
    

A new version of the Hahn–Banach theorem

(continued)

S. Simons

1. Introduction

This is an extract from a paper titled “Hahn–Banach theorems and maximal monotonic-
ity” that will appear in the volume “Variational analysis and Applications” edited by F.
Giannessi and A. Maugeri. In it, we discuss new versions of the Hahn–Banach theorem
that have a number of applications in different fields of analysis. We shall give applications
to linear and nonlinear functional analysis, and convex analysis. All vector spaces in this
paper will be real.

The main result appears in Theorem 2.8, which is bootstrapped from the special case
contained in Lemma 2.4.

In Section 3, we sketch how Theorem 2.8 can be used to give the main existence
theorems for linear functionals in functional analysis, and also how it gives a result that
leads to a minimax theorem. We also discuss three applications of Theorem 2.8 to convex
analysis, pointing the reader to [17] for further details in two of these cases. One noteworthy
property of proofs using Theorem 2.8 is that they allow us to avoid the problem of the
“vertical hyperplane”.

In Section 4, we show how Theorem 2.8 can be used to obtain considerable insight on
the existence of Lagrange multipliers for constrained convex minimization problems. The
usual sufficient condition for the existence of such multipliers is normally found using the
Eidelheit separation theorem. In Theorem 4.5, we use Theorem 2.8 to derive this sufficient
condition, with the added bonus that we obtain a bound on the norm of the multiplier.
Here again, the proof using Theorem 2.8 allows us to avoid the problem of the “vertical
hyperplane”. More to the point, the results leading up to Theorem 4.5, namely Lemma 4.1
and Theorem 4.2, use Theorem 2.8 to obtain a necessary and sufficient condition for the
existence of Lagrange multipliers, with a sharp lower bound on the norm of the multiplier.

Section 5 is motivated by the theory of monotone multifunctions. Theorem 5.1 is an
existence theorem without any a priori scalar bounds in normed spaces that has proved
very useful in the investigation of these multifunctions. A new feature of the result as
presented here is a sharp lower bound on the norm of the linear functional obtained.

In the final section, we return to our consideration of abstract Hahn–Banach theorems.
Noting a certain formal similarity between the statements of Theorem 5.1 and Theorem
2.8, we ask the question whether these two results can be unified. Indeed, they have a
common generalization, which is given in Theorem 6.1.

2. The main result

Theorem 2.8 contains the new version of the Hahn-Banach theorem that forms the main
topic of this paper. Theorem 2.8 is proved by bootstrapping from the special case contained
in Lemma 2.4 — most of the work is actually done in Lemma 2.3.

We start by recalling in Lemma 2.2 the classical Hahn–Banach theorem for sublinear
functionals.
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A new version of the Hahn–Banach theorem (continued)

Definition 2.1. Let E be a nontrivial vector space. We say that S: E 7→ R is sublinear
if

x, y ∈ E =⇒ S(x+ y) ≤ S(x) + S(y)

and
x ∈ E and λ > 0 =⇒ S(λx) = λS(x).

Lemma 2.2. Let E be a nontrivial vector space and S: E 7→ R be sublinear. Then there
exists a linear functional L on E such that L ≤ S on E.

Proof. See Kelly–Namioka, [6, 3.4, p. 21] for a proof using cones, Rudin, [12, Theorem
3.2, p. 56–57] for a proof using an extension by subspaces argument, and König, [7] and
Simons, [13] for a proof using an ordering on sublinear functionals.

Lemma 2.3. Let E be a nontrivial vector space and S: E 7→ R be sublinear. Let D be a
nonempty convex subset of a vector space, a: D 7→ E be affine and β := infD S ◦ a ∈ R.
For all x ∈ E, let

T (x) := inf
d∈D, λ>0

[
S
(
x+ λa(d)

)
− λβ

]
. (2.3.1)

Then T : E 7→ R, T is sublinear, T ≤ S on E and, for all d ∈ D, −T
(
−a(d)

)
≥ β.

Proof. If x ∈ E, d ∈ D and λ > 0 then

S
(
x+ λa(d)

)
− λβ ≥ −S(−x) + λS

(
a(d)

)
− λβ ≥ −S(−x) > −∞.

Taking the infimum over d ∈ D and λ > 0, T (x) ≥ −S(−x) > −∞. Thus T : E 7→ R. It
is now easy to check that T is positively homogeneous, so to prove that T is sublinear it
remains to show that T is subadditive. To this end, let x1, x2 ∈ E. Let d1, d2 ∈ D and
λ1, λ2 > 0 be arbitrary. Write x := x1 +x2, λ := λ1 +λ2, µi := λi/λ and d := µ1d1 +µ2d2.
Then, using the fact that µ1a(d1) + µ2a(d2) = a(d),

[
S
(
x1 + λ1a(d1)

)
− λ1β

]
+
[
S
(
x2 + λ2a(d2)

)
− λ2β

]

≥ S
(
x+ λ1a(d1) + λ2a(d2)

)
− λβ

= λS
(
x/λ+ µ1a(d1) + µ2a(d2)

)
− λβ,

= λS
(
x/λ+ a(d)

)
− λβ

= S
(
x+ λa(d)

)
− λβ

≥ T (x) = T (x1 + x2).

Taking the infimum over d1, d2, λ1 and λ2 gives T (x1) + T (x2) ≥ T (x1 + x2). Thus T is
subadditive, and consequently, sublinear. Fix d ∈ D. Let x be an arbitrary element of E.
Then, for all λ > 0, T (x) ≤ S(x) + λ

[
S
(
a(d)

)
− β

]
. Letting λ → 0, T (x) ≤ S(x). Thus

T ≤ S on E. Finally, let d be an arbitrary element of D. Then, taking λ = 1 in (2.3.1),

T
(
−a(d)

)
≤ S

(
−a(d) + a(d)

)
− β = −β,

hence −T
(
−a(d)

)
≥ β, which completes the proof of Lemma 2.3.
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A new version of the Hahn–Banach theorem (continued)

Lemma 2.4. Let E be a nontrivial vector space and S: E 7→ R be sublinear. Let D be
a nonempty convex subset of a vector space and a: D 7→ E be affine. Then there exists a
linear functional L on E such that L ≤ S on E and

inf
D
L ◦ a = inf

D
S ◦ a.

Proof. Let β := infD S ◦ a. If β = −∞, the result is immediate from Lemma 2.2 (take
any linear functional L on E such that L ≤ S on E). So we can suppose that β ∈ R.
Define T as in Lemma 2.3. From Lemma 2.2, there exists a linear functional L on E such
that L ≤ T on E. Since T ≤ S on E, L ≤ S on E, as required. Let d ∈ D. Then

L
(
a(d)

)
= −L

(
−a(d)

)
≥ −T

(
−a(d)

)
≥ β.

Taking the infimum over d ∈ D,

inf
D
L ◦ a ≥ β = inf

C
S ◦ a.

On the other hand, since L ≤ S on E, infD L ◦ a ≤ infD S ◦ a.

Definition 2.5. Let C be a nonempty convex subset of a vector space and PC(C) stand
for the set of all convex functions k: C 7→ (−∞,∞] such that dom k 6= ∅, where dom k,
the effective domain of k, is defined by

dom k :=
{
x ∈ C: k(x) ∈ R

}
.

(The “P” stands for “proper”, which is the adjective frequently used to denote the fact
that a function is finite at at least one point.)

Definition 2.6. Let E be a nontrivial vector space and S: E 7→ R be sublinear. Let C
be a nonempty convex subset of a vector space and j: C 7→ E. We say that j is S–convex
if

x1, x2 ∈ C, µ1, µ2 > 0 and µ1+µ2 = 1 =⇒ S
(
j(µ1x1+µ2x2)−µ1j(x1)−µ2j(x2)

)
≤ 0.

Note that if we define an ordering “≤S” on E by declaring that y ≤S z if S(y − z) ≤ 0
then j is S–convex if, and only if,

x1, x2 ∈ C, µ1, µ2 > 0 and µ1 + µ2 = 1 =⇒ j(µ1x1 + µ2x2) ≤S µ1j(x1) + µ2j(x2).

An affine function is clearly S–convex.

Remark 2.7. Suppose that CS is the level set {y ∈ E: S(y) ≤ 0}. It is clear that the
ordering ≤S on E is determined solely by CS (though the proof of Theorem 2.8 depends
on the other values of S). Now let us consider the special case when E = R. Since CS
is a convex cone vertex the origin, there are exactly four possibilities for CS , namely {0},
(−∞, 0], [0,∞) and R. These can be realized by S(y) := |y|, S(y) := y, S(y) := −y
and S(y) := 0, respectively. In these four cases, “S–convex” means “affine”, “convex”,
“concave” and “arbitrary”, repectively. In general, when E 6= R, there is no analog of
convex or concave function from C into E, and it makes sense to ask the question when a
function j: C 7→ E is S–convex with respect to some nontrivial sublinear functional S on
E. A solution to this problem has been provided by Giandomenico Mastroeni (personal
communication).
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A new version of the Hahn–Banach theorem (continued)

Theorem 2.8. Let E be a nontrivial vector space and S: E 7→ R be sublinear. Let C
be a nonempty convex subset of a vector space, k ∈ PC(C) and j: C 7→ E be S–convex.
Then there exists a linear functional L on E such that L ≤ S on E and

inf
C

[
L ◦ j + k

]
= inf

C

[
S ◦ j + k

]
. (2.8.1)

Proof. Let Ẽ := E × R, and define S̃: Ẽ 7→ R by

S̃(y, λ) := S(y) + λ
(
(y, λ) ∈ Ẽ

)
.

Then, as the reader can easily verify, S̃ is sublinear. Let

D :=
{

(x, y, λ) ∈ C × E × R: S
(
j(x)− y

)
≤ 0, k(x) ≤ λ

}
,

and a: D 7→ Ẽ be defined by

a(x, y, λ) := (y, λ)
(
(x, y, λ) ∈ D

)
.

Then D is a convex set and a is an affine function. Lemma 2.4 with E replaced by Ẽ, S
by S̃, and C by D now gives a linear functional L̃ on Ẽ such that

L̃ ≤ S̃ on Ẽ and inf
D
L̃ ◦ a = inf

D
S̃ ◦ a.

Since L̃ ≤ S̃ on Ẽ, there exists a linear functional L on E such that

L ≤ S on E and (y, λ) ∈ Ẽ =⇒ L̃(y, λ) = L(y) + λ.

The result follows since, by direct computation,

inf
D
L̃ ◦ a = inf

C

[
L ◦ j + k

]
and inf

D
S̃ ◦ a = inf

C

[
S ◦ j + k

]
.

3. Applications to functional analysis and minimax theorems

In this section, we mention without proof a number of applications of Theorem 2.8 that
were discussed in [17]. We then state and prove in Theorem 3.5 a (necessary and sufficient)
criterion for the Fenchel duality condition to hold.

Theorem 3.1 is the sandwich theorem (see [7, Theorem 1.7, p. 112]). It follows
immediately from Theorem 2.8 with C := E and j(x) := x.

Theorem 3.1. Let E be a nontrivial vector space, S: E 7→ R be sublinear, k ∈ PC(E)
and −k ≤ S on E. Then there exists a linear functional L on E such that −k ≤ L ≤ S on
E.
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A new version of the Hahn–Banach theorem (continued)

Theorem 3.1 implies in turn two other well known existence results: the extension
form of the Hahn–Banach theorem, Corollary 3.2, (see [7, Corollary 1.8, p. 112]) and the
Mazur–Orlicz theorem, Corollary 3.3, (see [7, Theorem 1.9, p. 112]).

Corollary 3.2. Let E be a nontrivial vector space, F be a linear subspace of E, S: E 7→ R
be sublinear, M : F 7→ R be linear and M ≤ S on F . Then there exists a linear functional
L on E such that L ≤ S on E and L|F = M .

Corollary 3.3. Let E be a nontrivial vector space, S: E 7→ R be sublinear and C be
a nonempty convex subset of E. Then there exists a linear functional L on E such that
L ≤ S on E and infC L = infC S.

Theorem 3.4 below was essentially proved by Fan–Glicksberg–Hoffman (see [5,
Theorem 1, p. 618]), and leads to a short proof of the minimax theorem proved by Fan
in [4] (see [14, Theorem 3.1, p. 17] for details of this). Theorem 3.4 follows easily from
Theorem 2.8 with E := Rm, S(µ1, . . . , µm) := µ1∨· · ·∨µm, j(c) :=

(
f1(c), . . . , fm(c)

)
and

k(c) := 0.

Theorem 3.4. Let C be a nonempty convex subset of a vector space and f1, . . . , fm be
convex real functions on C. Then there exist λ1, . . . , λm ≥ 0 such that λ1 + · · ·+ λm = 1
and

inf
C

[
f1 ∨ · · · ∨ fm

]
= inf

C

[
λ1f1 + · · ·+ λmfm

]
.

Let E be a nontrivial Hausdorff locally convex space with dual E∗. If f ∈ PC(E), the
Fenchel conjugate, f∗, of f is the function from E∗ into (−∞,∞] defined by

f∗(x∗) := sup
E

(x∗ − f).

It follows easily from the definitions above that, for all y ∈ E,

f(y) ≥ sup
E∗

(y − f∗). (3.4.1)

It was proved by Moreau in [9, Section 5–6, p. 26–39] that if f is lower semicontinuous on
E then, for all y ∈ E, we have equality in (3.4.1). If f is lower semicontinuous at y ∈ E
but not on E then it does not follow that equality holds in (3.4.1)

(
see [17, Remark 3.1]

)
.

On the other hand, Theorem 2.8 can be used to find a necessary and sufficient condition
for equality to hold in (3.4.1) for a given y ∈ E

(
see [17, Theorem 3.2]

)
. This provides a

proof of Moreau’s original result with the advantage that we do not have to deal with the
elimination of the “vertical hyperplane”.

We now show how Theorem 2.8 leads to a version of the Fenchel duality theorem.

Theorem 3.5. Let E be a nontrivial Hausdorff locally convex space with dual E∗, and
f, g ∈ PC(E). Then

there exists z∗ ∈ E∗ such that f∗(−z∗) + g∗(z∗) ≤ 0 (3.5.1)
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A new version of the Hahn–Banach theorem (continued)

if, and only if, writing S(E) for the family of continuous seminorms on E,

there exists S ∈ S(E) such that x, y ∈ E =⇒ f(x) + g(y) + S(x− y) ≥ 0. (3.5.2)

Proof. Suppose first that (3.5.1) is satisfied. Then, for all x, y ∈ E,

〈x,−z∗〉 − f(x) + 〈y, z∗〉 − g(y) ≤ f∗(−z∗) + g∗(z∗) ≤ 0,

consequently,

f(x) + g(y) + 〈x− y, z∗〉 ≥ 0,

and (3.5.2) follows with S := |z∗|. Suppose, conversely, that (3.5.2) is satisfied. Then we
apply Theorem 2.8 with C := E×E, j(x, y) := x−y and k(x, y) := f(x)+g(y) and obtain
a linear functional L on E such that L ≤ S and

x, y ∈ E =⇒ f(x) + g(y) + L(x− y) ≥ 0,

or equivalently,

x, y ∈ E =⇒ (−L)(x)− f(x) + L(y)− g(y) ≤ 0.

(3.5.1) now follows (with z∗ = L) by taking the supremum over x and y.

In the normed case, Theorem 3.5 takes the following form:

Corollary 3.6. Let E be a nontrivial normed space with dual E∗, and f, g ∈ PC(E).
Then

there exists z∗ ∈ E∗ such that f∗(−z∗) + g∗(z∗) ≤ 0 (3.5.1)

if, and only if,

there exists M ≥ 0 such that x, y ∈ E =⇒ f(x) + g(y) +M‖x− y‖ ≥ 0.

Corollary 3.6 leads easily to proofs of the versions of the Fenchel duality theorem and
the formula for the subdifferential of a sum due to Moreau–Rockafellar (see [10, Theorem 3,
p. 85]) and Attouch–Brézis (see [1, Theorem 1.1, p. 126–127] and [1, Corollary 2.1, p. 130–
131]). Yet again, we do not have to deal with the elimination of the “vertical hyperplane”.
We emphasize that Theorem 3.5 and Corollary 3.6 give a necessary and sufficient condition
for the existence of the linear functional, and not merely sufficient conditions.

In [11], Rockafellar develops a theory of dual problems and Lagrangians that gives a
very large number of results in convex analysis. It was shown in [17, Theorem 3.6] how
Theorem 2.8 can be used to give an efficient proof of [11, Theorem 17(a), p. 41], one of
the main existence results in [11].
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A new version of the Hahn–Banach theorem (continued)

4. A sharp result on the existence of Lagrange multipliers

This section is about Lagrange multipliers for the constrained convex optimization problem
outlined below. The main result is Theorem 4.2 which, combined with Lemma 4.1, gives a
necessary and sufficient condition for the existence of a Lagrange multiplier, with a sharp
lower bound on its norm. We also show in Theorem 4.5 how Theorem 4.2 implies the
classical result, with an upper bound on the norm as a bonus. The analysis in this section
depends only on Theorem 2.8 — it does not depend on Section 3 in any way.

Let (E, ‖·‖) be a nontrivial normed space, C be a nonempty convex subset of a vector
space, k: C 7→ R be convex, j: C 7→ E, and ¹ be a partial ordering on E compatible with
its vector space structure. Let N be the negative cone {y ∈ E: y ¹ 0}. Suppose that

x1, x2 ∈ C, µ1, µ2 > 0 and µ1 + µ2 = 1 =⇒ j(µ1x1 + µ2x2) ¹ µ1j(x1) + µ2j(x2) (4.0.1)

(i.e., j is convex with respect to ¹), and

inf
j−1N

k = inf
{
k(x): x ∈ C, j(x) ¹ 0

}
= µ0 ∈ R. (4.0.2)

A Lagrange multiplier for the problem is an element z∗0 of E∗ such that

sup
N
z∗0 ≤ 0 (4.0.3)

(i.e., z∗0 is positive with respect to ¹), and

inf
x∈C

[
〈j(x), z∗0〉+ k(x)

]
= µ0. (4.0.4)

Clearly 0 is a Lagrange multiplier ⇐⇒ infC k ≥ µ0. In order to exclude this trivial case,
we shall suppose that infC k < µ0. Let

A :=
{
x ∈ C: k(x) < µ0

}
and B :=

{
v ∈ C: j(v) ≺ 0

}
, (4.0.5)

where we write j(v) ≺ 0 to mean that j(v) ∈ intN . The above conditions imply that
A 6= ∅. We start off with a simple consequence of the existence of a Lagrange multiplier.

Lemma 4.1. Let z∗0 be a Lagrange multiplier, and A be as in (4.0.5). Then

0 < sup
x∈A

µ0 − k(x)

dist
(
j(x), N

) ≤ ‖z∗0‖ <∞.

Proof. Let x ∈ A, and u be an arbitrary element of N . Then, from (4.0.3) and (4.0.4),

‖j(x)− u‖ ‖z∗0‖ ≥ 〈j(x), z∗0〉 − 〈u, z∗0〉 ≥ 〈j(x), z∗0〉 ≥ µ0 − k(x) > 0.

Taking the infimum over u ∈ N ,

dist
(
j(x), N

)
‖z∗0‖ ≥ µ0 − k(x) > 0.

The result follows on division by dist
(
j(x), N

)
and then taking the supremum over x ∈ A.

The main result of this section is the following partial converse to Lemma 4.1.
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A new version of the Hahn–Banach theorem (continued)

Theorem 4.2. Suppose that 0 < M := sup
x∈A

µ0 − k(x)

dist
(
j(x), N

) < ∞. Then there exists

a Lagrange multiplier z∗0 such that ‖z∗0‖ ≤ M . It then follows from Lemma 4.1 that
M = min

{
‖z∗0‖: z∗0 is a Lagrange multiplier

}
.

Proof. Let S: E 7→ [0,∞) be defined by S(y) := dist (y,N) = infu∈N ‖y − u‖ (y ∈ E).
It is easily checked from this definition that

S is sublinear, (4.2.1)

S ≤ ‖ · ‖ on E, (4.2.2)

and
y ∈ N =⇒ S(y) = 0. (4.2.3)

The definition of M gives

x ∈ A =⇒MS ◦ j(x) + k(x) ≥ µ0.

Since k ≥ µ0 on C \A and S ≥ 0 on E, in fact

x ∈ C =⇒MS ◦ j(x) + k(x) ≥ µ0,

that is to say
inf
C

[
MS ◦ j + k

]
≥ µ0.

Let x1, x2 ∈ C, µ1, µ2 > 0 and µ1 + µ2 = 1. Then it follows from (4.0.1) that

j(µ1x1 + µ2x2)− µ1j(x1)− µ2j(x2) ∈ N,
and so (4.2.3) implies that j is MS–convex. Thus (4.2.1) and Theorem 2.8 give a linear
functional L on E such that L ≤MS on E and

inf
C

[
L ◦ j + k

]
= inf

C

[
MS ◦ j + k

]
≥ µ0. (4.2.4)

We now derive from (4.2.2) and (4.2.3) that L ∈ E∗, ‖L‖ ≤ M and supN L ≤ 0. Since
x ∈ j−1(N) =⇒ j(x) ∈ N =⇒ L ◦ j(x) ≤ 0, (4.0.2) now gives

µ0 = inf
j−1N

k ≥ inf
j−1N

[
L ◦ j + k

]
≥ inf

C

[
L ◦ j + k

]
.

Thus we have equality in (4.2.4), which gives the required result (with z∗0 = L).

Remark 4.3. At this point, we make some comments about the formulation of the pre-
ceding analysis in terms of Lagrangians. Let P := {z∗ ∈ E∗: supN z

∗ ≤ 0}, and define
L: C × P 7→ R by L(x, z∗) :=

〈
j(x), z∗

〉
+ k(x). Then z∗0 is a Lagrange multiplier exactly

when infx∈C L(x, z∗0) = µ0. Arguing as in the final few lines of Theorem 4.2, if z∗ ∈ P
then infx∈C L(x, z∗) ≤ µ0, so in fact

sup
z∗∈P

inf
x∈C

L(x, z∗) = inf
x∈C

L(x, z∗0) = µ0.

In the event that there exists x0 ∈ j−1N such that k(x0) = µ0 then (x0, z
∗
0) is a saddle

point of L. See [8, Corollary 8.3.1, p. 219] for details of the argument.
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A new version of the Hahn–Banach theorem (continued)

We recall from (4.0.5) that B :=
{
v ∈ C: j(v) ≺ 0

}
. The classical sufficient condition

for the existence of Lagrange multipliers is that B 6= ∅. (See [8, Theorem 8.3.1, p. 217–
218].) This will be improved in Theorem 4.5. We first give a preliminary lemma.

Lemma 4.4.
(a) Let x ∈ A, u ∈ N , v ∈ B, 0 < η < dist

(
j(v), E \N

)
and α := ‖j(x)− u‖. Then

j
(ηx+ αv

η + α

)
¹ 0.

(b) Let x ∈ A and v ∈ B. Then

dist
(
j(x), N

)(
k(v)− µ0

)
≥ dist

(
j(v), E \N

)(
µ0 − k(x)

)
> 0.

Proof. (a) If α = 0 then j(x) = u and so

j
(ηx+ αv

η + α

)
= j(x) = u ¹ 0,

which gives the required result. If α > 0 then

∥∥∥ η
α

(
j(x)− u

)∥∥∥ = η < dist
(
j(v), E \N

)

and so
η

α

(
j(x)− u

)
+ j(v) ∈ N,

from which

ηj(x) + αj(v) ¹ ηu ¹ 0.

(4.0.1) now gives

j
(ηx+ αv

η + α

)
¹ ηj(x) + αj(v)

η + α
¹ 0,

which completes the proof of (a).

(b) Let u ∈ N and α and η be as in (a). Using (a), the convexity of k and (4.0.2), we
obtain

ηk(x) + αk(v)

η + α
≥ k

(ηx+ αv

η + α

)
≥ µ0,

from which α
(
k(v) − µ0

)
≥ η

(
µ0 − k(x)

)
. If we now let η → dist

(
j(v), E \ N

)
and then

take the infimum over u ∈ N , we obtain that

dist
(
j(x), N

)(
k(v)− µ0

)
≥ dist

(
j(v), E \N

)(
µ0 − k(x)

)
,

and (b) follows from (4.0.5).
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A new version of the Hahn–Banach theorem (continued)

Theorem 4.5. Suppose that B 6= ∅. Then there exists a Lagrange multiplier z∗0 such that

‖z∗0‖ ≤ inf
v∈B

k(v)− µ0

dist
(
j(v), E \N

) .

Proof. Let x ∈ A and v ∈ B. From Lemma 4.4(b), dist
(
j(x), N

)
> 0 and

µ0 − k(x)

dist
(
j(x), N

) ≤ k(v)− µ0

dist
(
j(v), E \N

) .

Taking the supremum over x ∈ A and the infimum over v ∈ B,

sup
x∈A

µ0 − k(x)

dist
(
j(x), N

) ≤ inf
v∈B

k(v)− µ0

dist
(
j(v), E \N

) .

The result now follows from Theorem 4.2.

5. Existence theorems without a priori scalar bounds for normed spaces

The main result is this section is Theorem 5.1. The equivalence of (5.1.1) and (5.1.2)
actually first appeared in [14, Theorem 7.2, p. 27–28], and was used in [14] to obtain a
number of criteria for a monotone multifunction on a reflexive Banach space to be maximal
monotone (including Rockafellar’s “surjectivity theorem”, to obtain conditions for the sum
of maximal monotone multifunctions on a reflexive Banach space to be maximal monotone,
and to obtain some results on maximal monotone multifunctions of Gossez’s type (D) on
an arbitrary Banach space. For more information, see the introductions to Sections 5
and 6 of [17]. This equivalence was also used in [16] to prove other results on maximal
monotonicity.

The proof of the equivalence of (5.1.1) and (5.1.2) given in [14, Theorem 7.2] was quite
nonconstructive, and a more constructive proof was given in [17, Theorem 5.1], together

with the bound infc∈C
[
‖j(c)‖ +

√
k(c) + ‖j(c)‖2

]
on the norm of ‖y∗‖ (see [17, Remark

5.6]). We now give a new proof of this equivalence, which relies on the direct Dedekind
section argument (5.1.6)–(5.1.7) and is much simpler than the proofs given in [14] and [17].

Furthermore, as is clear from (5.1.4), the bound supc∈C
[
‖j(c)‖−

√
k(c) + ‖j(c)‖2

]
∨ 0 on

the norm of ‖y∗‖ found in Theorem 5.1 is sharp. The analysis in this section depends only
on Theorem 2.8 — it does not depend on Sections 3–4 in any way.

Theorem 5.1. Let C be a nonempty convex subset of a vector space, F be a nontrivial
normed space, j: C 7→ F be affine and k ∈ PC(C). Then

c ∈ C =⇒ k(c) + ‖j(c)‖2 ≥ 0 (5.1.1)

if, and only if,

there exists y∗ ∈ F ∗ such that c ∈ C =⇒ k(c)− 2〈j(c), y∗〉 ≥ ‖y∗‖2. (5.1.2)

Ericethin run on 4/26/2004 at 15:03 Page 10



          

A new version of the Hahn–Banach theorem (continued)

Furthermore, if

M := sup
c∈C

[
‖j(c)‖ −

√
k(c) + ‖j(c)‖2

]
∨ 0 (5.1.3)

then

min
{
‖y∗‖: y∗ is as in (5.1.2)

}
= M. (5.1.4)

Proof. Since the values of c in C \ dom k have no impact on (5.1.1), (5.1.2) or the def-
inition of M , we can and will suppose that k: C 7→ R. We first prove the implication
(5.1.2)=⇒(5.1.1). Suppose that y∗ is as in (5.1.2). Then

c ∈ C =⇒ k(c) ≥ 2〈j(c), y∗〉+ ‖y∗‖2
=⇒ k(c) + ‖j(c)‖2 ≥ ‖j(c)‖2 + 2〈j(c), y∗〉+ ‖y∗‖2
=⇒ k(c) + ‖j(c)‖2 ≥ ‖j(c)‖2 − 2‖j(c)‖‖y∗‖+ ‖y∗‖2

=⇒ k(c) + ‖j(c)‖2 ≥
(
‖j(c)‖ − ‖y∗‖

)2 ≥ 0 (5.1.5)

=⇒
√
k(c) + ‖j(c)‖2 ≥ ‖j(c)‖ − ‖y∗‖

=⇒ ‖y∗‖ ≥ ‖j(c)‖ −
√
k(c) + ‖j(c)‖2.

(5.1.5) gives (5.1.1) and, since ‖y∗‖ ≥ 0, this also establishes that ‖y∗‖ ≥ M . We now
prove the implication (5.1.1)=⇒(5.1.2). So suppose that (5.1.1) is satisfied. We first show
that

a, b ∈ C =⇒ ‖j(b)‖ −
√
k(b) + ‖j(b)‖2 ≤ ‖j(a)‖+

√
k(a) + ‖j(a)‖2. (5.1.6)

To this end, let a, b ∈ C, λ >
√
k(a) + ‖j(a)‖2 ≥ 0 and µ >

√
k(b) + ‖j(b)‖2 ≥ 0. Write

α := ‖j(a)‖+ λ and β := ‖j(b)‖ − µ. Then, since j is affine,

0 ≤
∥∥∥j
(µa+ λb

µ+ λ

)∥∥∥ =
∥∥∥µj(a) + λj(b)

µ+ λ

∥∥∥ ≤ µ‖j(a)‖+ λ‖j(b)‖
µ+ λ

=
µα+ λβ

µ+ λ
.

Thus, from (5.1.1) applied to c =
µa+ λb

µ+ λ
∈ C, and the convexity of k and (·)2,

0 ≤ k
(µa+ λb

µ+ λ

)
+
(µα+ λβ

µ+ λ

)2

≤ µk(a) + λk(b) + µα2 + λβ2

µ+ λ
.

Multiplying by µ+ λ gives

0 ≤ µk(a) + λk(b) + µα2 + λβ2

= µ
(
k(a) + α2

)
+ λ

(
k(b) + β2

)

= µ
(
k(a) + ‖j(a)‖2 + 2λ‖j(a)‖+ λ2

)
+ λ

(
k(b) + ‖j(b)‖2 − 2µ‖j(b)‖+ µ2

)

< µ
(
2λ2 + 2λ‖j(a)‖

)
+ λ

(
2µ2 − 2µ‖j(b)‖

)
= 2µλ

(
λ+ ‖j(a)‖+ µ− ‖j(b)‖

)
.
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A new version of the Hahn–Banach theorem (continued)

On dividing by 2µλ, we obtain ‖j(b)‖ − µ < ‖j(a)‖ + λ, and (5.1.6) follows by letting
µ →

√
k(b) + ‖j(b)‖2 and λ →

√
k(a) + ‖j(a)‖2. Now (5.1.3) and (5.1.6) imply that, for

all c ∈ C,

‖j(c)‖ −
√
k(c) + ‖j(c)‖2 ≤M and M ≤ ‖j(c)‖+

√
k(c) + ‖j(c)‖2, (5.1.7)

from which
c ∈ C =⇒

∣∣‖j(c)‖ −M
∣∣ ≤

√
k(c) + ‖j(c)‖2

=⇒
(
‖j(c)‖ −M

)2 ≤ k(c) + ‖j(c)‖2

=⇒ k(c) + 2M‖j(c)‖ ≥M2.

It now follows from Theorem 2.8 that there exists L ∈ F ∗ such that ‖L‖ ≤ 2M and

k + L ◦ j ≥M2 on C.

Thus (5.1.2) is satisfied with y∗ := −L/2. This completes the proof of (5.1.2), and also
shows that we can find y∗ satisfying (5.1.2) with ‖y∗‖ ≤M , establishing (5.1.4).

Remark 5.2. We note that y∗ = 0 satisfies (5.1.2) exactly when k ≥ 0 on C and, in this
case, M = 0. In all other cases, M is given by the simpler formula

sup
c∈C

[
‖j(c)‖ −

√
k(c) + ‖j(c)‖2

]
.

6. An existence theorem without a priori scalar bounds for
sublinear functionals

We note that (5.1.1) can be written infC
[
k+ψ ◦S ◦ j

]
≥ 0, where ψ: R 7→ R is defined by

ψ := (·)2 and S := ‖ · ‖, and infC
[
S ◦ j + k

]
in (2.8.1) can be written infC

[
k + ψ ◦ S ◦ j

]

where ψ: R 7→ R is defined by ψ := (·). Thus it is natural to ask whether there is a result
that simultaneously generalizes Theorem 2.8 and Theorem 5.1. Theorem 6.1, which is such
a result, is the topic of this section. The equivalence of (6.1.3) and (6.1.4) was first proved
in [17, Theorem 5.4] using a rather technical product space argument and giving a weaker
bound on N than that given here. We give here a new proof of this equivalence, which
relies on the much simpler Dedekind section argument (6.1.7)–(6.1.11). Furthermore, as
is clear from (6.1.6), the bound on N found in Theorem 6.1 is sharp. We refer the reader
to [17, Remarks 5.5 and 5.6] for the details of how Theorem 6.1 implies Theorem 2.8 and
Theorem 5.1.

We first discuss the conditions (6.1.1) and (6.1.2) on the function ψ. (6.1.1) is to
ensure that the quantity M defined in (6.1.5) is finite, while (6.1.2) is needed in (6.1.8). Of
course, (6.1.1) is automatically true if ψ is real–valued, as is the case with the two examples
mentioned above. As for (6.1.2), if ψ := (·), ψ is increasing on R and so (6.1.2) is automatic
while, if ψ := (·)2 and S := ‖ · ‖, (6.1.2) is true since S ◦ j(c) ≤ γ =⇒ S ◦ j(c), γ ∈ [0,∞)
and ψ is increasing on [0,∞).

(
We note that (6.1.1) was described in [17] by saying that

ψ is “S, j–compatible”.
)
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A new version of the Hahn–Banach theorem (continued)

Theorem 6.1. Let C be a nonempty convex subset of a vector space, E be a nontrivial
vector space, S: E 7→ R be sublinear, j: C 7→ E be S–convex and k ∈ PC(C). Let
ψ ∈ PC(R) satisfy (

S ◦ j(dom k) + (0,∞)
)
∩ domψ 6= ∅ (6.1.1)

and
c ∈ C and S ◦ j(c) ≤ γ =⇒ ψ ◦ S ◦ j(c) ≤ ψ(γ). (6.1.2)

Then
k + ψ ◦ S ◦ j ≥ 0 on C (6.1.3)

if, and only if,

there exist N ≥ 0 and a linear functional L on E such that

L ≤ NS on E and k + L ◦ j ≥ ψ∗(N) on C.

}
(6.1.4)

Furthermore, if

M := sup
c∈C, µ<0

k(c) + ψ
(
S ◦ j(c) + µ

)

µ
∨ 0 (6.1.5)

then
min

{
N : N is as in (6.1.4)

}
= M. (6.1.6)

Proof. Suppose first that (6.1.4) is satisfied, from which ψ∗(N) ∈ R. Then, for all c ∈ C
and ν ∈ R,

k(c) + ψ
(
S ◦ j(c) + ν

)
≥ k(c) +N

(
S ◦ j(c) + ν

)
− ψ∗(N)

= k(c) +NS ◦ j(c)− ψ∗(N) +Nν

≥ k(c) + L ◦ j(c)− ψ∗(N) +Nν ≥ Nν.

If we put ν = 0 in this, we obtain (6.1.3). On the other hand, we also derive that

c ∈ C and µ < 0 =⇒ k(c) + ψ
(
S ◦ j(c) + µ

)

µ
≤ N

and, since N ≥ 0, this also shows that N ≥ M . Suppose, conversely, that (6.1.3) is
satisfied. We first show that

a, b ∈ C and µ < 0 < λ =⇒ k(b) + ψ
(
S ◦ j(b) + µ

)

µ
≤ k(a) + ψ

(
S ◦ j(a) + λ

)

λ
. (6.1.7)

To this end, let a, b ∈ C and µ < 0 < λ. Write α := S ◦ j(a) + λ and β := S ◦ j(b) + µ.
Then, from the S–convexity of j and the sublinearity of S,

S ◦ j
(λb− µa
λ− µ

)
≤ S

(λj(b)− µj(a)

λ− µ
)
≤ λS ◦ j(b)− µS ◦ j(a)

λ− µ =
λβ − µα
λ− µ .

Ericethin run on 4/26/2004 at 15:03 Page 13



        

A new version of the Hahn–Banach theorem (continued)

Thus, using (6.1.2) with c := (λb − µa)/(λ − µ) and γ := (λβ − µα)/(λ − µ), (6.1.3) and
the convexity of k and ψ,

0 ≤ k
(λb− µa
λ− µ

)
+ ψ

(λβ − µα
λ− µ

)
≤ λk(b)− µk(a) + λψ(β)− µψ(α)

λ− µ , (6.1.8)

and (6.1.7) follows on multiplication by λ− µ > 0 and substituting in the values of α and
β. From (6.1.2) and (6.1.3), for all c ∈ C and λ > 0,

k(c) + ψ
(
S ◦ j(c) + λ

)

λ
≥ k(c) + ψ ◦ S ◦ j(c)

λ
≥ 0, (6.1.9)

and (6.1.1) provides a ∈ dom k and λ > 0 such that S ◦ j(a) + λ ∈ domψ, from which

k(a) + ψ
(
S ◦ j(a) + λ

)

λ
<∞. (6.1.10)

(6.1.7) and (6.1.10) imply that M ∈ [0,∞), and (6.1.7) and (6.1.9) that, for all c ∈ C and
µ < 0 < λ,

k(c) + ψ
(
S ◦ j(c) + µ

)

µ
≤M ≤ k(c) + ψ

(
S ◦ j(c) + λ

)

λ
. (6.1.11)

Combining this with (6.1.3), we obtain

c ∈ C and ν ∈ R =⇒ k(c) + ψ
(
S ◦ j(c) + ν

)
≥Mν

⇐⇒ k(c) +MS ◦ j(c) ≥M
(
S ◦ j(c) + ν

)
− ψ

(
S ◦ j(c) + ν

)
.

Taking the supremum of the right–hand side over ν ∈ R shows that

c ∈ C =⇒ k(c) +MS ◦ j(c) ≥ ψ∗(M)

and (6.1.4) (with N replaced by M) now follows from Theorem 2.8. This completes the
proof of Theorem 6.1.
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