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1. Introduction

The equations of motion for the displacement of an isotropic, homogeneous, hyper-
elastic material form a quasilinear hyperbolic system,

Lu = ∂2
t u− c2

2∆u− (c2
1 − c2

2)∇(∇ · u) = F (∇u)∇2u,

in three space dimensions, with wave speeds 0 < c2 < c1 and a nonlinearity, the precise
form of which will be spelled out in later sections. We shall prove that for certain
classes of materials, small initial disturbances give rise to global smooth solutions.
These special materials are distinguished by a null condition imposed on the quadratic
portion of the nonlinearity.

It is known from the work of John [6], that the equations possess almost global
solutions for small initial values. Moreover, John [4] has identified a genuine nonlin-
earity condition which, at least in the spherically symmetry case, leads to formation
of singularities even for small data, see also [3]. The null condition, presented below,
is the complementary case to genuine nonlinearity.

Thus, the situation is entirely analogous to the case of scalar nonlinear wave equa-
tions. Small solutions exist almost globally [7], [8]. Examples suggest that small
solutions break down in finite time [4], [11], unless the quadratic terms in the non-
linearity satisfy a null condition, in which case they exist globally [1], [9]. In the
present case, however, such results are not immediate generalizations of the scalar
case. The original proofs of the existence results for the wave equation depended
upon the Lorentz invariance of the equations, a property not shared by the equations
of elasticity. Nevertheless, using various extensions of the ideas in [10], we obtain
global existence with the null condition without the benefit of Lorentz invariance.

There are two new observations which lead to the global existence result. First,
within the class of physically meaningful nonlinearities arising from the hyperelasticity
assumption, there exists a null condition. The null condition leads to enhanced decay
(i.e. (1 + t)−2 instead of (1 + t)−1) of the nonlinear terms along the light cones.
Secondly, it is shown how to combine the weighted L∞ − L2 and L2 − L2 estimates
obtained in [10] in order to obtain enhanced decay inside the light cones.

1Research partially supported by the National Science Foundation, DMS-9500284
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A precise statement of the existence theorem is given in section 5, after introducing
a bit of (mostly) standard notation in section 2, formulating the equations of motion
in section 3, and exploring the nonlinearity in section 4. In order to avoid too much
technicality, we consider a truncated version of the equations, since only the quadrat-
ically nonlinear terms matter in the construction of small solutions. The rest of the
paper is devoted to the proof of the result, based on energy and decay estimates.

2. Notation

We begin with a brief description of the notation to be used, most of which is
standard, leading to a definition of the function space in which solutions are to be
constructed.

Partial derivatives will be written as

∂0 = ∂t =
∂

∂t
and ∂i =

∂

∂xi
, i = 1, 2, 3.

We will also abbreviate

∂ = (∂0, ∂1, ∂2, ∂3), and ∇ = (∂1, ∂2, ∂3).

The angular momentum operators are the vector fields

Ω = (Ω1,Ω2,Ω3) = x ∧∇,
∧ being the usual vector cross product. Then the spatial partial derivatives can be
conveniently decomposed into radial and angular components

(2.1) ∇ =
x

r
∂r −

x

r2
∧ Ω, where r = |x|, and ∂r =

x

r
· ∇.

In the present context of isotropic elasticity, solutions are invariant under the simul-
taneous rotation of dependent and independent variables, whose generators are given
by the vector fields

Ω̃ = ΩI + U

with

U1 =

 0 0 0
0 0 1
0 −1 0

 , U2 =

 0 0 −1
0 0 0
1 0 0

 , U3 =

 0 1 0
−1 0 0

0 0 0

 .
The scaling operator is

S = t ∂t + r ∂r,

however, due to the scaling law of the forthcoming equations, it is more precise and
more convenient to use

S̃ = S − 1.

The eight vector fields will be written as Γ = (Γ0, . . . ,Γ7) = (∂, Ω̃, S̃). The com-
mutator of any two Γ’s is either 0 or another Γ. By Γa, |a| = κ, will be meant
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an ordered product of κ vector fields Γa1 · · ·Γaκ . (Note that we are not using the
standard multi-index notation because of the noncommutativity of the Γ’s.)

We will also have occasion to use the operators |D| =
√
−∆ and |D|−1 which are

most easily defined by their symbols: |ξ| and |ξ|−1, respectively.
In order to describe the solution space we also introduce the time independent

analog of Γ. Set

Λ = (Λ1, . . . ,Λ7) = (∇, Ω̃, r∂r − 1).

Then the Λ’s have the same commutation properties as the Γ’s. Moreover, |D| and
|D|−1 commute with Λ1, . . . ,Λ6, while

(2.2) [Λ7, |D|] = |D| and [Λ7, |D|−1] = −|D|−1,

as can be checked using the Fourier transform. Define

Hκ
Λ = {f ∈ L2(R3)3 : Λaf ∈ L2(R3)3, |a| ≤ κ},

with the norm
‖f‖2

Hκ
Λ

=
∑
|a|≤κ

‖Λaf‖2
L2(R3).

By the commutation relation (2.2), it follows that

|D| : Hκ
Λ → Hκ−1

Λ .

The natural energy norm associated to the linear operator is

E1(u(t)) = 1
2

∫
R3

[
|∂tu(t, x)|2 + c2

2|∇u(t, x)|2 + (c2
1 − c2

2)(∇ · u)2
]
dx,

and higher order norms are defined through

Eκ(u(t)) =
∑
|a|≤κ−1

E1(Γau(t)).

In order to control the remaining derivatives up to order κ, we also introduce a
nonlocal version of the energy

E0(u(t)) = E1(|D|−1u(t)), and Eκ(u(t)) =
∑
|a|≤κ

E0(Γau(t)).

Thus, we have
Eκ(u(t)), and Eκ−1(∇u(t)) ≤ CEκ(u(t)),

as well as∑
|a|≤κ

‖Γau(t)‖2
L2 ≤ CEκ(u(t)) and

∑
|a|≤κ−1

‖∂Γau(t)‖2
L2 ≤ CEκ(u(t)).

The solution will be constructed in the space

Xκ(T ) =

{
u(t, x) : u ∈

κ⋂
j=0

Cj([0, T );Hκ−j
Λ ), ∂tu ∈

κ⋂
j=0

Cj([0, T ); |D|Hκ−j
Λ )

}
.
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For u ∈ Xκ(T ), the norms Eκ(u(t)) and Eκ(u(t)) are finite, 0 ≤ t < T .

3. The equations of motion

We now present an explicit description of the equations of motion for the displace-
ment of an isotropic, homogeneous, hyperelastic material filling space, see [2]. The
unknown of the problem is ϕ(t, x), a smooth deformation of the material evolving
with time. The deformation gradient is then F = ∇ϕ, the matrix with components
Fi` = ∂`ϕ

i. For the types of materials under consideration, the potential energy den-
sity is characterized by a stored energy function, σ, which depends on F through the
list of principal invariants ı1, ı2, ı3 of the (left) Cauchy-Green strain matrix B = FF T .
A basic requirement for the deformation is that B > 0.

The equations of motion are derived by applying Hamilton’s principle to∫ ∫ [
1
2
|∂tϕ|2 − σ(ı1, ı2, ı3)

]
dxdt.

So the PDE’s can be formulated as the nonlinear system

(3.1)
∂2ϕi

∂t2
− ∂

∂x`
∂σ

∂Fi`
= 0.

Here, and in the following, we adopt the summation convention. Appropriate condi-
tions will be imposed on σ in order that (3.1) be hyperbolic.

We will consider only small displacements, u(t, x) = ϕ(t, x)− x, from the reference
configuration. In three space dimensions, the global existence of small amplitude
solutions to nonlinear hyperbolic systems hinges on the specific form of the quadratic
portion of the nonlinearity in relation to the linear part. Such compatibility conditions
are often referred to as null conditions. From the analytical point of view, therefore,
it is enough to truncate (3.1) at third order in u, the higher order corrections having
no influence on the existence of small solutions.

To this end, it is convenient to compute in terms of u, G = F −I, and C = B−I =

G + GT + GGT instead of ϕ, F , and B. We will expand the stress matrix
∂σ

∂Fi`
to

second order in G. Let 1, 2, 3 be the invariants of C. Since C = B − I, the k are
linear expressions in the ık, as can be checked by comparing the eigenvalues of B and
C. This means that we may just as well regard σ as a function of the k. Variations
in F and G are the same, so we can write

(3.2)
∂σ

∂F
=
∂σ

∂G
=
∂σ

∂k

∂k
∂G

.

We make use of the following general formulas for the invariants of a 3× 3 matrix:

1 = tr C

2 = 1
2
[(tr C)2 − tr C2]

3 = 1
6
[(tr C)3 − 3(tr C)(tr C2) + 2tr C3].
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Putting C = G + GT + GGT , we obtain, after discarding terms of fourth order and
higher,

1 = 2tr G+ tr GGT

2 = 2(tr G)2 − tr G2 − tr GGT

+2(tr G)(tr GGT )− tr G2GT − 1
2
tr GGTG− 1

2
tr GGTGT + . . .(3.3)

3 = 4
3
(tr G3)− 2(tr G)tr (G2 +GGT )

+2
3
tr (G3 +G2GT +GGTG+GGTGT ) + . . . ,

with . . . denoting higher order terms. From (3.3) it is apparent that k = O(Gk).
Therefore, the relevant terms in the Taylor expansion of σ about k = 0 are

(3.4) σ = σ0 + σ11 + 1
2
σ11

2
1 + σ22 + 1

6
σ111

3
1 + σ1212 + σ33 + . . . ,

the constants σ0, σ1, etc., standing for the partial derivatives of σ at k = 0. From

(3.4), the significant terms for the derivatives
∂σ

∂k
are

∂σ

∂1
= σ1 + σ111 + 1

2
σ111

2
1 + σ122 + . . .

∂σ

∂2
= σ2 + σ121 + . . .(3.5)

∂σ

∂3
= σ3 + . . . .

The derivatives
∂k
∂G

can be found from (3.3), after a bit of calculation,

∂1
∂G

= 2(I +G)

∂2
∂G

= 2
[
2(tr G)I −G−GT + (tr GGT )I + 2(tr G)G(3.6)

− (GGT +GTG+G2)
]

+ . . .

∂3
∂G

= 2
[
2(tr G)2 − 2(tr G)(G+GT )

− (tr G2 + tr GGT )I + (G+GT )2
]

+ . . . .
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Into (3.2), we insert the expressions (3.5) and (3.6), keeping only terms of order
one and two

∂σ

∂G
= 2

{
σ1(I +G) + σ11(2tr G)I + σ2[2(tr G)I −G−GT ]

}
+2
{
σ11[2(tr G)G+ (tr GGT )I] + σ111[2(tr G)2I]

+σ12[6(tr G)2I − (2(tr G)G+ (tr GGT )I)− (2(tr G)GT + (tr G2)I)]

+σ2[(2(tr G)G+ (tr GGT )I)− (G2 +GGT +GTG)](3.7)

+σ3[2(tr G)2I − (2(tr G)G+ (tr GGT )I)− (2(tr G)GT + (tr G2)I)

+ (G2 +GGT +GTG) +GTGT ]
}

+ . . .

Examine first the linear terms, which are grouped in the first line of (3.7):

2σ1(I +G) + 4(σ11 + σ2)(tr G)I − 2σ2(G+GT ).

We impose the condition σ1 = 0, which implies that the reference configuration is a
stress-free state. The Lamé constants λ = 4(σ11 + σ2) and µ = −2σ2 are assumed
to be positive. (The density in the reference configuration has been taken to be 1.)
This renders the linear part of the equation hyperbolic. Set λ+ 2µ = c2

1 and µ = c2
2.

Extraction of the linear terms in (3.1) yields the linear operator

(3.8) Lu = ∂2
t u− c2

2∆u− (c2
1 − c2

2)∇(∇ · u).

The constants c1 and c2 correspond to the speeds of spherical and rotational waves,
respectively. We have also

(3.9) σ2 = −c2
2/2 and σ11 = c2

1/4.

The remaining quadratic terms in (3.7) contribute to the nonlinearity. The ith

component of the nonlinear term of (3.1) takes the general form N(u, u)i with

(3.10) N(u, v)i = Dijk
`mn∂`(∂mu

j∂nv
k),

for certain constants Dijk
`mn, to be specified in the next section. (Superscripts will

be reserved for vector coordinates and subscripts for derivatives.) The result of our
calculation is that the truncated equations of motion (3.1) are, succinctly,

(3.11) Lu = N(u, u),

with L defined in (3.8) and N(u, u) described in (3.10).

4. The nonlinearity

It is necessary to further analyze the coefficients Dijk
`mn of the nonlinearity. To begin,

we will consider the nine different types of quadratic terms that occur in (3.7), each

of which having the form pC
ijk
`mnGjmGkn. The following table identifies the coefficients

pC
ijk
`mn, p = 1, 2, . . . , 9
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p pC
ijk
`mnGjmGkn pC

ijk
`mn

1 (tr G)2I δi`δ
j
mδ

k
n

2 (tr G)G 1
2
(δijδknδ`m + δikδjmδ`n)

3 (tr GGT )I δi`δ
jkδmn

4 (tr G)GT 1
2
(δimδ

j
`δ
k
n + δinδ

j
mδ

k
` )

5 (tr G2)I δi`δ
j
nδ

k
m

6 G2 1
2
(δijδkmδ`n + δikδjnδ`m)

7 GGT 1
2
(δijδk` δmn + δikδj`δmn)

8 GTG 1
2
(δimδ

jkδ`n + δinδ
jkδ`m)

9 GTGT 1
2
(δimδ

j
nδ

k
` + δinδ

j
`δ
k
m)

As is natural given the form of (3.10), the pC
ijk
`mn have been chosen so that pC

ijk
`mn =

pC
ikj
`nm. From (3.7), we have

−Dijk
`mn = 4(σ111 + 3σ12 + σ3)[1C

ijk
`mn]

+2(σ11 − σ12 + σ2 − σ3)[2(2C
ijk
`mn) + 3C

ijk
`mn]

−2(σ12 + σ3)[2(4C
ijk
`mn) + 5C

ijk
`mn](4.1)

−2(σ2 − σ3)[6C
ijk
`mn + 7C

ijk
`mn + 8C

ijk
`mn]

−σ3[9C
ijk
`mn]

So Dijk
`mn inherits the symmetry

(4.2) Dijk
`mn = Dikj

`nm,

from the pC
ijk
`mn, and from (3.10) it follows that

(4.3) N(u, v) = N(v, u).

The coefficients satisfy two additional useful symmetries. The first is related to
the variational origin of the problem and is crucial in the derivation of the energy
estimates. Set

(4.4) Eijk
`mn = 1

2
(Dijk

`mn +Dijk
m`n) and F ijk

`mn = 1
2
(Dijk

`mn +Dijk
nm`).



8

Then by (4.4) and (4.2),

(4.5) Eijk
`mn = Eijk

m`n and F ijk
`mn = F ijk

nm`,

and the nonlinearity (3.10) can be expanded

N(u, v) = Dijk
`mn(∂`∂mu

j∂nv
k + ∂mu

j∂`∂nv
k)(4.6)

= Eijk
`mn∂`∂mu

j∂nv
k + F ijk

`mn∂mu
j∂`∂nv

k.

The energy symmetry is expressed through

(4.7) Eijk
`mn = Ejik

`mn = Ejik
m`n and F ijk

`mn = F kji
`mn = F kji

nm`.

These properties follow from (4.1) and the explicit formulas given in the table. How-

ever, the symmetry does not hold for the pC
ijk
`mn separately. Rather, it is necessary to

group the terms into the five units in which they appear in (4.1).
The second symmetry property is a consequence of isotropy, the invariance of the

displacement under the transformation u(t, x)→ ρ−1u(t, ρx) for any orthogonal ma-
trix ρ. Let εαβγ be the usual tensor with value +1 when αβγ is an even permutation
of 123, with value −1 when αβγ is an odd permutation of 123, and with value 0
otherwise. Then we have

(4.8) Dβjk
`mnεαβi +Diβk

`mnεαβj +Dijβ
`mnεαβk +Dijk

βmnεαβ` +Dijk
`βnεαβm +Dijk

`mβεαβn = 0.

This may also be verified from the formulas above, although it is the infinitesimal
version of the isotropy assumption. This property will be used in a later section to
derive simple expressions for angular derivatives of N(u, v).

In order to obtain global solutions, the null condition must be imposed. Using the
decomposition (2.1), it follows for any functions u, v ∈ H2

Λ, that the leading term of

∂`(∂mu
j∂nv

k) is
x`xmxn

r3
∂r(∂ru

j∂rv
k). The null condition is designed to cancel these

leading terms. Therefore, we would like to have

(4.9) Dijk
`mnx

`xmxn = 0,

for all x ∈ R3, and all i, j, k = 1, 2, 3. This can be arranged, within the class of
physically meaningful nonlinearities, by balancing the leading terms of the individual
expressions pC

ijk
`mn∂`(∂mu

j∂nv
k). These leading terms fall into three different groups:

(4.10) pC
ijk
`mnx

`xmxn =

 xixjxk p = 1, 4, 5, 9
1
2
(δij + δik)xixjxk p = 2, 6, 7
δjkxixjxk p = 3, 8.
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Rearranging the coefficients in (4.1), we have

−Dijk
`mn = 4(σ111 + 3σ12)[1C

ijk
`mn]

−2σ12[2(4C
ijk
`mn) + 5C

ijk
`mn]

+2(σ11 − σ12)[2(2C
ijk
`mn) + 3C

ijk
`mn](4.11)

+σ2[2(2C
ijk
`mn)− 6C

ijk
`mn − 7C

ijk
`mn + 3C

ijk
`mn − 8C

ijk
`mn]

+σ3[2(1C
ijk
`mn)− 2(4C

ijk
`mn)− 5C

ijk
`mn + 9C

ijk
`mn

−2(2C
ijk
`mn) + 6C

ijk
`mn + 7C

ijk
`mn − 3C

ijk
`mn + 8C

ijk
`mn].

Note that in view of (4.10), the expressions with coefficients σ2 and σ3 are already
null. In order to kill the remaining leading terms, we must take

(4.12) σ11 = σ12 and 3σ12 + 2σ111 = 0.

Thus, we see that (4.12) implies (4.9).2

The following pointwise inequalities follow from (4.9). They are typical of the way
in which the null condition will be used later on.

|Dijk
`mn∂`∂mu

j∂nv
k| ≤ C

r

[
|∇Ωu||∇v|+ |∇2u||Ωv|

]
,(4.13)

|Dijk
`mn∂`u

i∂mv
j∂nw

k| ≤ C

r
[|Ωu||∇v||∇w|+ |∇u||Ωv||∇w|(4.14)

+ |∇u||∇v||Ωw|] .
The condition (4.9) is flexible in that analogous inequalities hold when the upper or

lower indices of Dijk
`mn are permuted, provided the roles of u, v, and w are likewise

interchanged.
The system of PDE’s (3.11) support spherically symmetric solutions, namely, those

for which Ω̃u = 0. Such solutions have the form u(t, x) = x
r
ψ(t, r), where ψ is a scalar.

In this case, when the derivatives are split into radial and angular components, the

leading terms all reduce to
xi

r
∂r[(∂rψ)2]. Thus in (4.11), the combination of the

terms with coefficient σ12 is now also null. In the spherically symmetric case, the null
condition reduces to

(4.15) 3σ11 + 2σ111 = 0.

Condition (4.15) is complementary to the genuine nonlinearity condition given by
John in [3], although this is not immediately apparent because John works with the

principal invariants of
√
FF T−I rather than FF T−I. However, a change of variables

shows that his genuine nonlinearity condition for spherically symmetric solutions is
precisely the condition that 3σ11 + 2σ111 6= 0.

2Recall that σ1 = 0, σ11 = c21/4 = (λ+ 2µ)/4, and σ2 = −c22/2 = −µ/2 have already been fixed.
So we have used all but one of the available degrees of freedom in the coefficients of σ.
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5. The existence theorem

Having set down the necessary notation and formulated the initial value problem,
we are now ready to record the main result to be proved.

Theorem 5.1. Let f ∈ Hκ
Λ and g ∈ |D|Hκ

Λ, κ ≥ 6, be given functions with

‖f‖Hκ
Λ

+ ‖g‖Hκ−1
Λ

+ ‖|D|−1g‖Hκ
Λ
< ε0,

ε0 sufficiently small. Assume that the coefficients Dijk
`mn defined by (4.1) satisfy (3.9)

and the null condition (4.12).
Then the Cauchy problem

Lu = N(u, u)

u(0) = f, ∂tu(0) = g,

with

Lu = ∂2
t u− c2

2∆u− (c2
1 − c2

2)∇(∇ · u)

N(u, v)i = Dijk
`mn∂`(∂mu

j∂nv
k)

has a unique global solution u ∈ Xκ(∞) satisfying the bound

sup
0≤t<∞

[Eκ(u(t)) + (1 + t)−δ0Eκ(u(t))] ≤ 2ε0,

for some δ0 > 0.

We remark that if the initial data are spherically symmetric, i.e. Ω̃f = Ω̃g = 0,
then the solution remains spherically symmetric, and the theorem holds under the
weaker assumption (4.15) instead of (4.12).

The use of the nonlocal energy Eκ requires g ∈ |D|Hκ
Λ instead of the more natural

space Hκ−1
Λ .

6. Commutation relations

Let Γa = Γa1 · · ·Γaκ be a product of any κ vector fields. If u is a solution of (3.11)
in Xκ(T ), then we will show that

(6.1) LΓau =
∑
b+c=a

N(Γbu,Γcu),

in which the sum extends over all ordered products Γb and Γc corresponding to parti-
tions of Γa. This formula reflects the symmetries present in the equations of motion,

and its usefulness in the forthcoming estimates motivates the choice of Ω̃, S̃ over Ω,
S. It is a consequence of the following commutation relations.

For the linear operator L in (3.8), we have

[∂, L] = 0, [Ω̃, L] = 0, and [S̃, L] = −2L.
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For the nonlinear term given by (3.10) and (4.1), we can also easily get

∂N(u, v) = N(∂u, v) +N(u, ∂v),

and

S̃N(u, v) = N(S̃u, v) +N(u, S̃v)− 2N(u, v).

A slightly longer computation using (4.8) and the fact that

(Ω̃ju)i = εjpqx
p∂qu

i + εjipu
p

yields

Ω̃jN(u, v) = N(Ω̃ju, v) +N(u, Ω̃jv).

Equation (6.1) is proven inductively by successively applying each Γaj , j = κ, . . . , 1
to the equation (3.11), and using the above observations.

As a simple consequence of (6.1), we point out that solutions of Lu = N(u, u)

satisfy LΩ̃ju = N(Ω̃ju, u) + N(u, Ω̃ju), j = 1, 2, 3, which shows by uniqueness that
spherical symmetry is preserved, as mentioned above.

7. Decay estimates

In this section, we assemble the decay estimates that we will use. Lemmas 7.1 and
7.2 are of Sobolev type: a weighted L∞ norm is controlled by a weighted L2 norm
with two more derivatives. Lemma 7.3 gives a bound for weighted L2 norms of vectors
u in terms of energy and Lu in L2. Finally, after these preliminaries, we obtain the
main decay estimates in Lemmas 7.4 and 7.5, valid for solutions of Lu = N(u, u).
These results are extensions of estimates given in [10].

Lemma 7.1. Let τ(r) ≥ 1 be a C2 radial function with

sup
r≥0

[|τ ′(r)|+ |τ ′′(r)|] ≤ Const.

For all sufficiently regular vector-valued functions φ on R3, we have

(1 + r2)1/2τ(r)|φ(x)| ≤ C
∑

|a|+|b|≤2

‖τ∇aΩ̃bφ‖L2 .

with r = |x| and C depending only on supr≥0[|τ ′(r)|+ |τ ′′(r)|].

Proof: In Lemma 4.2 in [10], it was shown that

rτ(r)|φ(x)| ≤ C

∑
|b|≤2

‖τΩbφ‖L2 +
∑
|b|≤1

‖τ∂rΩbφ‖L2

 .
Of course, for vector-valued functions, we can use ΩI = Ω̃ − U to get the same in-

equality with Ω replaced by Ω̃. Finally, in view of the classical Sobolev inequality in
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three dimensions, we have τ(r)|φ(x)| ≤ C
∑
|a|≤2 ‖∇a(τφ)‖L2 , and so by the bound-

edness of the derivatives of τ , we can replace r by (1 + r2)1/2 above. This proves the
Lemma.

We now define a weight function that captures the behavior of the solution near
the two light cones. Set α(r) = (1 + r2)1/2, and define

(7.1) τ(t, r) =
α(c1t− r)α(c2t− r)

1 + α(c1t− r) + α(c2t− r)
.

Then
1
3

min[α(c1t− r), α(c2t− r)] ≤ τ(t, r) ≤ min[α(c1t− r), α(c2t− r)], for r ≥ 0,

(7.2) C(1 + t) ≤ α(r)τ(t, r), for r ≥ 0,

and

(7.3) C(1 + t) ≤ τ(t, r), for 0 ≤ r ≤ c2(1 + t)/2.

Lemma 7.2. Let τ(t, r) be defined by (7.1). For all u ∈ Xκ(T ),

α(r)τ(t, r)|∂au(t, x)| ≤ C
∑
|b|+|c|≤2

‖τ(t)∂a∇bΩ̃cu(t)‖L2 , |a|+ 2 ≤ κ,(7.4)

α(r)|∂au(t, x)| ≤ C
∑
|b|+|c|≤2

‖∂a∇bΩ̃cu(t)‖L2 , |a|+ 2 ≤ κ.(7.5)

Proof: To prove (7.4), apply the previous Lemma to ∂au(t, ·) for fixed t. Note that ∂a

and ∇bΩ̃c commute. The bound holds uniformly in t because |∂rτ(t, r)| + |∂2
r τ(t, r)|

is uniformly bounded.
If Lemma 7.1 is applied to ∂au(t, ·) again for fixed t, and τ(r) is taken to be

identically equal to 1, then (7.5) results.

Lemma 7.3. For all u ∈ Xκ(T ),

‖τ(t)∂Γau(t)‖2
L2 ≤ C

[
Eκ(u(t)) + t2‖|D|−1LΓau(t)‖2

L2

]
, |a|+ 1 ≤ κ,(7.6)

‖τ(t)∂∇Γau(t)‖2
L2 ≤ C

[
Eκ(u(t)) + t2‖LΓau(t)‖2

L2

]
, |a|+ 2 ≤ κ.(7.7)

Proof: By Lemma 3.1 in [10], we have3

(7.8) ‖τ(t)∂∇u(t)‖2
L2 ≤ C

[
E2(u(t)) + t2‖Lu(t)‖2

L2

]
.

Apply this to Γau, |a| ≤ κ − 2, and note that E2(Γau(t)) ≤ Eκ(u(t)) for |a| + 2 ≤ κ
to get (7.7).

3In [10] the energy norm was based on S rather than S̃, but the two norms are obviously equivalent.
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Next, write

‖τ(t)∂Γau(t)‖2
L2 = ‖τ(t)∂(−∆)(−∆)−1Γau(t)‖2

L2

= ‖τ(t)∂∂p(∂p|D|−1)|D|−1Γau(t)‖2
L2 ,

and apply (7.8) to (∂p|D|−1)|D|−1Γau, |a| ≤ κ− 1. Then since ∂p|D|−1 is bounded in
L2 and ∂p(−∆)−1 commutes with L, we get

‖τ(t)∂Γau(t)‖2
L2 ≤ C

[
E2(|D|−1Γau(t)) + t2‖|D|−1LΓau(t)‖2

L2

]
.

However, E2(|D|−1Γau(t)) ≤ CE1(Γau(t)) ≤ CEκ(u(t)), which proves (7.6).

Lemma 7.4. Let u ∈ Xκ(T ), κ ≥ 5, solve Lu = N(u, u), and suppose that

sup
0≤t<T

Eκ(u(t)) ≡ ε0

is sufficiently small. Then

‖τ(t)∂Γau(t)‖L2 ≤ CEκ(u(t)), |a|+ 1 ≤ κ,(7.9)

‖τ(t)∂∇Γau(t)‖L2 ≤ CEκ(u(t)), |a|+ 2 ≤ κ.(7.10)

Proof: We first prove (7.10) using (7.7). Thus, we need to estimate ‖LΓau(t)‖L2 . Let
|a|+ 2 ≤ κ. Using the differentiation formula (6.1) and (4.6), we have

LΓaui =
∑
b+c=a

N(Γbu,Γcu)i

=
∑
b+c=a

[
Eijk
`mn∂`∂mΓbuj∂nΓcuk + F ijk

`mn∂mΓbuj∂`∂nΓcuk
]
,

where, for instance, Γbuj is the jth component of Γbu. By symmetry, we need only
consider the first group of terms, which can be further separated into two sums
depending on whether |b|+ 1 ≤ |c| or |b|+ 1 > |c|.

If |b| + 1 ≤ |c|, then |b| + 2 ≤ κ − 2 (since κ ≥ 5) and |c| ≤ |a| < κ − 1. We have
by (7.2) and (7.4),

t2‖∂`∂mΓbu(t)∂nΓcu(t)‖2
L2 ≤ C‖ατ(t)∂`∂mΓbu(t)‖2

L∞‖∂nΓcu(t)‖2
L2

≤ C
∑
|a|≤2

‖τ(t)∇2ΓaΓbu(t)‖2
L2‖∇Γcu(t)‖2

L2

≤ C
∑
|a|≤κ−2

‖τ(t)∇2Γau(t)‖2
L2Eκ(u(t)).
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If, on the other hand, |b| + 1 > |c|, then |b| ≤ |a| ≤ κ − 2 and |c| + 2 ≤ κ − 1
(κ ≥ 5). Hence, by (7.2) and (7.5), we obtain

t2‖∂`∂mΓbu(t)∂nΓcu(t)‖2
L2 ≤ C‖τ(t)∂`∂mΓbu(t)‖2

L2‖α∂nΓcu(t)‖2
L∞

≤ C‖τ(t)∇2Γbu(t)‖2
L2

∑
|a|≤2

‖∇ΓaΓcu(t)‖2
L2

≤ C
∑
|a|≤κ−2

‖τ(t)∇2Γau(t)‖2
L2Eκ(u(t)).

The preceding therefore yields,

t2‖LΓau(t)‖2
L2 ≤ C

∑
|a|≤κ−2

‖τ(t)∇2Γau(t)‖2
L2Eκ(u(t)),

which, if we combine with (7.7) and sum on |a| ≤ κ− 2, results in∑
|a|≤κ−2

‖τ(t)∂∇Γau(t)‖2
L2 ≤ C

Eκ(u(t)) + ε0

∑
|a|≤κ−2

‖τ(t)∇2Γau(t)‖2
L2

 .
So if Cε0 ≤ 1/2, we get the bound (7.10).

The estimate (7.9) is simpler, since there is one less derivative to estimate in the
nonlinearity:4

‖|D|−1LΓau‖L2 = ‖
∑
b+c=a

|D|−1N(Γbu,Γcu)‖L2

≤ C
∑
b+c=a

‖|D|−1∂`(∂mΓbuj∂nΓcuk)‖L2(7.11)

≤ C
∑
b+c=a

‖∇Γbu∇Γcu(t)‖L2 .

Then by (7.2),

t2‖|D|−1LΓau(t)‖2
L2 ≤ C

∑
b+c=a

‖ατ(t)∇Γbu(t)∇Γcu(t)‖2
L2 .

By symmetry, we can take |b| ≥ |c|, so that |b| ≤ |a| ≤ κ − 1 and |c| + 2 ≤ κ − 1
(κ ≥ 5). Now by (7.4),

‖ατ(t)∇Γbu(t)∇Γcu(t)‖2
L2 ≤ C‖∇Γbu(t)‖2

L2‖ατ(t)∇Γcu(t)‖2
L∞

≤ C‖∇Γbu(t)‖2
L2

∑
|a|≤2

‖τ(t)∇ΓaΓcu(t)‖2
L2

≤ CEκ(u(t))
∑
|a|≤κ−1

‖τ(t)∇Γau(t)‖2
L2 .

4The divergence form of the nonlinear terms is important here.
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The proof of (7.9) is now completed through the use of (7.6).

To conclude this section, we note the following immediate corollary of Lemmas 7.2
and 7.4.

Lemma 7.5. Let u ∈ Xκ(T ), κ ≥ 5, solve Lu = N(u, u), and suppose that

sup
0≤t<T

Eκ(u(t))

is sufficiently small. Then

|α(r)τ(t, r)∂Γau(t, x)| ≤ CEκ(u(t))1/2, |a|+ 3 ≤ κ,(7.12)

|α(r)τ(t, r)∂∇Γau(t, x)| ≤ CEκ(u(t))1/2, |a|+ 4 ≤ κ.(7.13)

8. Energy estimates

We now come to the main part of the proof, the derivation of a priori energy esti-
mates for small solutions. These estimates reflect the essential information required
for a formal global existence proof based on iteration.

Let u ∈ Xκ(T ), κ ≥ 6, have small initial data. The strategy will be to show that

d

dt
Eκ(u(t)) ≤ C

(1 + t)2
Eκ(u(t))Eκ(u(t))1/2

and
d

dt
Eκ(u(t)) ≤ C

1 + t
Eκ(u(t))Eκ(u(t))1/2.

Thus, for small enough initial values Eκ(u(0)) and Eκ(u(0)), there is a δ > 0 such
that

(8.1) Eκ(u(t)) + (1 + t)−δEκ(u(t)) ≤ 2[Eκ(u(0)) + Eκ(u(0))],

for all 0 ≤ t <∞. Actually, as is standard, the differential inequalities will be proven
for perturbed energies with a small cubic correction term which takes into account
the quasilinear nature of the equations. Bounds for the quadratic energies Eκ and
Eκ follow immediately. This type of coupled system of inequalities allowing for slow
growth in a larger norm was used also in [9].

To obtain the first of these estimates, the nonlinearity will be estimated differently
in the regions r < c2(t + 1)/2 and r > c2(t + 1)/2. In the first zone, the (1 + t)−2

decay factor comes from the weighted L2 and L∞ estimates. For large r, the weighted
L∞ estimate and the null condition are used. The inequality for the nonlocal energy
depends on the divergence form of the nonlinearity and the weighted L∞ estimate.

Recall the formula (6.1):

LΓau =
∑
b+c=a

N(Γbu,Γcu).
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For any |a| ≤ κ− 1, take the dot product with ∂tΓ
au, integrate over R3, and sum on

a to get

d

dt
Eκ(u(t)) =

∑
|a|≤κ−1

∑
b+c=a

∫
∂tΓ

au(t) ·N(Γbu(t),Γcu(t))dx.

First, we estimate the terms with |b|+2 ≤ κ and |c|+2 ≤ κ. Thus, either |a|+2 ≤ κ
or if |a|+ 1 = κ, then b 6= a and c 6= a. For such terms, we have

∣∣∣∣∫ ∂tΓ
au(t) ·N(Γbu(t),Γcu(t))dx

∣∣∣∣ ≤ C‖∂Γau(t)‖L2‖N(Γbu(t),Γcu(t))‖L2 .

Write

N(Γbu,Γcu) = Eijk
`mn∂`∂mΓbuj∂nΓcuk + F ijk

`mn∂mΓbuj∂`∂nΓcuk,

using (4.6). It is enough to estimate the first group of terms. Since κ ≥ 6, we have
either |b|+ 4 ≤ κ or |c|+ 3 ≤ κ.

Suppose that |b|+ 4 ≤ κ. Then in view of (7.3), (7.13), and (7.9), we have

∫
r<c2(t+1)/2

|∂`∂mΓbuj(t)∂nΓcuk(t)|2dx

≤ C

(1 + t)4
‖ατ(t)∇2Γbu(t)‖2

L∞‖τ(t)∇Γcu(t)‖2
L2

≤ C

(1 + t)4
Eκ(u(t))Eκ(u(t)).

Or if |c|+ 3 ≤ κ, then by (7.3), (7.12), and (7.10),

∫
r<c2(t+1)/2

|∂`∂mΓbuj(t)∂nΓcuk(t)|2dx

≤ C

(1 + t)4
‖τ(t)∇2Γbu(t)‖2

L2‖ατ(t)∇Γcu(t)‖2
L∞

≤ C

(1 + t)4
Eκ(u(t))Eκ(u(t)).
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On the other hand, when r > c2(t+1)/2, we make use of (4.13), (7.12), and (7.13).
Assume that |b|+ 4 ≤ κ. Then

∫
r>c2(t+1)/2

|Eijk
`mn∂`∂mΓbuj(t)∂nΓcuk(t)|2dx

≤ C

∫
r>c2(t+1)/2

1

r2

[
|∇Ω̃Γbu(t)||∇Γcu(t)|+ |∇2Γbu(t)||Ω̃Γcu(t)|

+ |∇Γbu(t)||∇Γcu(t)|+ |∇2Γbu(t)||Γcu(t)|
]2
dx

≤ C

(1 + t)4

[
‖ατ(t)∇Ω̃Γbu(t)‖L∞‖∇Γcu(t)‖L2

+ ‖ατ(t)∇2Γbu(t)‖L∞‖Ω̃Γcu(t)‖L2

+ ‖ατ(t)∇Γbu(t)‖L∞‖∇Γcu(t)‖L2

+ ‖ατ(t)∇2Γbu(t)‖L∞‖Γcu(t)‖L2

]2
≤ C

(1 + t)4
Eκ(t)Eκ(t),

If |c| + 3 ≤ κ, then the role of the L2 and L∞ norms is simply interchanged in the
preceding lines, and (7.9) and (7.10) are used.

Now we proceed to the most singular case when a = b, |a| = |b| = κ − 1, and
c = 0, which produces a derivative of order κ + 1. It can be absorbed on the right
after an integration by parts, and it is here that the energy symmetry will enter. The
following identity captures the basic idea. We state it first in a general form, since it
will be used again when we consider the nonlocal energy. Let v, w ∈ Xκ(T ). Using
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(4.6) and (4.7) with integration by parts∫
∂tv(t) ·N(v(t), w(t))dx

=

∫
Dijk
`mn∂tv

i(t)∂`(∂mv
j(t)∂nw

k(t))dx

=

∫
Eijk
`mn∂tv

i(t)∂`∂mv
j(t)∂nw

k(t)dx

+

∫
F ijk
`mn∂tv

i(t)∂mv
j(t)∂`∂nw

k(t)dx

= −
∫
Eijk
`mn∂t∂`v

i(t)∂mv
j(t)∂nw

k(t)dx

+

∫
(F ijk

`mn − E
ijk
`mn)∂tv

i(t)∂mv
j(t)∂`∂nw

k(t)dx(8.2)

= −1

2

∫
Eijk
`mn∂t(∂`v

i(t)∂mv
j(t))∂nw

k(t)dx

+

∫
(F ijk

`mn − E
ijk
`mn)∂tv

i(t)∂mv
j(t)∂`∂nw

k(t)dx

= −1

2

d

dt

∫
Eijk
`mn∂`v

i(t)∂mv
j(t)∂nw

k(t)dx

+
1

2

∫
Eijk
`mn∂`v

i(t)∂mv
j(t)∂t∂nw

k(t)dx

+

∫
(F ijk

`mn − E
ijk
`mn)∂tv

i(t)∂mv
j(t)∂`∂nw

k(t)dx.

Apply this identity with v = Γau and w = u, to get∫
∂tΓ

au(t) ·N(Γau(t), u(t))dx

= −1

2

d

dt

∫
Eijk
`mn∂`Γ

aui(t)∂mΓauj(t)∂nu
k(t)dx

+
1

2

∫
Eijk
`mn∂`Γ

aui(t)∂mΓauj(t)∂t∂nu
k(t)dx

+

∫
(F ijk

`mn − E
ijk
`mn)∂tΓ

aui(t)∂mΓauj(t)∂`∂nu
k(t)dx.

An identical expression arises when b = 0 and c = a, thanks to (4.3).
The last two integrals are bounded by C(1 + t)−2Eκ(u(t))Eκ(u(t))1/2 in the same

way as above, using (4.13), (4.14), (7.9), and (7.13). Note that the presence of one
time-derivative is permitted in (7.13).



19

The first term and its twin must be included in the energy. Set

Ẽκ(u(t)) = Eκ(u(t)) +
∑
|a|=κ−1

∫
Eijk
`mn∂`Γ

aui(t)∂mΓauj(t)∂nu
k(t)dx.

Provided that ‖∂nuk(t)‖L∞ is small, we have

cEκ(u(t)) ≤ Ẽκ(u(t)) ≤ CEκ(u(t)).

Thus, we have shown that

(8.3)
d

dt
Ẽκ(u(t)) ≤ C

(1 + t)2
Eκ(u(t))Eκ(u(t))1/2.

The final step is to estimate the nonlocal energy. Apply |D|−1Γa to the equation,
multiply by ∂t|D|−1Γau, integrate in x, and sum over |a| ≤ κ to get

d

dt
Eκ(u(t)) =

∑
|a|=κ

∑
b+c=a

∫
∂t|D|−1Γau(t) · |D|−1N(Γbu(t),Γcu(t))dx.

We first consider the case in which |b|+ 1 ≤ κ and |c|+ 1 ≤ κ. We can then estimate∣∣∣∣∫ ∂t|D|−1Γau(t) · |D|−1N(Γbu(t),Γcu(t))dx

∣∣∣∣
≤ C‖∂t|D|−1Γau(t)‖L2‖|D|−1N(Γbu(t),Γcu(t))‖L2 .

Recalling (7.11), we have

‖|D|−1N(Γbu(t),Γcu(t))‖L2 ≤ C‖∇Γbu(t)∇Γcu(t)‖L2 .

Since κ ≥ 6, we have either |b| + 3 ≤ κ or |c| + 3 ≤ κ. Assume the former, without
loss of generality. Then by (7.2) and (7.12), we see that

‖∇Γbu(t)∇Γcu(t)‖L2 ≤ ‖∇Γbu(t)‖L∞‖∇Γcu(t)‖L2

≤ C

1 + t
‖ατ(t)∇Γbu(t)‖L∞‖∇Γcu(t)‖L2

≤ C

1 + t
Eκ(u(t))1/2Eκ(u(t))1/2.

This gives the desired bound for all such terms.
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Now take a = b, c = 0, and |a| = κ. Then integration by parts gives∫
∂t|D|−1Γau(t) · |D|−1N(Γau(t), u(t))dx

=

∫
∂t|D|−2Γau(t) ·N(Γau(t), u(t))dx

=

∫
Dijk
`mn∂t(−∆)−1Γaui(t) ∂`[∂mΓauj(t) ∂nu

k(t)]dx

=

∫
Dijk
`mn∂t(−∆)−1Γaui(t) ∂`[∂m(−∆)(−∆)−1Γauj(t) ∂nu

k(t)]dx

= −
∫
Dijk
`mn∂t∂p(−∆)−1Γaui(t) ∂`[∂m∂p(−∆)−1Γauj(t) ∂nu

k(t)]dx

−
∫
Dijk
`mn∂t(−∆)−1Γaui(t) ∂`[∂m∂p(−∆)−1Γauj(t) ∂n∂pu

k(t)]dx

= −
∫
∂t∂p(−∆)−1Γau(t) ·N(∂p(−∆)−1Γau(t), u(t))dx

−
∫
Dijk
`mn∂t|D|

−1Γaui(t) (|D|−1∂`)[∂m∂p(−∆)−1Γauj(t) ∂n∂pu
k(t)]dx.

Apply (8.2) to the first integral, with v = ∂p(−∆)−1Γau and w = u. This produces
the identity∫

∂t|D|−1Γau(t) · |D|−1N(Γau(t) , u(t))dx

= −1

2

d

dt

∫
Eijk
`mn∂`∂p(−∆)−1Γaui(t)∂m∂p(−∆)−1Γauj(t) ∂nu

k(t)dx

+
1

2

∫
Eijk
`mn∂`∂p(−∆)−1Γaui(t) ∂m∂p(−∆)−1Γauj(t) ∂t∂nu

k(t)dx

+

∫
(F ijk

`mn − E
ijk
`mn)∂t∂p(−∆)−1Γaui(t) ∂m∂p(−∆)−1Γauj(t) ∂`∂nu

k(t)dx

−
∫
Dijk
`mn∂t|D|

−1Γaui(t) (|D|−1∂`)[∂m∂p(−∆)−1Γauj(t) ∂n∂pu
k(t)]dx.

The last three integrals are bounded by C(1 + t)−1Eκ(u(t))Eκ(u(t))1/2, using (7.13).
We absorb the first integral into the energy by setting

Ẽκ(u(t)) = Eκ(u(t)) +

∫
Eijk
`mn∂`∂p(−∆)−1Γaui(t)∂m∂p(−∆)−1Γauj(t)∂nu

k(t)dx.

Then for ‖∇u(t)‖L∞ small, we have

cEκ(u(t)) ≤ Ẽκ(u(t)) ≤ CEκ(u(t)).
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And we obtain

(8.4)
d

dt
Ẽκ(u(t)) ≤ C

1 + t
Eκ(u(t))Eκ(u(t))1/2.

Of course, we may replace the energies on the right hand side of (8.3) and (8.4) by
the modified energies. The resulting differential inequalities yield the bound (8.1) for

Ẽκ(u(t)) and Ẽκ(u(t)), but then also for Eκ(u(t)) and Eκ(u(t)), provided the initial
values are small.
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