E ( )  > 0 such that for all 0 < E < EO the Cauchy problem, 

has a unique solution u E Xk(T,) with a life span T ,  > exp(A/E) sarisfjing the 
estimate 

E k ( U ( t ) ) 1 ' 2  + 8k-l(u(t))"2 S AE.  

Proof: We give a sketch of the proof, outlining the key a priori estimates 
leading to a bound for the energy Ek(u(t)) + gk-l(u(t)), for some fixed k 2 7. 

The first step is to derive an energy estimate for Ek(u(t)), which can be done in 
the usual manner. For any I L Y  I S k - I ,  apply the operator ra to the equation and 
multiply by 3 , P u .  If we choose EO small enough, ldul will be sufficiently small, 
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independently of E .  The top-order nonlinear terms can then be absorbed on the 
left-hand side after pulling out one time derivative. We write the nonlinearity as 
a sum of terms of the form duVdu to obtain 

(6.1) 

with ko = [(k - 2)/2] + 1. 

d Ek(u(0)) exp [ C L '  ldu(s)li,,Ex(u(r))ds] , 

Second, we apply the decay estimate, Corollary 5.3, 

Because n u  is a spatial divergence, we obtain 

II 1Dl-I nu(t)llk,,+2 CIIdU(t)du(t)llk,,+2 

I clau(t)lk,Ek,l+3(u(t))1/2, 

where kl = [ (ko  + 2)/2]. Now kl 5 ko, and because k L 7, we have ko + 3  5 k -  1. 
Thus for solutions with small enough Ek(u(t)), that is, for EO small enough, we 
have derived 

(6.2) (1 + t ) l d U ( t ) l k , ,  5 C&-I(u(t))l/*. 

Finally, to close the chain of inequalities, we must estimate gk-l(u(t)). So for 
IaI 5 k - 1, apply lDl-'ra to the equation and multiply by dtlDl- lrau(t)  to get 

d 
-8k- I (u(t ) )  d t  

5 CII ID1 - I  nu(t)lln- 1 8 k -  I (u(t))1/2 

(6.3) 

The inequalities (6.1H6.3) combine to show that Ek(u(t)) + gk- I(&)) remains 
of order c2 for a time of order exp(A/&). This completes the outline of the proof. 

The case of general quadratic nonlinearities with the same linearized behavior 
at the origin can be handled. The addition of higher-order terms creates no problem 
because in the energy inequality (6. l), the cubic term leads to the square of the sup 
norm, which is integrable in time in three dimensions. We remark that the only 
quadratic nonlinearities that are not permitted in Theorem 6.1 are those containing 
the combinations diudjd,u and du&u, because they cannot be written as the spatial 
divergence of some expression. (Of course, the term dud?u can always be absorbed 
on the left-hand side, at the expense of adding higher-order terms.) 
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We now turn to the equations of homogeneous isotropic hyperelasticity. See 
Gurtin [3] for a concise discussion of this system. Actually, the equations consid- 
ered here are correct only to second order, but again, the higher-order corrections 
present no analytical difficulties. We mention that Ebin [2] has constructed a global 
solution for incompressible, neo-Hookean materials. 

i j k  THEOREM 6.2. Let Ctmn; i ,  j ,  k ,  e, m, n = 1,2,3, be constants with the symmetry 
properties 

ijk i k j  
Ctmn + Ctnm 

+ 

Ynm + c$n 

Let vo E ffi and V I  E IDIffi for k h 7.  Then there exist positive constants A > 0 
and EO > 0 such that for all 0 < E < EO the Cauchy problem, 

4 0 )  = EVO,  a,v(o) = E V I ,  

has a unique solution u 6 Xk(T,) with life span T ,  > exp(A/E), satisfying the 
estimate 

Ek(v(t))I'* + 8 k - I ( V ( t ) ) 1 ' 2  5 A&. 

Proof The proof is essentially the same as above. The symmetry condition 
guarantees that the energy estimate (6.1) is true. 
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