
EXERCISES ON BINARY QUADRATIC FORMS

JEFFREY STOPPLE

These are mostly computational exercises to help you understand
the theorems in Chapter One of [Cox] ‘Primes of the form x2 + ny2’.
Section numbers like §1B below refer to the corresponding sections
in Chapter One.

Notation. The acronym BFI stands for ‘brute force and . . . ignorance’,
i.e. direct computation. We sometimes write a binary quadratic form

F (x, y) = ax2 + bxy + cy2 as {a, b, c}
suppressing the variables for convenience. The discriminant d =
b2 − 4ac is assumed to be < 0 in these notes.

Technology. The arithmetic can be tedious to do by hand, and a cal-
culator uses ‘floating point’ numbers, rounded off approximations
to real numbers. The calculator will give wrong answers to integer
arithmetic when the integers are moderately large. Instead, use a
package like Mathematica, Maple, or PARI. These notes refer to PARI,
since it is free. You can download PARI at

http://pari.math.u-bordeaux.fr/download.html

Be sure to get the Binary version if you have a Windows machine1,
Stable version if you have Linux or Mac OS X.

§1B.

Exercise 1. ‘Reciprocity’ and ‘Descent’ in Fermat’s proof that p ≡
1 mod 4 can be written x2 + y2 (Thm 1.2).

(1) For some primes, only the Reciprocity step is needed, no De-
scent. This can be true when, in searching for a such that p
divides a2 +1, you find that p is actually equal a2 +1 for some
integer a. Find a a so that p = a2 + 1 for p = 2, 5, 17, 37, 101.

(2) For some primes, a single Descent step is necessary. For p =
13, 29,

stopple@math.ucsb.edu.
1and read §5 ‘System Specific’ of the FAQ at

http://www.math.u-bordeaux.fr/ belabas/pari/doc/faq.html
1
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(a) Find an a so that p divides N = a2 + 1 (Reciprocity). Fac-
tor N .

(b) With q the smaller prime factor of N , use the represen-
tation q = x2 + y2 you found above to write p = N/q as
c2 + d2. The proof of Thm 1.2 tells you how.

(3) For some primes, more than one Descent step is necessary.
Carry out the steps for p = 293. The Reciprocity step may be
tedious to do by hand, but is trivial with the PARI command

for(a=1,146,print(a" "(aˆ2+1)/293))

Remember, the point of this exercise is to understand the proof of
Thm 1.2, not merely to find the representation as a sum of two squares,
which can sometimes be done by inspection. �

Exercise 2. ‘Reciprocity’ and ‘Descent’ in Euler’s proof that p ≡ 1, 3 mod
8 can be written x2 + 2y2.

(1) Find an a so that p = a2 + 2 for p = 3, 11, 83. (This is the case
where you need no Descent steps.)

(2) Find an a so that p = 17 divides a2 +2. Carry out one Descent
step to write 17 = c2 + 2d2. The solution to exercise 1.3a in
[Cox] tells you how.

(3) Find an a so that p = 233 divides a2+2. Carry out two Descent
steps to write 233 = c2 + 2d2.

Remember, the point of this exercise is to understand the proof, not
merely to find the representation as a square plus twice a square,
which can sometimes be done by inspection. �

§1C.

Exercise 3. Euler’s Conjecture 1.9 on Quadratic Reciprocity.
(1) For q = 11, 4q = 44. Find an odd prime p in each of the classes

±1,±9,±25,±49,±81 mod 44.

Note that ±25 = ∓19, ±49 = ±5, and ±81 = ∓7 mod 44. The
first few odd primes are

3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59,

61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127 . . .

(2) For each prime p you found above, verify that(
11

p

)
= 1,



EXERCISES ON BINARY QUADRATIC FORMS 3

and that (
11

p′

)
= −1

for the other primes p′ not in square classes mod44. You may
compute each Legendre symbol with a single ‘flip’using Qua-
dratic Reciprocity and lookup in a table modulo 11 if you like.

�

Exercise 4. There is more than one form with discriminant −84.
(1) Do exercise 1.15 in [Cox], which says to use Quadratic Reci-

procity to determine which classes [p] in

(Z/84)∗

have χ([p]) = 1.
(2) The binary quadratic forms

x2 + 21y2, 3x2 + 7y2, 2x2 + 2xy + 11y2, 5x2 + 4xy + 5y2

all have discriminant −84. For odd primes p different from
3, 7, try to determine congruences modulo 84 which tell you
which forms represent which primes. The PARI code below
may be of use:

{forprime(p=1,500,if(kronecker(-84,p)==1,
print(p" "Mod(p,84)" "qfbred(qfbprimeform(-84,p)))))}

�

Exercise 5. This is a continuation of exercise 4.
(1) Show by BFI that the classes {1, 25, 37} form a subgroup H of

the multiplicative group (Z/84)∗.
(2) Show that H is a subgroup of ker(χ−84). That is, show that

χ−84(h) = 1 for each h in H .
(3) Show that H is the subgroup of squares in (Z/84)∗. Hint:

Any square modulo 84 = 12 · 7 is a square in (Z/12)∗ and
also a square in (Z/7)∗. What are the squares in these groups?
Reduce the elements of H modulo 12 and 7 and compare.

(4) What are the elements in the cosets

[5] ·H, [11] ·H, [19] ·H,
and how do they relate to the classes modulo 84 represented
by the forms

3x2 + 7y2, 2x2 + 2xy + 11y2, 5x2 + 4xy + 5y2?

�
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§2A. exercise 2.3 in [Cox], which says equivalent forms have the
same discriminant, is a tedious direct calculation. Instead, we use
the fact that in matrix language

F (x, y) = ax2 + bxy + cy2 =
[
x y

] [ a b/2
b/2 c

] [
x
y

]
and F ′ ∼ F via a matrix M , if

F ′(x, y) = F ((x, y)M).

Thus

F ′(x, y) =
[
x y

]
M

[
a b/2
b/2 c

]
tr(
[
x y

]
M)

=
[
x y

]
M

[
a b/2
b/2 c

]
trM

[
x
y

]
where trM denotes the transposed matrix.

Exercise 6. Show that equivalent forms have the same discriminant
d. Hint: how does the discriminant of F relate to the determinant of
the matrix above? �

Multiplication shows that, with d = b2 − 4ac,

(1) 4a(ax2 + bxy + cy2) = (2ax+ by)2 − dy2.

If d < 0, the expression on the right is always positive. This means
that ax2 + bxy + cy2 always has the same sign as the constant a.
In other words, a form with negative discriminant represents only
positive numbers or only negative numbers. There is obviously a
close connection between the cases; the range of values of {a, b, c} is
the negative of the range of values of {−a,−b,−c}. For this reason,
we will now consider only forms which represent positive integers.
Such forms are called POSITIVE DEFINITE; they have a > 0. Since
{a, b, c} is equivalent to {c,−b, a} by (x, y)→ (−y, x), this latter form
also represents only positive integers, and so its first coefficient c is
also positive.

A key fact in the theory is that for a fixed d, the number of equiv-
alence classes of forms with discriminant d is finite. We define h the
CLASS NUMBER to be the number of equivalence classes. We provide
below alternate simpler proofs of Theorems 2.8 and 2.13 in [Cox].
(This material is stolen from [Stopple], who stole it from [Oesterlé].)
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Theorem. For each d < 0 the class number h is finite. In fact, every form
is equivalent to a form {a, b, c} with

|b| ≤ a ≤ c.

This is (part of) Theorem 2.8 in [Cox].
Proof. The proof of the theorem consists of showing that, if the in-
equality fails to hold, we can find an equivalent form which reduces
the sum of the first and last coefficients. This process can be repeated
only a finite number of times since there are only finitely many pos-
itive integers less than a+ c.

So, let sgn(b) = ±1 be the sign of b, then sgn(b)b = |b|. If a < |b|,
the matrix[

1 0
−sgn(b) 1

]
changes (x, y) to (x− sgn(b)y, y).

The corresponding form is

a(x− sgn(b)y)2 + b(x− sgn(b)y)y + cy2 =

ax2 + (b− 2sgn(b)a)xy + (a+ c− |b|)y2.

We have that a+ (a+ c− |b|) < a+ c, because a < |b|.

Exercise 7. Show that, in the case c < |b|, the matrix[
1 −sgn(b)
0 1

]
similarly reduces the sum of the first and last coefficients. �

Eventually, both a and c are ≥ |b|, and the matrix [ 0 1
−1 0 ] inter-

changes a and c if necessary. This proves the inequality claimed
above.

Next we show that there are only finitely many such triples with
discriminant d. The inequalities for a, |b|, and c imply that

3a2 = 4a2 − a2 ≤ 4ac− b2 = −d = |d|.

This means a ≤
√
|d|/3 and |b| ≤ a ≤

√
|d|/3. Also, b2 − 4ac = d

implies b2 ≡ d mod 4, and thus b ≡ d mod 2. In other words b is odd
if and only if d is. There are only finitely many choices for a and b,
and c is then completely determined by the discriminant equation;
c = (b2 − d)/(4a).

The theorem not only proves the class number is finite, but gives
an upper bound. Here is an example with d = −35. We have

√
|d|/3 =

3.41565 . . . , so |b| ≤ 3 and 1 ≤ a ≤ 3. Also, b must be odd as d is, so
b is restricted to −3,−1, 1, or 3. With b = ±1, b2 − d is 36. We only
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get a form when c = (b2 − d)/(4a) is an integer. The choice a = 1
gives rise to the forms {1,±1, 9}. The choice a = 2 gives c = 36/8;
not an integer. The choice a = 3 gives rise to the forms {3,±1, 3}.
Meanwhile if b = ±3 then a ≥ |b| must be 3, and c = 44/12 is not an
integer. The class number is less than or equal to 4.

Exercise 8. Carry out this same analysis with discriminant −23 to
get a bound on the class number. �

In fact the proof above gives even more. It actually gives an al-
gorithm for finding a representative of a class which satisfies the
inequalities. For example, the form {33,−47, 17} has discriminant
−35, but 47 > 33 so the theorem says to replace (x, y) by (x + y, y),
which gives {33, 19, 3}. We chose the sign ‘+’because bwas negative.
Now 19 > 3, so the theorem says to change (x, y) to (x, y − x) which
gives {17, 13, 3}. Again 13 > 3 so the same variable change produces
{7, 7, 3} and then {3, 1, 3}, which can be reduced no further since the
inequality 1 ≤ 3 ≤ 3 is satisfied. Notice that the sum of the first and
last entry decreases at each step:

33 + 17 > 33 + 3 > 17 + 3 > 7 + 3 > 3 + 3.

Exercise 9. Carry out this algorithm with the form

F (x, y) =12x2 + 11xy + 3y2

which has discriminant −23. Also, at each step of the reduction,
compute the sum of the first and last coefficients to see that it really
does decrease at each step. Do the same for

G(x, y) =39x2 + 43xy + 12y2 and

H(x, y) =93x2 + 109xy + 32y2,

which also both have discriminant −23. �

We now have a bound on the class number, but we want to know
it exactly. The question is, can two forms with the same discriminant
satisfying the inequality of the theorem be equivalent to each other?
To answer this, we will need the following lemma.

Lemma (Fundamental Inequalities). Suppose the quadratic form

F (x, y) = ax2 + bxy + cy2

satisfies |b| ≤ a ≤ c. Then a is the minimum of F , that is, for all
(x, y) 6= (0, 0),

F (x, y) ≥ a.
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Furthermore, ac is the minimum of products of values of F . In other
words for all pairs of lattice points (x, y) and (u, v) with (x, y) and
(u, v) not colinear,

F (x, y)F (u, v) ≥ ac.

Proof. It is easy to see that F actually does represent a, since a =
F (1, 0). Similarly F (1, 0)F (0, 1) = ac. If x 6= 0,

F (x, 0) =ax2 ≥ a.(2)

Similarly if y 6= 0

F (0, y) =cy2 ≥ c,(3)

and c ≥ a. In the general case neither x nor y is 0. We see that

F (x, y) =ax2 + bxy + cy2

≥ax2 − |b||x||y|+ cy2

≥ax2 − |b||x||y|+ cy2 − a(x− y)2

=(2a− |b|)|x||y|+ (c− a)y2

≥(2a− |b|) + (c− a) = a+ c− |b| ≥ c(4)

since a ≥ |b|. This proves that a is the minimum value. Suppose we
have two lattice points which are not colinear. They can not both lie
on the horizontal axis. Thus one of the inequalities (3) or (4) must
hold, and the product F (x, y)F (u, v) ≥ ac.

Now we are ready to tell whether forms satisfying the usual in-
equalities are equivalent. Almost always they are distinct; the only
ambiguity is that {a, b, c} ∼ {a,−b, c} if b = 0 (which is trivial), if
|b| = a or if a = c. We will state this more precisely.

Theorem. Every form with discriminant d is equivalent to exactly one
form satisfying the inequalities

(5) |b| ≤ a ≤ c and b ≥ 0 if either |b| = a, or if a = c.

This is (the rest of) Theorem 2.8 and also Theorem 2.13 in [Cox].
Proof. First observe that if b = 0, then {a, b, c} ∼ {a,−b, c} is triv-
ial. If a = c, then changing (x, y) to (−y, x) shows that {a, b, c} ∼
{c,−b, a} = {a,−b, c}. Finally if |b| = a then we saw in the proof of
the last theorem that changing (x, y) to (x− sgn(b)y, y) makes

{a, b, c} ∼ {a, b− 2sgn(b)a, a+ c− |b|} = {a,−b, c}.
Together with the previous theorem this already shows every form
is equivalent to at least one form satisfying the inequalities.
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We need to show ‘at most one’; that is, that the forms satisfying
the inequalities are in distinct classes. Suppose now that F = {a, b, c}
and F ′ = {a′, b′, c′} are equivalent, and both satisfy the inequalities
(5). Since they are equivalent, they represent the same integers, and
so have the same minimum. The lemma says the minimum of F is a
and the minimum of F ′ is a′, so a′ = a. Similarly the minimum for
products of pairs are equal, and so a′c′ = ac and thus c′ = c. By the
fact that b2 − 4ac = b′2 − 4a′c′ we get that b′ = ±b. If b′ = b, we are
done. (Why?) If b′ = −b, one of the two is negative. Without loss of
generality it is b. Then the inequalities imply that

0 < |b| < a < c.

In this case the proof of (4) shows we have strict inequalities, that is

(6) F (x, y) > c > a if neither x nor y is 0.

Since F and F ′ are equivalent, there is a change of variables

F ′(x, y) = F (rx+ ty, sx+ uy).

Then a = F ′(1, 0) = F (r, s). By (6), we deduce that s = 0 and r = ±1.
Similarly c = F ′(0, 1) = F (t, u) gives t = 0 and u = ±1. In order to
get determinant 1, the matrix is either [ 1 0

0 1 ] of
[ −1 0

0 −1

]
, which means

that F ′ actually was equal to F all along, not just equivalent.
A form which satisfies the inequalities (5) is called REDUCED. The

theorem says every equivalence class contains exactly one reduced
form. In our example with discriminant −35 above, we see the re-
duced forms are precisely {1, 1, 9} and {3, 1, 3}, and thus the class
number is 2.

The theorem actually leads to an algorithm to enumerate all the
reduced forms, and thus compute the class number. We observed
above that for a reduced form {a, b, c} of discriminant d, we have
|b| ≤

√
|d|/3 and b ≡ d mod 2. The first step of the algorithm is to list

all possible b values. Next we notice that 4ac = b2 − d implies that
the only possible a choices are divisors of (b2−d)/4. Furthermore we
need only consider divisors a with |b| ≤ a. Since the c value will be
(b2 − d)/(4a) we will have a ≤ c exactly when a ≤

√
(b2 + d)/4 ≤ c.

The second step is to list all possible a and c values for each b. For
each triple a, b, c we count one or two forms according to whether or
not {a, b, c} ∼ {a,−b, c} by the second part of (5).

Exercise 10. Compute the reduced forms for the discriminants −627
and −1411. �

Exercise 11. This exercise determines which reduced form of dis-
criminant −23 represents 13. See Lemma 2.5 in [Cox].
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(1) Verify that (
−23

13

)
= 1.

(2) Solve the congruences (by BFI, or whatever)

b2 ≡ −23 mod 13, b ≡ −23 mod 2.

(3) Now you have b2 ≡ −23 mod 4 · 13, so you can write

−23 = b2 − 4 · 13 · l

for some l.
(4) So the form {13, b, l} represents 13, and has discriminant −23.

Carry out the reduction algorithm to see which reduced form
it is equivalent to. This form also represents 13. �

§2C. Equation (2.19) in [Cox] says

p ≡ 1, 3, 7, 9 mod 20 ⇔
(
−5

p

)
= 1

⇔ p = x2 + 5y2 or 2x2 + 2xy + 3y2.

Exercise 12. Write(
−20

p

)
=

(
−5

p

)
=

(
−1

p

)
·
(

5

p

)
,

and use (1.16) in [Cox] and Quadratic Reciprocity to determine con-
gruences on p modulo 4 and 5 which make both terms positive, (re-
spectively, both negative.) Next, use these to determine congruences
modulo 20 which make both terms positive, (respectively, both neg-
ative.) We will see below this determines which of the two forms of
discriminant −20 represent p. �

Exercise 13. Write(
−56

p

)
=

(
8

p

)
·
(
−7

p

)
=

(
2

p

)
·
(
−7

p

)
,

and use (1.16) in [Cox] and Quadratic Reciprocity to determine con-
gruence on p modulo 8 and 7 which make both terms positive, (re-
spectively, both negative.) Next, use these to determine congruences
modulo 56 which make both terms positive, (respectively, both neg-
ative.) We will see below this determines which of the four forms of
discriminant −56 represent p. �
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On p. 33 of [Cox], he says “When D = −20, one easily computes
that

x2 + 5y2 represents 1, 9 in (Z/20Z)∗

2x2 + 2xy + 3y2 represents 3, 7 in (Z/20Z)∗”

For the first equation reduce modulo 4 and consider all the cases of
x and y being even or odd, to see that an odd prime p represented by
the form must be 1 modulo 4. Now reduce modulo 5 to see it must
be 1 or 4 modulo 5. The former is 1 modulo 20; the latter is 9 modulo
20.

For the second equation, with an odd p = 2x2+2xy+3y2, necessar-
ily y must be odd and 3y2 is 3 modulo 4. Whether x is odd or even,
2x2 + 2xy is 0 modulo 4, so in all cases 2x2 + 2xy+ 3y2 is 3 modulo 4.
Meanwhile,

2x2 + 2xy + 3y2 ≡ 3(2x+ y)2 mod 5.

If p is not 5 then (2x + y)2 is a nonzero square modulo 5, so is 1 or 4.
Then 3 times that is either 3 or 2 modulo 5. Combined with the mod
4 result, the former is 3 modulo 20 and the latter is 7 modulo 20.

Cox continues “. . . while for D = −56 one has

x2 + 14y2, 2x2 + 7y2 represent 1, 9, 15, 23, 25, 39 in (Z/56Z)∗

3x2 ± 2xy + 5y2 represent 3, 5, 13, 19, 27, 45 in (Z/56Z)∗”

(If your book has 29 instead of 39, it is a typo.)

Exercise 14. To see this,
(1) Reduce x2 + 14y2 and 2x2 + 7y2 modulo 7 to see the former is

a square modulo 7, i.e. in the set {1, 2, 4}, while the latter is
twice a square: {2, 4, 1}.

(2) Verify that x2 + 14y2 ≡ x2 + 6y2 modulo 8. If the form repre-
sents a p relatively prime to 56, then x is odd (why?) Show p
is 1 or 7 modulo 8 depending on y modulo 2.

(3) Meanwhile 2x2 + 7y2 ≡ −(6x2 + y2) modulo 8. What are the
possibilities for x and y modulo 2? Show p is 7 or 1 modulo 8.

(4) Verify the six possibilities (three choices modulo 7 and two
modulo 8) give exactly the six modulo 56 Cox claims. For
example, if p ≡ 39 modulo 56 then p ≡ 4 modulo 7 and ≡ 7
modulo 8.

(5) Verify

3x2 ± 2xy + 5y2 ≡ 3(x± 5y)2 mod 7.
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What are the nonzero squares modulo 7? What is the set of 3
times a square, modulo 7? (Observe this is the same whether
you choose + or −.)

(6) Verify

3x2 ± 2xy + 5y2 ≡ 3((x± 3y)2 + 6y2) mod 8.

Show this is 3 times (1 or 7) modulo 8, i.e. 3 or 5 modulo 8.
(7) What classes modulo 56 are (3, 5, or 6 modulo 7) and (3 or 5

modulo 8)? �

Exercise 15. This exercise does for discriminant −15 what was done
above for discriminants −20 and −56.

(1) Find all reduced forms of discriminant −15, using the reduc-
tion algorithm. (There are only two.)

(2) By writing

χ−15([p]) =

(
−15

p

)
=

(
−3

p

)(
5

p

)
,

determine conditions on p modulo 3 and modulo 5 such that
χ−15([p]) = 1.

(3) Determine the congruence classes [p] modulo 15 such that
χ−15([p]) = 1. By Theorem 2.16 in [Cox], an odd p 6= 3, 5 is
in one of these classes if and only if p is represented by one of
the two forms you found above.

(4) Determine which forms represent which congruence classes
modulo 15. Because the discriminant is odd, the ‘completing
the square’ trick works slightly differently: you should look
not just at p modulo 15, but 4p modulo 15 in the case of the
principal form, and 8p modulo 15 in the other case. Now re-
duce modulo 3 and modulo 5. �

Exercise 16. This exercise is like the previous one, but perhaps more
structured. For discriminant−39, there are four reduced forms, namely
{1, 1, 10}, {3, 3, 4}, and {2,±1, 5} (you certainly know enough by now
to verify this.)

(1) Since 13 ≡ 1 mod 4,
(

13
p

)
=
(

p
13

)
. Show, by considering cases

of p modulo 4, that (
−3

p

)
=
(p

3

)
.

(2) Consider the congruences of p modulo 3 and 13 that make
both symbols positive (resp. negative).

(3) Now determine the congruences modulo 39 that do the same.
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(4) From Equation (1), we have

4af(x, y) = (something)2 + 39y2,

where a is the lead coefficient of f(x, y), for each of the four
forms above. Assuming we have an odd prime p = f(x, y),
reduce this modulo 3 or 13 to determine which congruence
classes can be represented by which forms. �

Exercise 17. This exercise is similar to exercise 11, but builds on the
example (2.21) in [Cox].

(1) Verify that the prime p = 71 is congruent to 15 modulo 56.
Therefore, by (2.21) it is represented by either x2 + 14y2 or by
2x2 + 7y2. But which?

(2) Solve the congruences (by BFI, or PARI)

b2 ≡ −56 mod 71, b ≡ −56 mod 2.

(3) Now you have b2 ≡ −56 mod 4 · 71, so you can write

−56 = b2 − 4 · 71 · l

for some l.
(4) So the form {71, b, l} represents 71, and has discriminant −56.

Carry out the reduction algorithm to see which reduced form
it is equivalent to. This form also represents 71.

(5) Show by BFI that the other form does not represent 71. Hint:
0 < y < 3, and 0 < x <

√
71− 14y2. �

Exercise 18. The proof of Lemma 2.24 shows that for discriminants
d ≡ 1 mod 4, the subgroupH of values of the principal form in (Z/d)∗
is actually the subgroup of squares. This is useful for actually com-
puting H . Show that if d = −4n, with n ≡ 1 mod 4, this statement is
still true. Hint: Look at x2+ny2 modulo n and modulo 4, considering
whether x and y are odd or even. �

A FUNDAMENTAL DISCRIMINANT d is one which is not of the form
Df 2 with D also a discriminant. Equivalently, d is squarefree if d ≡
1 mod 4, and if d ≡ 0 mod 4 then n = d/4 is squarefree with n ≡ 2 or
3 mod 4.

The previous exercise shows for fundamental discriminants d, that
H is the subgroup of squares as long as d is not 0 modulo 8.

Exercise 19. Now that we have Theorem 2.26 in [Cox], we can prove
a strong theorem like Fermat’s any time there is a single class in each
genus.
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(1) Use the algorithm to list all of the reduced forms of discrimi-
nant −195. (You should see four of them.)

(2) Since the discriminant is odd, the principal genus is the sub-
group H of squares in (Z/195)∗. Determine the elements of
this subgroup by BFI, or PARI, or use the fact that 195 =
3 · 5 · 13, and a is a square if and only if it is congruent to
a square modulo each prime factor. (You should see that
]H = 12.)

(3) For each form you found in (1) other than the principal form,
determine a value it represents which is relatively prime to
195. (You should be able to do this by inspection.) Now de-
termine the corresponding coset of H .

(4) Since each form gives a different coset, there must only be one
class in each genus! State a theorem like (2.22) in [Cox] for the
four forms you found in (1).

(5) Use the congruence conditions to determine which forms (if
any) represent the following primes:

{229, 233, 239, 241, 251, 257, 263, 269, 271, 277}

�

Exercise 20. OK, maybe the numbers were too large in the previous
exercise to get a feel for what’s going on.

(1) Use the algorithm to list all of the reduced forms of discrimi-
nant −39. (You should see four of them.)

(2) Since the discriminant is odd, the principal genus is the sub-
groupH of squares in (Z/39)∗. Determine the elements of this
subgroup by BFI, or PARI, or use the fact that 39 = 3 · 13, and
a is a square if and only if it is congruent to a square modulo
each prime factor. (You should see that ]H = 6.)

(3) For each form you found in (1) other than the principal form,
determine a value it represents which is relatively prime to 39.
(You should be able to do this by inspection.) Now determine
the corresponding coset of H .

(4) You should see that the four forms correspond to only two
cosets; there are two classes in each genus! State a theorem
similar to (2.21) in [Cox] �

Exercise 21. This is a continuation of exercise 5, where you showed
that the kernel of the Kronecker symbol, ker(χ−84) is the union of

H = {1, 25, 37},
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along with the cosets [5] ·H , [11] ·H , and [19] ·H . Now we know that
by Theorem 2.26 in [Cox],

p = x2 + 21y2 ⇔ [p] ∈ H
p = 3x2 + 7y2 ⇔ [p] ∈ [19]H

p = 2x2 + 2xy + 11y2 ⇔ [p] ∈ [11]H

p = 5x2 + 4xy + 5y2 ⇔ [p] ∈ [5]H

This exercise investigates what the factorizations of the discrimi-
nant into a product of discriminants tells us. We can factor −84 into
discriminants three ways: as

−3 · 28, or − 4 · 21 or − 7 · 12.

(1) Show that(
−84

a

)
= 1⇔(

−3

a

)
=

(
28

a

)
,

(
−4

a

)
=

(
21

a

)
,

(
−7

a

)
=

(
12

a

)
.

(2) On each element a ofH , as well as each element a of the cosets
[5] ·H , [11] ·H , and [19] ·H , compute each of(

−3

a

)
,

(
−4

a

)
,

(
−7

a

)
.

Your answer is a table with 3 columns and 12 rows. Instead
of just BFI, try to use the multiplicative properties of the Kro-
necker symbol. You might also use the fact that H is the sub-
group of squares in (Z/84)∗ to simplify the computation; any-
thing in H is also a square modulo every divisor d of 84. �

These are examples of what we will eventually call GENUS CHAR-
ACTERS.

§3A. Lemma 3.2 and Lemma 3.3 in [Cox] on composition of forms
can be greatly simplified.

Exercise 22. Suppose we have forms f = {a, b, c} and g = {a′, b′, c′}.
By Lemma 2.25 and Lemma 2.3 we can change the variables in g so
that (a, a′) = 1. Thus there exist x and x′ so that xa+ x′a′ = 1.
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(1) Verify directly that the solutionB to the first two congruences
in Lemma 3.2

B ≡ b mod 2a

B ≡ b′ mod 2a′

is given by
B = x′a′b+ xab′.

(2) Verify, just as in the proof of Lemma 3.2, that the third con-
gruence

B2 ≡ d mod 4aa′

actually follows from the first two. Hint: At some point you
will need the fact that b2 = d+ 4ac, and b′2 = d+ 4a′c′.

(3) Verify directly that for a form f = {a, b, c} and its opposite
{a,−b, c} ∼ {c, b, a}, that B = b trivially satisfies the congru-
ences of Lemma 3.2, without the requirement that a and a′ = c
be relatively prime. �

Exercise 23. There are five reduced forms of discriminant−47, namely

{1, 1, 12}, {2,±1, 6}, {3,±1, 4}.
(1) Use the composition law (3.7) to compute the square of the

form {2, 1, 6}. (Try the substitution (x, y)→ (x, x+ y) to make
(a, a′) = 1.) Which reduced form is this equivalent to?

(2) Now compose that form with {2, 1, 6}. Which reduced form
is it equivalent to?

(3) Since the group has order 5, it is isomorphic to Z/5. Can you
give a correspondence between the five forms and the set

Z/5 = {0, 1, 2, 3, 4}?
�

Exercise 24. This exercise compliments Proposition 3.11 of [Cox],
covering the case when d ≡ 1 mod 4. With r the number of prime
factors of d, there are 2r−1 ambiguous forms

{e, e, (e− d/e)/4} for e|d, 0 < e <
√
|d|.

(1) Verify that (e−d/e)/4 is really an integer, and that these forms
all have discriminant d.

(2) Verify that if e <
√
|d|/3, the form is reduced.

(3) Verify that if
√
|d|/3 < e <

√
|d|, then a single step of the

reduction algorithm gives the form

{(e− d/e)/4, (e+ d/e)/2, (e− d/e)/4},
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and that this form is now reduced.
(4) Any ambiguous form {a, b, c} has a = b or a = c. (The case

b = 0 is omitted since d is odd.) Show that every such form
arises from one of the divisors e of d as above. Hint: The
discriminant b2 − 4ac = d. �

§3B. The next four exercises will compute an example illustrating
the results in §3B of Chapter 1 in [Cox].

Exercise 25. If you don’t have PARI to help with the computations,
or if you are new at group theory, be sure to ask for lots of help.

(1) List all the reduced forms with discriminant−260. (You should
see eight of them.)

(2) How many forms are ambiguous, i.e. have order 2? There are
three abelian groups of order 8, namely

Z/8, Z/4× Z/2, Z/2× Z/2× Z/2.

Which of these groups has the same number of element of
order 2 as you just found?

(3) What is the subgroup H of squares in (Z/260)∗? You may
either use the fact that the squares are simultaneously squares
modulo 20 and modulo 13, or use the PARI code

{for(a=1,260,if(gcd(a,260)==1,
print(a" "Mod(aˆ2,260))))}

(4) Group the forms into their genera. You can do this in either
of two ways:
(a) For each form you found in (1), determine a value it rep-

resents which is relatively prime to 260, and determine
the corresponding coset of H . Or,

(b) Use the PARI code
{forprime(p=1,500,

if(kronecker(-260,p)==1,
print(p" "Mod(p,260)" "
qfbred(qfbprimeform(-260,p)))))}

which computes which form of discriminant−260 repre-
sents each of the primes below 500. Once you have a spe-
cific prime in mind, you can compute the corresponding
coset of H with the PARI code

{for(a=1,260,if(gcd(a,260)==1,
print(Mod(p*aˆ2,260))))}

where the character p is replaced with an actual number.
(You should see four genera, each with two forms.) �
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Exercise 26. (Continuation of exercise 25)
(1) Work out the multiplication table for the cosets of H . (It is a

four by four table with 16 entries.)
(2) Work out the multiplication table for the genera. (It is a four

by four table with 16 entries.)
(3) Work out the multiplication table for Z/2×Z/2, and compare

to your previous two answers. �

Exercise 27. (Continuation of exercise 25)
(1) The discriminant −260 factors as −4 · 5 · 13. Compute each of

the three genus characters(
−4

a

)
,

(
5

a

)
,

(
13

a

)
.

on each of the four cosets of H .
(2) We know that(
−260

a

)
= 1⇔(
−4

a

)
=

(
65

a

)
,

(
5

a

)
=

(
−52

a

)
,

(
13

a

)
=

(
−20

a

)
.

For each factorization of −260 = D1D2 as above, and each
form {a, b, c}, write a = a1a2 with gcd(a,D1) = a1 and a2 =
a/a1. Compute (

D1

a2

)(
D2

a1

)
,

and see that it is the same value as the genus character.
Thus the values of the genus characters can be computed directly
from the forms, and so Lagrange’s definition of genus ‘Two forms
are in the same genus if they represent the same congruence classes
in (Z/d)∗ ’ is the same as Gauss’ definition of genus ’Two forms are
in the same genus if all the genus characters agree.’ �

Exercise 28. (Continuation of exercise 25)
(1) Use PARI to compute the square of every reduced form you

found above; the code Qfb(a,b,c)ˆ2 suffices, where a, b,
and c are the relevant coefficients.

(2) Observe that the square of every form is in the principal genus.
(3) Observe that every form in the principal genus is the square

of some form.
Thus the principal genus is the subgroup of squares C(−260)2 of the
class group C(−260). �



18 JEFFREY STOPPLE

Recall the definition of fundamental discriminant above. A PRI-
MARY DISCRIMINANT is a fundamental discriminant which is divis-
ible by only one prime. The primary discriminants are

−4, 8,−8, and ± p,

for every odd prime p, where the sign ± is chose so that ±p ≡ 1 mod
4. Every fundamental discriminant has a unique factorization into
primary discriminants. (See previous exercises for examples.)

Exercise 29. This exercise concerns the definition of assigned char-
acters in [Cox], which can be greatly simplified.

(1) For odd primes p dividing d, the character

χ(a) =

(
a

p

)
is just

(
±p
a

)
,

where the sign ± is chosen to make a primary discriminant,
i.e. ±p ≡ 1 mod 4.

(2) His character

δ(a) = (−1)(a−1)/2 is just
(
−4

a

)
for a odd.

(3) His character

ε(a) = (−1)(a2−1)/8 is just
(

8

a

)
for a odd, and thus

δε(a) =

(
−8

a

)
.

(4) Fundamental discriminants are either odd, or else of the form
−4n with n ≡ 1, 2 or 5, 6 mod 8. Check that the even primary
discriminant factor of d is equal to
(a) −4⇔ n ≡ 1, 5 mod 8,
(b) 8⇔ n ≡ 6 mod 8, and
(c) −8⇔ n ≡ 2 mod 8.

Thus for fundamental discriminants, the assigned characters are merely
the Kronecker symbols for the primary discriminants dividing d. �
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