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Solutions to the practice problems posted on November 30.

For each of the following problems:
(a) Explain why the integrals are improper.

(b) Decide if the integral is convergent or divergent. If it is convergent, find which value it
converges to.
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Solution:
(a) Improper because it is an infinite integral (called a Type I).
(b) Rewrite:
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So the integral diverges. [
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Solution: This question was on my subject GRE.

(a) Improper because the function 3 is discontinuous at x = 0 (called a Type II).
(b) There are two ways to do this problem, so I will post both solutions.
One way: Split up the integral at x = 0:
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Both of the limits diverge so the integral diverges.
Another way: % is an even function, so it is symmetric about x = 0:
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Solution:
(a) Improper because it is an infinite integral (called a Type I).

(b) Rewrite:
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Convergent! [
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Solution:
(a) Improper because it is an infinite integral (called a Type I).

(b) Need to split it up, try about y = 0:
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Both of these limits diverge, so the integral diverges. [J
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Solution:
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(a) Improper because it is an infinite integral (called a Type I).

(b) Need to split it up, try about ¢ = 0:
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Both of these limits diverge, so the integral diverges. [
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Solution:

(a)
(b)
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Improper because IHT; is undefined at z = 0 (called a Type II).
Try a u-substitution first. Let u = v/z, du = ﬁdm = 2du = %dm. When z =0,u=0

and when z = 1,u = 1:
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This is still improper because Inu is undefined at u = 0. Rewrite with a limit:
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Use integration by parts (we did [ Inzdz in class once upon a time...):
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The right limit is what we call indeterminate because if we take the limit we get some-
thing that looks like 0 - —oo, which is no bueno. So we need to use L’Ho6pital’s Rule
(Section 4.4, pg 301 in your textbook):
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This shows that our integral is convergent, and it converges to —2 — 2lim;_,o+ tInt =
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Solution:

(a)
(b)

Improper because it is an infinite integral (called a Type I).

Let’s do a w-substitution first. Let u = e®, then du = e*dx. When z = 0,u = 1 and
when x — 0o, u — 00:
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Convergent! [
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Solution:
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(b) Try a u-substitution first. Let v = w—2, then w = u+2, du = dw. When w = 0,u = —2,
and when w = 5,u = 3:
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This is still a Type II integral since function 1 + % is discontinuous at u = 0. Need to
split up the integral:

L 2) = (e 2) aue [[(1+2)

! 2 3 2 ¢
= lim (1 + ) du+ lim (1 + ) du = lim (u+ 2In|ul) ‘ + lim (u+ 21n|ul)
U Uu t—0— -2 s—=0t

t—0~ J_o s—0t+ Jg

is discontinuous at w = 2 (called a Type II).

(a) Improper because the function
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Both of the limits diverge, so the integral diverges. [J

Use the Comparison Theorem to decide if the following integrals are convergent or divergent.
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Solution:

(a) Improper because it is an infinite integral (called a Type I).

(b) Let’s guess that this integral is divergent. That means we need to find a function smaller

than % that is divergent. To make it smaller, we can make the top smaller or the
bottom bigger. Let’s make the top smaller:
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So the integral diverges. Since floo %dw diverges, then floo dx diverges. [J
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(a) Improper because the function Si\“/;”” is undefined at z = 0 (called a Type II).

(b) Let’s guess that this integral is convergent. That means we need to find a function bigger
than % that is convergent. To make it bigger, we can make the top bigger or the

bottom smaller. Let’s make the top bigger:
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Then take the integral:
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So the integral converges. Since fow ﬁdm converges, then fow sin’ @
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