The basic idea of this course is that curvature bounds give information about manifolds, which in turn gives topological results. A typical example is the Bonnet-Myers Theorem. Intuitively,

Bigger curvature \Rightarrow Smaller manifold\(^1\).

1 Volume Comparison Theorem

1.1 Volume of Riemannian Manifold

Recall: For $U \subset \mathbb{R}^n$,

$$\text{vol}(U) = \int_U 1 \, dv = \int_U 1 \, dx_1 \cdots dx_n.$$

Note - $dx_1 \cdots dx_n$ is called the volume density element. Change of variable formula: Suppose $\psi : V \rightarrow U$ is a diffeomorphism, with $U, V \subset \mathbb{R}^n$. Suppose $\psi(x) = y$. Then

$$\int_U dv = \int_U 1 \, dy_1 \cdot \cdots \cdot dy_n = \int_V |\text{Jac}(\psi)| \, dx_1 \cdots dx_n.$$

On a Riemannian manifold M^n, let $\psi_\alpha : U_\alpha \rightarrow \mathbb{R}^n$ be a chart. Set $E_{ip} = (\psi^{-1}_\alpha)_* \left(\frac{\partial}{\partial x_i} \right)$. In general, the E_{ip}'s are not orthonormal. Let $\{e_k\}$ be an orthonormal basis of T_pM. Then $E_{ip} = \sum_{k=1}^n a_{ik} e_k$. The volume of

\(^1\)This quarter we use that bigger curvature \Rightarrow smaller volume
the parallelepiped spanned by \(\{ E_i \} \) is \(| \det(a_{ik}) | \). Now \(g_{ij} = \sum_{k=1}^{n} a_{ik}a_{kj} \), so
\[
\det(g_{ij}) = \det(a_{ij})^2.
\]
Thus
\[
\text{vol}(U_\alpha) = \int_{\psi(U_\alpha)} \sqrt{\det(g_{ij})} \circ (\psi_\alpha^{-1}) \; dx_1 \cdots dx_n
\]

Note - \(dv = \sqrt{\det(g_{ij})} \circ (\psi_\alpha^{-1}) \; dx_1 \cdots dx_n \) is called a volume density element, or volume form, on \(M \).

We have our first result, whose proof is left as an exercise.

Lemma 1.1.1 Volume is well defined.

Definition 1.1.1 Let \(M \) be a Riemannian manifold, and let \(\{ U_\alpha \} \) be a covering of \(M \) by domains of coordinate charts. Let \(\{ f_\alpha \} \) be a partition of unity subordinate to \(\{ U_\alpha \} \). The volume of \(M \) is
\[
\text{vol}(M) = \int_M 1 \; dv = \sum_\alpha \int_{\psi(U_\alpha)} f_\alpha \; dv.
\]

Lemma 1.1.2 The volume of a Riemannian manifold is well defined.

1.2 Computing the volume of a Riemannian manifold

Partitions of unity are not practically effective. Instead we look for charts that cover all but a measure zero set.

Example 1.2.1 For \(S^2 \), use stereographic projection.

In general, we use the exponential map. We may choose normal coordinates or geodesic polar coordinates. Let \(p \in M^n \). Then \(\exp_p : T_p M \to M \) is a local diffeomorphism. Let \(D_p \subset T_p M \) be the segment disk. Then if \(C_p \) is the cut locus of \(p \), \(\exp_p : D_p \to M - C_p \) is a diffeomorphism.

Lemma 1.2.1 \(C_p \) has measure zero.

Hence we may use \(\exp_p \) to compute the volume element \(dv = \sqrt{\det(g_{ij})} \; dx_1 \cdots dx_n \).

Now polar coordinates are not defined at \(p \), but \(\{ p \} \) has measure zero. We have
\[\exp_p : D_p - \{0\} \to M - C_p \cup \{p\}. \]

Set \(E_i = (\exp_p)_\ast \left(\frac{\partial}{\partial \theta_i} \right) \) and \(E_n = (\exp_p)_\ast \left(\frac{\partial}{\partial r} \right) \). To compute \(g_{ij} \)'s, we want \(E_i \) and \(E_n \) explicitly. Since \(\exp_p \) is a radial isometry, \(g_{nn} = 1 \) and \(g_{ni} = 0 \) for \(1 \leq i < n \). Let \(J_i(r, \theta) \) be the Jacobi field with \(J_i(0) = 0 \) and \(J_i'(0) = \frac{\partial}{\partial r} \). Then \(E_i(\exp_p(r, \theta)) = J_i(r, \theta) \).

If we write \(J_i \) and \(\frac{\partial}{\partial r} \) in terms of an orthonormal basis \(\{e_k\} \), we have \(J_i = \sum_{k=1}^n a_{ik} e_k \). Thus

\[\sqrt{\det(g_{ij}(r, \theta))} = |\det(a_{ik})| \prod_{j=1}^n |J_1 \wedge \cdots \wedge J_{n-1} \wedge \frac{\partial}{\partial r}| \]

The volume density, or volume element, of \(M \) is

\[dv = ||J_1 \wedge \cdots \wedge J_{n-1} \wedge \frac{\partial}{\partial r}|| dr d\theta_{n-1} = A(r, \theta) dr d\theta_{n-1} \]

Example 1.2.2 \(\mathbb{R}^n \) has Jacobi equation \(J'' = R(T, J)T \).

If \(J(0) = 0 \) and \(J'(0) = \frac{\partial}{\partial \theta} \), then \(J(r) = r \frac{\partial}{\partial \theta} \). Thus the volume element is \(dv = r^{n-1} dr d\theta_{n-1} \).

Example 1.2.3 \(S^n \) has \(J_i(r) = \sin(r) \frac{\partial}{\partial \theta_i} \). Hence \(dv = \sin^{n-1}(r) dr d\theta_{n-1} \).

Example 1.2.4 \(\mathbb{H}^n \) has \(J_i(r) = \sinh(r) \frac{\partial}{\partial \theta_i} \). Hence \(dv = \sinh^{n-1}(r) dr d\theta_{n-1} \).

Example 1.2.5 Volume of unit disk in \(\mathbb{R}^n \)

\[\omega_n = \int_{S^{n-1}} \int_0^1 r^{n-1} dr d\theta_{n-1} = \frac{1}{n} \int_{S^{n-1}} d\theta_{n-1} \]

Note -

\[\int_{S^{n-1}} d\theta_{n-1} = \frac{2(\pi)^{n/2}}{\Gamma(n/2)}. \]
1.3 Comparison of Volume Elements

Theorem 1.3.1 Suppose M^n has $\text{Ric}_M \geq (n-1)H$. Let $dv = A(r, \theta) \, dr \, d\theta_{n-1}$ be the volume element of M and let $dv_H = A_H(r, \theta) \, dr \, d\theta_{n-1}$ be the volume element of the model space (simply connected n-manifold with $K \equiv H$). Then

$$\frac{A(r, \theta)}{A_H(r, \theta)}$$

is a nonincreasing function in r.

Proof. We show that

$$\nabla \frac{\partial}{\partial r} \left(\frac{A(r, \theta)}{A_H(r, \theta)} \right)^2 \leq 0.$$

Since

$$A(r, \theta)^2 = \langle J_1 \wedge \cdots \wedge J_{n-1} \wedge \frac{\partial}{\partial r}, J_1 \wedge \cdots \wedge J_{n-1} \wedge \frac{\partial}{\partial r} \rangle,$$

we wish to show that

$$\langle J_1 \wedge \cdots \wedge J_{n-1} \wedge \frac{\partial}{\partial r}, J_1 \wedge \cdots \wedge J_{n-1} \wedge \frac{\partial}{\partial r} \rangle A_H(r, \theta)^2 -$$

$$A(r, \theta)^2 \langle J_H^1 \wedge \cdots \wedge J_H^{n-1} \wedge \frac{\partial}{\partial r}, J_H^1 \wedge \cdots \wedge J_H^{n-1} \wedge \frac{\partial}{\partial r} \rangle' \leq 0.$$

Thus we wish to show that

$$2 \sum_{i=1}^{n-1} \frac{\langle J_1 \wedge \cdots \wedge J_i \wedge \cdots \wedge J_{n-1} \wedge \frac{\partial}{\partial r}, J_1 \wedge \cdots \wedge J_{n-1} \wedge \frac{\partial}{\partial r} \rangle}{(J_1 \wedge \cdots \wedge J_{n-1} \wedge \frac{\partial}{\partial r}, J_1 \wedge \cdots \wedge J_{n-1} \wedge \frac{\partial}{\partial r})}$$

$$\leq 2 \sum_{i=1}^{n-1} \frac{\langle J_H^1 \wedge \cdots \wedge (J_H^i)' \wedge \cdots \wedge J_H^{n-1} \wedge \frac{\partial}{\partial r}, J_H^1 \wedge \cdots \wedge J_H^{n-1} \wedge \frac{\partial}{\partial r} \rangle}{(J_H^1 \wedge \cdots \wedge J_H^{n-1} \wedge \frac{\partial}{\partial r}, J_H^1 \wedge \cdots \wedge J_H^{n-1} \wedge \frac{\partial}{\partial r})} \leq 0.$$

(1)

At $r = r_0$, let $\bar{J}_i(r_0)$ be orthonormal such that $\bar{J}_n(r_0) = \frac{\partial}{\partial r} |_{r=r_0}$. Then for $1 \leq i < n$,

$$\bar{J}_i(r_0) = \sum_{k=1}^{n-1} b_{ik} J_k(r_0).$$

\footnote{Compare to the proof of the Rauch Comparison Theorem.}
Define \(\bar{J}_i(r) = \sum_{k=1}^{n-1} b_{ik} J_k(r) \), where the \(b_{ik} \)'s are fixed. Then each \(\bar{J}_i \) is a linear combination of Jacobi fields, and hence is a Jacobi field.

The left hand side of (1), evaluated at \(r = r_0 \) is

\[
2 \sum_{i=1}^{n-1} \frac{\langle \bar{J}_1 \wedge \cdots \wedge \bar{J}_i' \wedge \cdots \wedge \bar{J}_{n-1} \wedge \frac{\partial}{\partial r}, \bar{J}_1 \wedge \cdots \wedge \bar{J}_{n-1} \wedge \frac{\partial}{\partial r} \rangle}{\langle \bar{J}_1 \wedge \cdots \wedge \bar{J}_{n-1} \wedge \frac{\partial}{\partial r}, \bar{J}_1 \wedge \cdots \wedge \bar{J}_{n-1} \wedge \frac{\partial}{\partial r} \rangle}_{r=r_0}
\]

\[
= 2 \sum_{i=1}^{n-1} \langle \bar{J}_i'(r_0), \bar{J}_i(r_0) \rangle = 2 \sum_{i=1}^{n-1} I(\bar{J}_i, \bar{J}_i),
\]

where \(I \) is the index form \(I(v, v) = \int_0^{r_0} \langle v', v' \rangle + \langle R(T, v) T, v \rangle dt \). Note that for a Jacobi field \(J \),

\[
I(J, J) = \int_0^{r_0} \langle J', J' \rangle + \langle R(T, J) T, J \rangle dt
\]

\[
= \int_0^{r_0} \langle J', J' \rangle - \langle J'', J \rangle + \langle R(T, J) T, J \rangle dt
\]

\[
= \langle v', v \rangle \big|_{r=r_0}.
\]

Let \(E_i \) be a parallel field such that \(E_i(r_0) = \bar{J}_i(r_0) \), and let \(w_i = \frac{\sin \sqrt{n r}}{\sin \sqrt{n r_0}} E_i \). By the Index Lemma, Jacobi fields minimize the index form provided there are no conjugate points. Thus we have \(2 \sum_{i=1}^{n-1} I(\bar{J}_i, \bar{J}_i) \leq 2 \sum_{i=1}^{n-1} I(w_i, w_i) \). By the curvature condition, \(2 \sum_{i=1}^{n-1} I(w_i, w_i) \leq 2 \sum_{i=1}^{n-1} I(\bar{J}_i^H, \bar{J}_i^H) \), which is the right hand side of (1), evaluated at \(r = r_0 \).

Thus \(\bar{A}(r, \theta) \) is nonincreasing in \(r \).

Remarks:

1. \(\lim_{r \to 0} \bar{A}(r, \theta) = 1 \), so \(A(r, \theta) \leq \bar{A}(r, \theta) \).

2. (Rigidity) If \(A(r_0, \theta) = A_H(r_0, \theta) \) for some \(r_0 \), then \(A(r, \theta) = A_H(r, \theta) \) for all \(0 \leq r \leq r_0 \). But then \(B(p, r_0) \) is isometric to \(B(r_0) \subset S^n_H \), where \(S^n_H \) is the model space. But then the Jacobi fields in \(M \) correspond to the Jacobi fields in the model space, so that \(M \) is isometric to the model space.
3. We cannot use the Index Lemma to prove an analogous result for \(\text{Ric}_M \leq (n-1)H \). In fact, there is no such result. For example, consider Einstein manifolds with \(\text{Ric} \equiv (n-1)H \).

4. If \(K_M \leq H \), we may use the Rauch Comparison Theorem to prove a similar result inside the injectivity radius.

5. (Lohkamp) \(\text{Ric}_M \leq (n-1)H \) has no topological implications. Any smooth manifold \(M^n \), with \(n \geq 3 \), has a complete Riemannian metric with \(\text{Ric}_M \leq 0 \).

6. \(\text{Ric}_M \leq (n-1)H \) may still have geometric implications. For example, if \(M \) is compact with \(\text{Ric}_M < 0 \) then \(M \) has a finite isometry group.

1.4 Volume Comparison Theorem

Theorem 1.4.1 (Bishop-Gromov) If \(M^n \) has \(\text{Ric}_M \geq (n-1)H \) then

\[
\frac{\text{vol}(B(p, R))}{\text{vol}(B^H(R))}
\]

is nonincreasing in \(R \).

Proof. We have

\[
\text{vol}B(p, R) = \int_{B(p, R)} 1d\nu = \int_0^R \int_{S_p(r)} A(r, \theta)d\theta_{n-1}dr,
\]

where \(S_p(r) = \{ \theta \in S_p : r\theta \in D_p \} \). Note that \(S_p(r_1) \subset S_p(r_2) \) if \(r_1 \geq r_2 \). The theorem now follows from two lemmas:

Lemma 1.4.1 If \(f(r)/g(r) \geq 0 \) is nonincreasing in \(r \), with \(g(r) > 0 \), then

\[
\frac{\int_0^R f(r)dr}{\int_0^R g(r)dr}
\]

is nonincreasing in \(R \).
Proof of Lemma.- The numerator of the derivative is
\[
\left(\int_{0}^{R} g(r) dr \right) \left(\int_{0}^{R} f(r) dr \right)' - \left(\int_{0}^{R} f(r) dr \right) \left(\int_{0}^{R} g(r) dr \right)'
\]
\[
= f(R) \left(\int_{0}^{R} g(r) dr \right) - g(R) \left(\int_{0}^{R} f(r) dr \right)
\]
\[
= g(R) \left(\int_{0}^{R} f(r) dr \right) \left[\frac{f(R)}{g(R)} - \frac{\int_{0}^{R} f(r) dr}{\int_{0}^{R} g(r) dr} \right]
\]
Now
\[
\frac{f(r)}{g(r)} \geq \frac{f(R)}{g(R)} \Rightarrow g(R) f(r) \geq f(R) g(r),
\]
so
\[
\int_{0}^{R} g(R) f(r) dr \geq \int_{0}^{R} f(R) g(r) dr.
\]
Thus
\[
\frac{f(R)}{g(R)} \leq \frac{\int_{0}^{R} f(r) dr}{\int_{0}^{R} g(r) dr},
\]
so the derivative is nonpositive.

Lemma 1.4.2 (Comparison of Lower Area of Geodesic Sphere) Suppose \(r \) lies inside the injectivity radius of the model space \(S_{n}^{H} \), so that if \(H > 0, r < \pi / \sqrt{H} \). Then
\[
\frac{\int_{S_{p}(r)} A(r, \theta) d\theta_{n-1}}{\int_{S_{n-1}} A^{H}(r) d\theta_{n-1}}
\]
is nonincreasing in \(r \).

Proof of Lemma. In the model space, \(A^{H}(r, \theta) \) does not depend on \(\theta \), so we write \(A^{H}(r) \). Note that if \(r \leq R, \)
\[
\frac{\int_{S_{p}(R)} A(R, \theta) d\theta_{n-1}}{\int_{S_{n-1}} A^{H}(R) d\theta_{n-1}} = \frac{1}{\int_{S_{n-1}} d\theta_{n-1}} \int_{S_{p}(R)} A(R, \theta) d\theta_{n-1}
\]
\[
\leq \frac{1}{\int_{S_{n-1}} d\theta_{n-1}} \int_{S_{p}(r)} A(r, \theta) d\theta_{n-1}
\]
\[
= \frac{\int_{S_{p}(r)} A(r, \theta) d\theta_{n-1}}{\int_{S_{n-1}} A^{H}(r) d\theta_{n-1}},
\]
since $S_p(r) \supset S_p(R)$ and $\frac{A(r, \theta)}{A^H(r)}$ is nonincreasing in r. The theorem now follows.

Note that if R is greater than the injectivity radius then $\text{vol}B(p, R)$ decreases. Thus the volume comparison theorem holds for all R.

Corollaries:

1. (Bishop Absolute Volume Comparison) Under the same assumptions, $\text{vol}B(p, r) \leq \text{vol}B^H(r)$.

2. (Relative Volume Comparison) If $r \leq R$ then

$$\frac{\text{vol}B(p, r)}{\text{vol}B(p, R)} \geq \frac{\text{vol}B^H(r)}{\text{vol}B^H(R)}.$$

If equality holds for some r_0 then equality holds for all $0 \leq r \leq r_0$, and $B(p, r_0)$ is isometric to $B^H(r_0)$.

Proofs:

(1) holds because $\lim_{r \to 0} \frac{\text{vol}B(p, r)}{\text{vol}B^H(r)} = 1$.

(2) is a restatement of the the volume comparison theorem.

Sometimes we let $R = 2r$ in (2). Then (2) gives a lower bound on the ratio $\frac{\text{vol}B(p, r)}{\text{vol}B(p, R)}$, called the doubling constant. If $\text{vol}(M) \geq V$ then we obtain a lower bound on the volume of small balls.

Generalizations:

1. The same proof shows that the result holds for $\text{vol}^\Gamma B(p, R)$, where $\Gamma \subset S_p = S^{n-1} \subset T_pM$. In particular, the result holds for annuli $(f_{r_0}^{R_0} \cdot \cdot \cdot)$ and for cones.

2. Integral Curvature

3. Stronger curvature conditions give submanifold results.
2 Applications of Volume Comparison

2.1 Cheng’s Maximal Diameter Rigidity Theorem

Theorem 2.1.1 (Cheng) Suppose M^n has $\text{Ric}_M \geq (n-1)H > 0$. By the Bonnet-Myers Theorem, $\text{diam}_M \leq \pi/\sqrt{H}$. If $\text{diam}_M = \pi/\sqrt{H}$, Cheng’s result states that M is isometric to the sphere S^n_H with radius $1/\sqrt{H}$.

Proof. (Shiohama) Let $p, q \in M$ have $d(p, q) = \pi/\sqrt{H}$. Then

$$\frac{\text{vol} B(p, \pi/(2\sqrt{H}))}{\text{vol} M} = \frac{\text{vol} B(p, \pi/(2\sqrt{H}))}{\text{vol} B(p, \pi/\sqrt{H})} \geq \frac{\text{vol} B_H(\pi/(2\sqrt{H}))}{\text{vol} B_H(\pi/\sqrt{H})} = 1/2$$

Thus $\text{vol} B(p, \pi/2\sqrt{H}) \geq (\text{vol} M)/2$. Similarly for q. Hence $\text{vol} B(p, \pi/(2\sqrt{H})) = (\text{vol} M)/2$, so we have equality in the volume comparison. By rigidity, $B(p, \pi/(2\sqrt{H}))$ is isometric to the upper hemisphere of S^n_H. Similarly for $B(q, \pi/2\sqrt{H})$, so $\text{vol} M = \text{vol} S^n_H$.

Question: What about perturbation? Suppose $\text{Ric}_M \geq (n-1)H$ and $\text{diam}_M \geq \pi/\sqrt{H} - \varepsilon$. In general there is no result for $\varepsilon > 0$. There are spaces not homeomorphic to S^n, provided $n \geq 4$, with $\text{Ric} \geq (n-1)H$ and $\text{diam} \geq \pi/\sqrt{H} - \varepsilon$. Still, if $\text{Ric} \geq (n-1)H$ and $\text{vol} M \geq \text{vol} S^n_H - \varepsilon(n, H)$ then $M^n \text{ diffeo } S^n_H$.

2.2 Growth of Fundamental Group

Suppose Γ is a finitely generated group, say $\Gamma = \langle g_1, \ldots, g_k \rangle$. Any $g \in \Gamma$ can be written as a word $g = \prod g_{k_i}^{n_i}$, where $k_i \in \{1, \ldots, k\}$. Define the length of this word to be $\sum_i |n_i|$, and let $|g|$ be the minimum of the lengths of all word representations of g. Note that $|\cdot|$ depends on the choice of generators.

Fix a set of generators for Γ. The growth function of Γ is

$$\Gamma(s) = \# \{g \in \Gamma : |g| \leq s\}.$$

Example 2.2.1 If Γ is a finite group then $\Gamma(s) \leq |\Gamma|$.
Example 2.2.2 \(\Gamma = \mathbb{Z} \oplus \mathbb{Z} \). Then \(\Gamma = \langle g_1, g_2 \rangle \), where \(g_1 = (1, 0) \) and \(g_2 = (0, 1) \). Any \(g \in \Gamma \) can be written as \(g = s_1 g_1 + s_2 g_2 \). To find \(\Gamma(s) \), we want \(|s_1| + |s_2| \leq s \).

\[
\Gamma(s) = 2s + 1 + \sum_{t=1}^{s} 2(2(s-t) + 1) \\
= 2s + 1 + \sum_{t=1}^{s} (4s - 4t + 2) \\
= 2s + 1 + 4s^2 + 2s - 4 \sum_{t=1}^{s} t \\
= 4s^2 + 4s + 1 - 4(s(s+1)/2) \\
= 4s^2 + 4s + 1 - 2s^2 + s \\
= 2s^2 + 2s + 1
\]

In this case we say \(\Gamma \) has polynomial growth.

Example 2.2.3 \(\Gamma \) free abelian on \(k \) generators. Then \(\Gamma(s) = \sum_{i=0}^{k} \binom{k}{i} \binom{s}{i} \).

\(\Gamma \) has polynomial growth of degree \(k \).

Definition 2.2.1 \(\Gamma \) is said to have polynomial growth of degree \(\leq n \) if for each set of generators the growth function \(\Gamma(s) \leq as^n \) for some \(a > 0 \).

\(\Gamma \) is said to have exponential growth if for each set of generators the growth function \(\Gamma(s) \geq e^{as} \) for some \(a > 0 \).

Lemma 2.2.1 If for some set of generators, \(\Gamma(s) \leq as^n \) for some \(a > 0 \), then \(\Gamma \) has polynomial growth of degree \(\leq n \). If for some set of generators, \(\Gamma(s) \geq e^{as} \) for some \(a > 0 \), then \(\Gamma \) has exponential growth.

Example 2.2.4 \(\mathbb{Z}^k \) has polynomial growth of degree \(k \).

Example 2.2.5 \(\mathbb{Z} \ast \mathbb{Z} \) has exponential growth.

Note that for each group \(\Gamma \) there always exists \(a > 0 \) so that \(\Gamma(s) \leq e^{as} \).

Definition 2.2.2 A group is called almost nilpotent if it has a nilpotent subgroup of finite index.
Theorem 2.2.1 (Gromov) A finitely generated group Γ has polynomial growth iff Γ is almost nilpotent.

Theorem 2.2.2 (Milnor) If M^n is complete with $\text{Ric}_M \geq 0$, then any finitely generated subgroup of $\pi_1(M)$ has polynomial growth of degree $\leq n$.

Proof. Let \tilde{M} have the induced metric. Then $\text{Ric}_{\tilde{M}} \geq 0$, and $\pi_1(M)$ acts isometrically on \tilde{M}. Suppose $\Gamma = \langle g_1, \ldots, g_k \rangle$ be a finitely generated subgroup of $\pi_1(M)$. Pick $p \in M$.

Let $\ell = \max_i d(\tilde{g}_i\tilde{p}, \tilde{p})$. Then if $g \in \pi_1(M)$ has $|g| \leq s$, $d(g\tilde{p}, \tilde{p}) \leq s\ell$.

On the other hand, for any cover there exists $\varepsilon > 0$ such that $B(g\tilde{p}, \varepsilon)$ are pairwise disjoint for all $g \in \pi_1(M)$. Note that $gB(\tilde{p}, \varepsilon) = B(g\tilde{p}, \varepsilon)$.

Now

$$\bigcup_{|g| \leq s} B(g\tilde{p}, \varepsilon) \subset B(\tilde{p}, s\ell + \varepsilon);$$

since the $B(g\tilde{p}, \varepsilon)$’s are disjoint and have the same volume,

$$\Gamma(s) \text{vol}B(\tilde{p}, \varepsilon) \leq \text{vol}B(\tilde{p}, s\ell + \varepsilon).$$

Thus

$$\Gamma(s) \leq \frac{\text{vol}B(\tilde{p}, s\ell + \varepsilon)}{\text{vol}B(\tilde{p}, \varepsilon)},$$

$$\leq \frac{\text{vol}B_{\mathbb{R}^n}(0, s\ell + \varepsilon)}{\text{vol}B_{\mathbb{R}^n}(0, \varepsilon)}.$$

Now

$$\text{vol}(B_{\mathbb{R}^n}(0, s)) = \int_{S^{n-1}} \int_0^s r^{n-1}drd\theta_{n-1}$$

$$= \frac{1}{n} \int_{S^{n-1}} d\theta_{n-1}$$

$$= s^n \omega_n,$$

so $\Gamma(s) \leq \frac{s\ell + \varepsilon^n}{\varepsilon^n}$.

Since ℓ and ε are fixed, we may choose a so that $\Gamma(s) \leq as^n$.

11
Example 2.2.6 Let H be the Heisenberg group
\[
\left\{ \left(\begin{array}{ccc} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{array} \right) : x, y, z \in \mathbb{R} \right\},
\]
and let
\[
H_{\mathbb{Z}} = \left\{ \left(\begin{array}{ccc} 1 & n_1 & n_2 \\ 0 & 1 & n_3 \\ 0 & 0 & 1 \end{array} \right) : n_i \in \mathbb{Z} \right\}.
\]

Then $H/H_{\mathbb{Z}}$ is a compact 3-manifold with $\pi_1(H/H_{\mathbb{Z}}) = H_{\mathbb{Z}}$. The growth of $H_{\mathbb{Z}}$ is polynomial of degree 4, so $H/H_{\mathbb{Z}}$ has no metric with $\text{Ric} \geq 0$.

Remarks:

1. If $\text{Ric}_{M} \geq 1/k^2 > 0$, then M is compact. Thus $\pi_1(M)$ is finitely generated. It is unknown whether $\pi_1(M)$ is finitely generated if M is noncompact.

2. Ricci curvature gives control on $\pi(M)$, while sectional curvature gives control on the higher homology groups. For example, if $K \geq 0$ then the Betti numbers of M are bounded by dimension.

3. If M is compact then growth of $\pi_1(M) \leftrightarrow$ volume growth of \tilde{M}.

Related Results:

1. (Gromov) If $\text{Ric}_M \geq 0$ then any finitely generated subgroup of $\pi_1(M)$ is almost nilpotent.

2. (Cheeger-Gromoll, 1972) If M is compact with $\text{Ric} \geq 0$ then $\pi_1(M)$ is abelian up to finite index.

3. (Wei, 1988; Wilking 1999) Any finitely generated almost nilpotent group can be realized as $\pi_1(M)$ for some M with $\text{Ric} \geq 0$.

4. Milnor’s Conjecture (Open) If M^n has $\text{Ric}_M \geq 0$ then $\pi_1(M)$ is finitely generated.
In 1999, Wilking used algebraic methods to show that $\pi_1(M)$ is finitely generated iff any abelian subgroup of $\pi_1(M)$ is finitely generated (provided $\text{Ric}_M \geq 0$).

Sormani showed in 1998 that if M^n has small linear diameter growth, i.e. if
\[
\limsup_{r \to \infty} \frac{\text{diam}\partial B(p, r)}{r} < s_n = \frac{n}{(n-1)^3} \left(\frac{n-1}{n-2} \right)^{n-1},
\]
then $\pi_1(M)$ is finitely generated.

2.2.1 Basic Properties of Covering Space

Suppose $\hat{M} \to M$ has the covering metric.

1. M compact \Rightarrow there is a compact set $K \subset \hat{M}$ such that $\{\gamma K \}_{\gamma \in \pi_1(M)}$ covers \hat{M}. K is the closure of a fundamental domain.

2. $\{\gamma K \}_{\gamma \in \pi_1(M)}$ is locally finite.

Definition 2.2.3 Suppose $\delta > 0$. Set $S = \{ \gamma : d(K, \gamma K) \leq \delta \}$. Note that S is finite.

Lemma 2.2.2 If $\delta > D = \text{diam}_M$ then S generates $\pi_1(M)$. In fact, for any $a \in K$, if $d(a, \gamma K) \leq (\delta - D)s + D$, then $|\gamma| \leq s$.

Proof. There exists $y \in \gamma K$ such that $d(a, y) = d(a, \gamma K)$. Connect a and y a minimal geodesic σ. Divide σ by $y_1, \ldots, y_{s+1} = y$, where $d(y_i, y_{i+1}) \leq \delta - D$ and $d(a, y_i) < D$.

Now $\{\gamma K \}_{\gamma \in \pi_1(M)}$ covers \hat{M}, so there exist $\gamma_i \in \pi_1(M)$ and $x_i \in K$ such that $\gamma_i(x_i) = y_i$. Choose $\gamma_{s+1} = \gamma$ and $\gamma_1 = \text{Id}$. Then $\gamma = \gamma_1^{-1} \gamma_2 \cdots \gamma_{s+1}^{-1}$. But $\gamma_i^{-1} \gamma_{i+1} \in S$, since
\[
\begin{align*}
d(x_i, \gamma_i^{-1} \gamma_{i+1} x_i) &= d(\gamma_i x_i, \gamma_{i+1} x_i) \\
&= d(y_i, \gamma_{i+1} x_i) \\
&\leq d(y_i, y_{i+1}) + d(y_{i+1}, \gamma_{i+1} x_i) \\
&= d(y_i, y_{i+1}) + d(x_{i+1}, x_i) \\
&\leq \delta.
\end{align*}
\]

Thus $|\gamma| \leq s$.

Theorem 2.2.3 (Milnor 1968) Suppose M is compact with $K_M < 0$. Then $\pi_1(M)$ has exponential growth.

Note that $K_M \leq -H < 0$ since M is compact. The volume comparison holds for $K \leq -H$, but only for balls inside the injectivity radius. Since $K_M < 0$, though, the injectivity radius is infinite.

Proof of Theorem. By the lemma,

$$\bigcup_{|\gamma| \leq s} \gamma K \supset B(a, (\delta - D)s + D),$$

so $\Gamma(s) \text{vol}(K) \geq \text{vol}B(a, (\delta - d)s + D)$. Note that

$$\text{vol}B(a, (\delta - D)s + D) \geq \text{vol}B^{-H}(a, (\delta - D)s + D),$$

since $K \tilde{M} \leq -H < 0$.

Now

$$\text{vol}B^{-H}(r) = \int_{S^{n-1}} \int_0^r \left(\frac{\sinh \sqrt{H}r}{\sqrt{H}} \right)^{n-1} dr d\theta_{n-1}$$

$$= n\omega_n \int_0^r \left(\frac{\sinh \sqrt{H}r}{\sqrt{H}} \right)^{n-1} dr d\theta_{n-1}$$

$$\geq \frac{n\omega_n}{2(2\sqrt{H})^{n-1}(n - 1)\sqrt{H}} e^{\sqrt{H}r},$$

for r large.

Thus

$$\Gamma(s) \geq \frac{\text{vol}B(a, (\delta - D)s + D)}{\text{vol}(K)} \geq C(n, H)e^{(\delta - D)\sqrt{H}s},$$

where $C(n, H)$ is constant.

Corollary The torus does not admit a metric with negative sectional curvature.

2.3 First Betti Number Estimate

Suppose M is a manifold. The first Betti number of M is

$$b_1(M) = \dim H_1(M, \mathbb{R}).$$
Now $H_1(M, \mathbb{Z}) = \pi_1(M)/[\pi_1(M), \pi_1(M)]$, which is the fundamental group of M made abelian. Let T be the group of torsion elements in $H_1(M, \mathbb{Z})$. Then $T \lhd H_1(M, \mathbb{Z})$ and $\Gamma = H_1(M, \mathbb{Z})/T$ is a free abelian group. Moreover,

$$b_1(M) = \text{rank}(\Gamma) = \text{rank}(\Gamma'),$$

where Γ' is any subgroup of Γ with finite index.

Theorem 2.3.1 (Gromov, Gallot) Suppose M^n is a compact manifold with $\text{Ric}_M \geq (n-1)H$ and $\text{diam}_M \leq D$. There is a function $C(n, HD^2)$ such that $b_1(M) \leq C(n, HD^2)$ and \(\lim_{x \to 0^-} C(n, x) = n \) and $C(n, x) = 0$ for $x > 0$. In particular, if HD^2 is small, $b_1(M) \leq n$.

Proof. First note that if M is compact and $\text{Ric}_M > 0$ then $\pi_1(M)$ is finite. In this case $b_1(M) = 0$. Also, by Milnor’s result, if M is compact with $\text{Ric}_M \geq 0$ then $b_1(M) \leq n$.

As above, $b_1(M) = \text{rank}(\Gamma)$, where $\Gamma = \pi_1(M)/[\pi_1(M), \pi_1(M)]/T$. Set $\bar{M} = \bar{M}/[\pi_1(M), \pi_1(M)]/T$ be the covering space of M corresponding to Γ. Then Γ acts isometrically as deck transformations on \bar{M}.

Lemma 2.3.1 For fixed $\tilde{x} \in \bar{M}$ there is a subgroup $\Gamma' \leq \Gamma$, $[\Gamma : \Gamma']$ finite, such that $\Gamma' = \langle \gamma_1, \ldots, \gamma_2 \rangle$, where:

1. $d(x, \gamma_i(x)) \leq 2\text{diam}_M$ and
2. For any $\gamma \in \Gamma' - \{e\}$, $d(x, \gamma(x)) > \text{diam}_M$.

Proof of Lemma. For each $\varepsilon \geq 0$ let $\Gamma_\varepsilon \leq \Gamma$ be generated by

$$\{ \gamma \in \Gamma : d(x, \gamma(x)) \leq 2\text{diam}_M + \varepsilon \}.$$

Then Γ_ε has finite index. For if $\bar{M}/\Gamma_\varepsilon$ is a covering space corresponding to $\Gamma/\Gamma_\varepsilon$. Then $[\Gamma : \Gamma_\varepsilon]$ is the number of copies of M in $\bar{M}/\Gamma_\varepsilon$. We show that $\text{diam}(\bar{M}/\Gamma_\varepsilon) \leq 2\text{diam}_M + 2\varepsilon$ so that $\bar{M}/\Gamma_\varepsilon$.

Suppose not, so there is $z \in \bar{M}$ such that $d(x, z) = \text{diam}_M + \varepsilon$. Then there is $\gamma \in \Gamma$ that $d(\gamma(x), z) \leq \text{diam}_M$. Then if π_ε is the covering $\bar{M} \to M/\Gamma_\varepsilon$,

\[
\begin{align*}
 d(\pi_\varepsilon x, \pi_\varepsilon \gamma(x)) & \geq d(\pi_\varepsilon x, \pi_\varepsilon z) - d(\pi_\varepsilon z, \pi_\varepsilon \gamma(x)) \\
 & \geq \text{diam}_M + \varepsilon - \text{diam}_M \\
 & = \varepsilon.
\end{align*}
\]
Thus $\gamma \not\in \Gamma_\varepsilon$. But
\[
d(x, \gamma(x)) \leq d(x, z) + d(z, \gamma(x)) \leq 2\text{diam}_M + \varepsilon
\]
Thus $\tilde{M}/\Gamma_\varepsilon$ is compact, so Γ_ε has finite index. Moreover,
\[
\{\gamma \in \Gamma : d(x, \gamma(x)) \leq 3\text{diam}_M\}
\]
is finite, Γ_ε is finitely generated. Also, note that for ε small,
\[
\{\gamma \in \Gamma : d(x, \gamma(x)) \leq 2\text{diam}_M\} = \{\gamma \in \Gamma : d(x, \gamma(x)) \leq 2\text{diam}_M + \varepsilon\}.
\]
Pick such an $\varepsilon > 0$.
Since $\Gamma_\varepsilon \leq \Gamma$ has finite index, $b_1(M) = \text{rank}(\Gamma_\varepsilon)$. Now Γ_ε is finitely generated, say $\Gamma_\varepsilon = \langle \gamma_1, \ldots, \gamma_{b_1} \rangle$; pick linearly independent generators $\gamma_1, \ldots, \gamma_{b_1}$ so that $\Gamma'' = \langle \gamma_1, \ldots, \gamma_{b_1} \rangle$ has finite index in Γ_ε.
Let $\Gamma' = \langle \tilde{\gamma}_1, \ldots, \tilde{\gamma}_{b_1} \rangle$, where $\tilde{\gamma}_k = \ell_{k1}\gamma_1 + \cdots + \ell_{kk}\gamma_k$ and the coefficients ℓ_{ki} are chosen so that ℓ_{kk} is maximal with respect to the constraints:
1. $\tilde{\gamma}_k \in \Gamma'' \cap \{\gamma \in \Gamma : d(x, \gamma(x)) \leq 2\text{diam}_M\}$ and
2. $\text{span}\{\tilde{\gamma}_1, \ldots, \tilde{\gamma}_k\} \leq \text{span}\{\gamma_1, \ldots, \gamma_k\}$ with finite index.
Then $\Gamma' \leq \Gamma''$ has finite index, and $d(x, \tilde{\gamma}_i(x)) \leq 2\text{diam}_M$ for each i.
Finally, suppose there exists $\gamma \in \Gamma' - \{e\}$ with $d(x, \gamma(x)) \leq \text{diam}_M$, write
\[
\gamma = m_1\tilde{\gamma}_1 + \cdots + \tilde{\gamma}_k,
\]
with $m_k \neq 0$. Then $d(x, \gamma^2(x)) \leq 2d(x, \gamma(x)) \leq 2\text{diam}_M$, but
\[
\gamma^2 = 2m_1\tilde{\gamma}_1 + \cdots + 2m_k\tilde{\gamma}_k = (\text{terms involving } \gamma_i, i < k) + 2m_k\ell_{kk}\gamma_k,
\]
which contradicts the choice of the coefficients ℓ_{ki}.

Proof of Theorem. Let $\Gamma' = \langle \gamma_1, \ldots, \gamma_{b_1} \rangle$ be as in the lemma. Then $d(\gamma_i(x), \gamma_j(x)) = d(x, \gamma_i^{-1}\gamma_j(x)) > D = \text{diam}_M$, where $i \neq j$. Thus
\[
B(\gamma_i(x), D/2) \cap B(\gamma_j(x), D/2) = \emptyset
\]
for $i \neq j$. Also
\[
B(\gamma_i(x), D/2) \subset B(x, 2D + D/2)
\]
for all i, so that
\[
\bigcup_{i=1}^{b_1} B(\gamma_i(x), D/2) \subset B(x, 2D + D/2).
\]

Hence
\[
b_1 \leq \frac{\text{vol}B(x, 2D + D/2)}{\text{vol}B(x, D/2)} \leq \frac{\text{vol}B^H(2D + D/2)}{\text{vol}B^H(D/2)}.
\]

Since the result holds for $H \geq 0$, assume $H < 0$. Then
\[
\frac{\text{vol}B^H(2D + D/2)}{\text{vol}B^H(D/2)} = \frac{\int_{S^{n-1}} \int_0^{5D/2} (\sinh \sqrt{-H} t)^{n-1} dt d\theta}{\int_{S^{n-1}} \int_0^{D/2} (\sinh \sqrt{-H} t)^{n-1} dt d\theta} = \frac{\int_0^{5D/2} (\sinh \sqrt{-H} t)^{n-1} dt}{\int_0^{D/2} (\sinh \sqrt{-H} t)^{n-1} dt} = \frac{\int_0^{5D\sqrt{-H}/2} (\sinh r)^{n-1} dr}{\int_0^{D\sqrt{-H}/2} (\sinh r)^{n-1} dr}.
\]

Let $U(s) = \{ \gamma \in \Gamma' : |\gamma| \leq s \}$. Then
\[
\bigcup_{\gamma \in U(s)} B(\gamma x, D/2) \subset B(x, 2Ds + D/2),
\]
whence
\[
\#U(s) \leq \frac{\text{vol}B(x, 2Ds + D/2)}{\text{vol}B(x, D/2)} \leq \frac{\text{vol}B^H(2Ds + D/2)}{\text{vol}B^H(D/2)} = \frac{\int_0^{(2s+\frac{1}{2})D\sqrt{-H}} (\sinh r)^{n-1} dr}{\int_0^{D\sqrt{-H}/2} (\sinh r)^{n-1} dr} \leq \frac{2(2s + \frac{1}{2})^n(D\sqrt{-H})^n}{(\frac{1}{2})^n(D\sqrt{-H})^n} = 2^{n+1}(2s + \frac{1}{2})^n.
\]

Thus $b_1(M) = \text{rank}(\Gamma') \leq n$, so that for HD^2 small, $b_1(M) \leq n$.

Conjecture: For M^n with $\text{Ric}_M \geq (n-1)H$ and $\text{diam}_M \leq D$, the number of generators of $\pi_1(M)$ is uniformly bounded by $C(n, H, D)$.

17
2.4 Finiteness of Fundamental Groups

Lemma 2.4.1 (Gromov, 1980) For any compact M^n and each $\tilde{x} \in \tilde{M}$ there are generators $\gamma_1, \ldots, \gamma_k$ of $\pi_1(M)$ such that $d(\tilde{x}, \gamma_i \tilde{x}) \leq 2\text{diam}_M$ and all relations of $\pi_1(M)$ are of the form $\gamma_i \gamma_j = \gamma_\ell$.

Proof. Let $0 < \varepsilon < \text{injectivity radius}$. Triangulate M so that the length of each adjacent edge is less than ε. Let x_1, \ldots, x_k be the vertices of the triangulation, and let e_{ij} be minimal geodesics connecting x_i and x_j.

Connect x to each x_i by a minimal geodesic σ_i, and set $\sigma_{ij} = \sigma_j^{-1} e_{ij} \sigma_i$.

Then $\ell(\sigma_{ij}) < 2\text{diam}_M + \varepsilon$, so $d(\tilde{x}, \sigma_{ij} \tilde{x}) < 2\text{diam}_M + \varepsilon$.

We claim that $\{\sigma_{ij}\}$ generates $\pi_1(M)$. For any loop at x is homotopic to a 1-skeleton, while $\sigma_{jk} \sigma_{ij} = \sigma_{ik}$ as adjacent vertices span a 2-simplex. In addition, if $1 = \sigma \in \pi_1(M)$, σ is trivial in some 2-simplex. Thus $\sigma = 1$ can be expressed as a product of the above relations.

Theorem 2.4.1 (Anderson, 1990) In the class of manifolds M with $\text{Ric}_M \geq (n - 1)H$, $\text{vol}_M \geq V$ and $\text{diam}_M \leq D$ there are only finitely many isomorphism types of $\pi_1(M)$.

Remark: The volume condition is necessary. For example, S^3/\mathbb{Z}_n has $K \equiv 1$ and $\text{diam} = \pi/2$, but $\pi_1(S^3/\mathbb{Z}_n) = \mathbb{Z}_n$. In this case, $\text{vol}(S^3/\mathbb{Z}_n) \to 0$ as $n \to \infty$.

Proof of Theorem. Choose generators for $\pi_1(M)$ as in the lemma; it is sufficient to bound the number of generators.

Let F be a fundamental domain in \tilde{M} that contains \tilde{x}. Then

$$\bigcup_{i=1}^{k} \gamma_i(F) \subset B(\tilde{x}, 3D).$$

Also, $\text{vol}(F) = \text{vol}(M)$, so

$$k \leq \frac{\text{vol} B(\tilde{x}, 3D)}{\text{vol} M} \leq \frac{\text{vol} B^H(3D)}{V}.$$

This is a uniform bound depending on H, D and V.

Theorem 2.4.2 (Anderson, 1990) For the class of manifolds M with $\text{Ric}_M \geq (n - 1)H$, $\text{vol}_M \geq V$ and $\text{diam}_M \leq D$ there are $L = L(n, H, V, D)$ and $N = N(n, H, V, D)$ such that if $\Gamma \subset \pi_1(M)$ is generated by $\{\gamma_i\}$ with each $\ell(\gamma_i) \leq L$ then the order of Γ is at most N.

18
Proof. Let $\Gamma = \langle \gamma_1, \ldots, \gamma_k \rangle \subset \pi_1(M)$, where each $\ell(\gamma_i) \leq L$. Set

$$U(s) = \{ \gamma \in \Gamma : |\gamma| \leq s \},$$

and let $F \subset \tilde{M}$ be a fundamental domain of M. Then $\gamma_i(F) \cap \gamma_j(F)$ has measure zero for $i \neq j$. Now

$$\bigcup_{\gamma \in U(s)} \gamma(F) \subset B(\tilde{x}, sL + D),$$

so

$$\#U(s) \leq \frac{\text{vol}B^H(sL + D)}{V}.$$

Note that if $U(s) = U(s + 1)$, then $U(s) = \Gamma$. Also, $U(1) \geq 1$. Thus, if Γ has order greater than N, then $U(N) \geq N$.

Set $L = D/N$ and $s = N$. Then

$$N \leq U(N) \leq \frac{\text{vol}B^H(2D)}{V}.$$

Hence $|\Gamma| \leq N = \frac{\text{vol}B^H(2D)}{V} + 1$, so Γ is finite.

3 Laplacian Comparison

3.1 What is the Laplacian?

We restrict our attention to functions, so the Laplacian is a function

$$\Delta : C^\infty(M) \to C^\infty(M).$$

3.1.1 Invariant definition of the Laplacian

Suppose $f \in C^\infty(M)$. The gradient of f is defined by $\langle \nabla f, X \rangle = Xf$. Note that the gradient depends on the metric. We may also define the Hessian of f to be the symmetric bilinear form $\text{Hess} f : \chi(M) \times \chi(M) \to C^\infty(M)$ by

$$\text{Hess} f(X, Y) = \nabla^2_{X,Y} f = X(Yf) - (\nabla_X Y)f = \langle \nabla_X \nabla f, Y \rangle.$$

19
The Laplacian of f is the trace of Hess f, $\Delta f = \text{tr}(\text{Hess } f)$. Note that if $\{e_i\}$ is an orthonormal basis, we have

$$\Delta f = \text{tr} \langle \nabla_X \nabla f, Y \rangle = \sum_{i=1}^n \langle \nabla_{e_i} \nabla f, e_i \rangle = \text{div} \nabla f.$$

3.1.2 Laplacian in terms of geodesic polar coordinates

Fix $p \in M$ and use geodesic polar coordinates about p. For any $x \in M - C_p$, $x \neq p$, connect p to x by a normalized minimal geodesic γ so $\gamma(0) = p$ and $\gamma(r) = x$. Set $N = \gamma'(r)$, the outward pointing unit normal of the geodesic sphere. Let e_2, \ldots, e_n be an orthonormal basis tangent to the geodesic sphere, and extend N, e_2, \ldots, e_n to an orthonormal frame in a neighborhood of x. Then if $e_1 = N$,

$$\Delta f = \sum_{i=1}^n \langle \nabla_{e_i} \nabla f, e_i \rangle = \sum_{i=1}^n (e_i(e_i f) - (\nabla_{e_i} e_i) f).$$

Note that

$$\nabla_{e_i} e_i = \langle \nabla_{e_i} e_i, N \rangle N + (\nabla_{e_i} e_i)^T = \langle \nabla_{e_i} e_i, N \rangle N + (\bar{\nabla}_{e_i} e_i),$$

where $\bar{\nabla}$ is the induced connection on $\partial B(p, r)$. Thus

$$\Delta f = N(N f) - (\nabla_N N) f + \sum_{i=2}^n (e_i(e_i f) - (\nabla_{e_i} e_i) f)$$

$$= \frac{\partial^2 f}{\partial r^2} + \sum_{i=2}^n (e_i(e_i f) - (\nabla_{e_i} e_i) f) - \left(\sum_{i=2}^n \langle \nabla_{e_i} e_i, N \rangle N \right) f$$

$$= \bar{\Delta} f + m(r, \theta) \frac{\partial}{\partial r} f + \frac{\partial^2 f}{\partial r^2},$$

where $\bar{\Delta}$ is the induced Laplacian on the sphere and $m(r, \theta) = -\sum_{i=2}^n \langle \nabla_{e_i} e_i, N \rangle$ is the mean curvature of the geodesic sphere in the inner normal direction.
3.1.3 Laplacian in local coordinates

Let $\varphi : U \subset M^n \to \mathbb{R}^n$ be a chart, and let $e_i = (\varphi^{-1})_*(\frac{\partial}{\partial x_i})$ be the corresponding coordinate frame on U. Then

$$\Delta f = \sum_{k,\ell} \frac{1}{\sqrt{\det g_{ij}}} \partial_k(\sqrt{\det g_{ij}} g^{k\ell} \partial_{\ell} f),$$

where $g_{ij} = \langle e_i, e_j \rangle$ and $(g^{ij}) = (g_{ij})^{-1}$.

Notes:

1. $\Delta f = \frac{\partial^2}{\partial r^2} f + m(r, \theta) \frac{\partial}{\partial r} + \bar{\Delta} f$. Let $m_H(r)$ be the mean curvature in the inner normal direction of $\partial B_H(x, r)$. Then

$$m_H(r) = (n - 1) \begin{cases} \frac{1}{r} & \text{if } H = 0 \\ \sqrt{H} \cot \sqrt{H}r & \text{if } H > 0 \\ \sqrt{-H} \coth \sqrt{-H}r & \text{if } H < 0 \end{cases}.$$

2. We have

$$m(r, \theta) = \frac{A'(r, \theta)}{A(r, \theta)},$$

where $A(r, \theta)drd\theta$ is the volume element.

3. We also have

$$m(r, \theta) = -\sum_{k=0}^n \langle \nabla e_i e_i, N \rangle.$$

In

- \mathbb{R}^n, $g = dr^2 + r^2 d\theta^2_{n-1}$
- S_H^n, $g = dr^2 + \left(\frac{\sin \sqrt{H}r}{\sqrt{H}}\right)^2 d\theta^2_{n-1}$
- H^n_H, $g = dr^2 + \left(\frac{\sinh \sqrt{-H}r}{\sqrt{-H}}\right)^2 d\theta^2_{n-1}$.

By Koszul’s formula,

$$\langle \nabla e_i e_i, N \rangle = -\langle e_i, [e_i, N] \rangle.$$

In Euclidean space, $N = \frac{\partial}{\partial r}, \frac{1}{r} e_i$ are orthonormal. In S_H^n,

$$N = \frac{\partial}{\partial r}, \frac{\sqrt{H}}{\sin \sqrt{H}r} e_i$$

21
are orthonormal, while

\[N = \frac{\partial}{\partial r}, \frac{\sqrt{-H}}{\sinh \sqrt{-H} r} e_i \]

are orthonormal in \(\mathbb{H}_H^n \).

3.2 Laplacian Comparison

On a Riemannian manifold \(M^n \), the most natural function to consider is the distance function \(r(x) = d(x, p) \) with \(p \in M \) fixed. Then \(r(x) \) is continuous, and is smooth on \(M - \{p\} \cup C_p \). We consider \(\Delta r \) where \(r \) is smooth.

If \(x \in M - \{p\} \cup C_p \), connect \(p \) and \(x \) with a normalized, minimal geodesic \(\gamma \). Then \(\gamma(0) = p, \gamma(r(x)) = x \) and \(\nabla r = \gamma'(r) \). In polar coordinates,

\[\Delta = \frac{\partial^2}{\partial r^2} + m(r, \theta) \frac{\partial}{\partial r} + \bar{\Delta}. \]

Thus \(\Delta r = m(r, \theta) \).

Theorem 3.2.1 (Laplacian Comparison, Mean Curvature Comparison)

Suppose \(M^n \) has \(\text{Ric}_M \geq (n-1)H \). Let \(\Delta_H \) be the Laplacian of \(S^n_H \) and \(m_H(r) \) be the mean curvature of \(\partial B_H(r) \subset M^n_H \). Then:

1. \(\Delta r \leq \Delta_H r \) (Laplacian Comparison)
2. \(m(r, \theta) \leq m_H(r) \) (Mean Curvature Comparison)

Proof. We first derive an equation. Let \(N, e_2, \ldots, e_n \) be an orthonormal basis at \(p \), and extend to an orthonormal frame \(N, e_2, \ldots, e_n \) by parallel translation along \(N \). Then \(\nabla_N e_i = 0 \), so \(\langle \nabla_N \nabla_i N, e_i \rangle = N \langle \nabla_i N, e_i \rangle \). Also, \(\nabla_{e_i} \nabla_N N = 0 \). Thus

\[
\text{Ric}(N,N) = \sum_{i=2}^{n} \langle R(e_i, N) N, e_i \rangle
\]

\[
= \sum_{i=2}^{n} \langle \nabla_{N} \nabla_N N - \nabla_N \nabla_{e_i} N - \nabla_{[e_i, N]} N, e_i \rangle
\]

\[
= - \sum_{i=2}^{n} N \langle \nabla_{e_i} N, e_i \rangle - \sum_{i=2}^{n} \langle \nabla_{[e_i, N]} N, e_i \rangle.
\]
Now
\[\sum_{i=2}^{n} \langle \nabla_{e_i} N, e_i \rangle = \sum_{i=2}^{n} e_i \langle N, e_i \rangle - \langle N, \nabla_{e_i} e_i \rangle \]
\[= - \sum_{i=2}^{n} \langle N, \nabla_{e_i} e_i \rangle \]
\[= m(r, \theta), \]
so
\[\text{Ric}(N, N) = -m'(r, \theta) - \sum_{i=2}^{n} \langle \nabla_{e_i} N, e_i \rangle. \]

In addition,
\[\nabla_{e_i} N = \sum_{j} \langle \nabla_{e_i} N, e_j \rangle e_j + \langle \nabla_{e_i} N, N \rangle N. \]

But
\[2\langle \nabla_{e_i} N, N \rangle = e_i \langle N, N \rangle = 0, \]
so
\[\nabla_{e_i} N = \sum_{j} \langle \nabla_{e_i} N, e_j \rangle e_j. \]

Thus
\[\sum_{i=2}^{n} \langle \nabla_{[e_i, N]} N, e_i \rangle = \sum_{i=2}^{n} \sum_{j=2}^{n} \langle \nabla_{e_i} N, E_j \rangle \langle \nabla_{e_j} N, e_i \rangle \]
\[= \| \text{Hess} (r) \|^2, \]
where \(\| A \|^2 = \text{tr}(AA^t) \). Hence \(\text{Ric}(N, N) = -m'(r, \theta) - \| \text{Hess} (r) \|^2. \)

Now \(\| A \|^2 = \lambda_1^2 + \cdots + \lambda_n^2 \), where the \(\lambda_i \)'s are the eigenvalues of \(A \).

Let \(\lambda_1, \ldots, \lambda_n \) be the eigenvalues of \(\text{Hess} r \); since \(\nabla_{N} N = 0 \) we may assume \(\lambda_1 = 0. \) Then
\[\| \text{Hess} (r) \|^2 = \lambda_2^2 + \cdots + \lambda_n^2 \]
\[\geq (\lambda_2 + \cdots + \lambda_n)^2/(n-1), \]
since \(\langle A, I \rangle^2 \leq \| A \|^2 \| I \|^2 \) with \(A \) diagonal and \(\langle A, B \rangle = \text{tr}(AB^t) \). But \(\lambda_2 + \cdots + \lambda_n = m(r, \theta) \), so
\[\| \text{Hess} (r) \|^2 \geq \frac{m(r, \theta)^2}{(n-1)}. \]
Since $\text{Ric}(N, N) \geq (n - 1)H$, we have

$$(n - 1)H + m(r, \theta)^2/(n - 1) \leq -m'(r, \theta).$$

Set $u = (n - 1)/m(r, \theta)$, so $m(r, \theta) = (n - 1)/u$. Then

$$H + 1/u^2 \leq (1/u^2)u',$$

so

$$Hu^2 + 1 \leq u',$$

which is

$$\frac{u'}{Hu^2 + 1} \geq 1.$$

Thus

$$\int_0^r \frac{u'}{Hu^2 + 1} \geq \int_0^r 1 = r.$$ If $H = 0$, we have $u \geq r$. In this case $(n - 1)/r \geq m(r, \theta)$, so

$$m(r, \theta) \leq m_H(r).$$

If $H > 0$, $(\tan^{-1}(\sqrt{Hu}))/\sqrt{h} \geq r$. Now as $r \to 0$, $m(r, \theta) \to (n - 1)/r$. Thus $u \to 0$ as $r \to 0$. Hence $\sqrt{H}u \geq \tan(\sqrt{H}r)$. Thus $\sqrt{H}(n - 1)/m(r, \theta) \geq \tan(\sqrt{H}r)$, so

$$m(r, \theta) \leq \frac{\sqrt{H}(n - 1)}{\tan(\sqrt{H}r)} = m_H(r).$$

Note that inside the cut locus of M, the mean curvature is positive, so the inequality is unchanged when we may multiply by $m(r, \theta)$.

If $H < 0$, similar arguments show that

$$m(r, \theta) \leq \frac{(n - 1)\sqrt{-H}}{\coth(\sqrt{-H}r)} = m_H(r).$$

3.3 Maximal Principle

We first define the Laplacian for continuous functions, and then relate the Laplacian to local extrema.

Lemma 3.3.1 Suppose $f, h \in C^2(M)$ and $p \in M$. Then if
1. \(f(p) = h(p) \)

2. \(f(x) \geq h(x) \) for all \(x \) in some neighborhood of \(p \)

then

1. \(\nabla f(p) = \nabla h(p) \)

2. \(\text{Hess}(f)(p) \geq \text{Hess}(h)(p) \)

3. \(\Delta f(p) \geq \Delta h(p) \).

Proof. Suppose \(v \in T_pM \). Pick \(\gamma: (-\varepsilon, \varepsilon) \to M \) so that \(\gamma(0) = p \) and \(\gamma'(0) = v \). Then \((f - h) \circ \gamma: (-\varepsilon, \varepsilon) \to \mathbb{R} \), so the result follows from the real case.

Definition 3.3.1 Suppose \(f \in \mathcal{C}^0(M) \). We say that \(\Delta f(p) \geq a \) in the barrier sense if for any \(\varepsilon > 0 \) there exists a function \(f_\varepsilon \), called a support function, such that

1. \(f_\varepsilon \in \mathcal{C}^2(U) \) for some neighborhood \(U \) of \(p \)

2. \(f_\varepsilon(p) = f(p) \) and \(f(x) \geq f_\varepsilon(x) \) for all \(x \in U \)

3. \(\Delta f_\varepsilon(p) \geq a - \varepsilon \).

Note that \(f_\varepsilon \) is also called support from below, or a lower barrier, for \(f \) at \(p \). A similar definition holds for upper barrier.

Theorem 3.3.1 (Maximal Principle) If \(f \in \mathcal{C}^0(M) \) and \(\Delta f \geq 0 \) then \(f \) is constant in a neighborhood of each local maximum. In particular, if \(f \) has a global maximum, then \(f \) is constant.

Proof. If \(\Delta f > 0 \) then \(f \) cannot have a local maximum. Suppose \(\Delta f \geq 0 \), \(f \) has a local maximum at \(p \), but \(f \) is not constant at \(p \). We perturb \(f \) so that \(\Delta F > 0 \).

Consider the geodesic sphere \(\partial B(p, r) \). For \(r \) sufficiently small, there is \(z \in \partial B(p, r) \) with \(f(z) < f(p) \). We define \(h \) in a neighborhood of \(p \) such that

1. \(\Delta h > 0 \)

2. \(h < 0 \) on \(V = \{ x : f(x) = p \} \cap \partial B(p, r) \)
3. \(h(p) = 0 \)

To this end, set \(h = e^{\alpha \psi} - 1 \). Then

\[
\begin{align*}
\nabla h &= \alpha e^{\alpha \psi} \nabla \psi \\
\Delta h &= \alpha^2 e^{\alpha \psi} (\nabla \psi, \nabla \psi) + \alpha e^{\alpha \psi} \Delta \psi \\
&= \alpha e^{\alpha \phi} (\alpha |\nabla \psi|^2 + \Delta \psi)
\end{align*}
\]

We want \(\psi \) such that

1. \(\psi(p) = 0 \)
2. \(\psi(x) < 0 \) on some neighborhood containing \(V \)
3. \(\nabla \psi \neq 0 \)

Choose coordinates so \(p \mapsto 0 \) and \(z \mapsto (r, 0, \ldots, 0) \). Set

\[
\psi = x_1 - \beta (x_2^2 + \cdots + x_n^2),
\]

where \(\beta \) is chosen large enough that \(\psi < 0 \) on some open set in \(S^{n-1}_r - z \). Then \(\psi \) satisfies the above conditions.

Since \(|\nabla \psi| \geq 1 \) and \(\Delta \psi \) is continuous, we may choose \(\alpha \) large enough that \(\Delta h > 0 \). Now consider \(f_\delta = f + \delta h \) on \(B(p, r) \). For \(\delta \) small,

\[
f_\delta(p) = f(p) > \max_{\partial B(p, r)} f_\delta(x).
\]

Thus, for \(\delta \) small, \(f_\delta \) has a local maximum in the interior of \(B(p, r) \). Call this point \(q \), and set \(N = \Delta h(q) > 0 \). Since \(\Delta f(q) \geq 0 \), there is a lower barrier function for \(f \) at \(q \), say \(g \), with \(\Delta g > -\delta N/2 \). Then

\[
\Delta (g + \delta h)(q) = \Delta g + \delta \Delta h > \delta N/2
\]

and \(g + \delta h \) is a lower barrier function for \(f_\delta \) at \(q \). Thus \(\Delta f_\delta(q) > 0 \), which is a contradiction.

Theorem 3.3.2 (Regularity) If \(f \in C^0(M) \) and \(\Delta f \equiv 0 \) in the barrier sense, then \(f \) is \(C^\infty \).

If \(\Delta f \equiv 0 \), \(f \) is called harmonic.
3.4 Splitting Theorem

Definition 3.4.1 A normalized geodesic \(\gamma : [0, \infty) \to M \) is called a ray if \(d(\gamma(0), \gamma(t)) = t \) for all \(t \). A normalized geodesic \(\gamma : (-\infty, \infty) \) is called a line if \(d(\gamma(t), \gamma(s)) = s - t \) for all \(s \geq t \).

Definition 3.4.2 \(M \) is called connected at infinity if for all \(K \subset M \), \(K \) compact, there is a compact \(\tilde{K} \supset K \) such that every two points in \(M - \tilde{K} \) can be connected in \(M - K \).

Lemma 3.4.1 If \(M \) is noncompact then for each \(p \in M \) there is a ray \(\gamma \) with \(\gamma(0) = p \).

If \(M \) is disconnected at infinity then \(M \) has a line.

Example 3.4.1 A Paraboloid has rays but no lines.

Example 3.4.2 \(\mathbb{R}^2 \) has lines.

Example 3.4.3 A cylinder has lines.

Example 3.4.4 A surface of revolution has lines.

The theorem that we seek to prove is:

Theorem 3.4.1 (Splitting Theorem: Cheeger Gromoll 1971) Suppose that \(M^n \) is noncompact, \(\text{Ric}_M \geq 0 \), and \(M \) contains a line. Then \(M \) is isometric to \(N \times \mathbb{R} \) with the product metric, where \(N \) is a smooth \((n - 1)\)-manifold with \(\text{Ric}_N \geq 0 \). Thus, if \(N \) contains a line we may apply the result to \(N \).

To prove this theorem, we introduce Busemann functions.

Definition 3.4.3 If \(\gamma : [0, \infty) \to M \) is a ray, set \(b^\gamma_t(x) = t - d(x, \gamma(t)) \).

Lemma 3.4.2 We have

1. \(|b^\gamma_t(x)| \leq d(x, \gamma(0)) \).
2. For \(x \) fixed, \(b^\gamma_t(x) \) is nondecreasing in \(t \).
3. \(b^\gamma_t(x) - b^\gamma_t(y) \leq d(x, y) \).
Proof. (1) and (3) are the triangle inequality. For (2), suppose \(s < t \).

Then
\[
b^\gamma_s(x) - b^\gamma_t(x) = (s-t) - d(x, \gamma(s)) + d(x, \gamma(t))
\]
\[
= d(x, \gamma(t)) - d(x, \gamma(s)) - d(\gamma(s), \gamma(t))
\]
\[
\leq 0
\]

Definition 3.4.4 If \(\gamma : [0, \infty) \to M \) is a ray, the Busemann function associated to \(\gamma \) is
\[
b^\gamma(x) = \lim_{t \to \infty} b^\gamma_t(x) = \lim_{t \to \infty} t - d(x, \gamma(t)).
\]

By the above, Busemann functions are well defined and Lipschitz continuous. Intuitively, \(b^\gamma(x) \) is the distance from \(\gamma(\infty) \). Also, since
\[
b^\gamma(\gamma(s)) = \lim_{t \to \infty} t - d(\gamma(s), \gamma(t)) = \lim_{t \to \infty} t - (t-s) = s,
\]
\(b^\gamma(x) \) is linear along \(\gamma(t) \).

Example 3.4.5 In \(\mathbb{R}^n \), the rays are \(\gamma(t) = \gamma(0) + \gamma'(0)t \). In this case, \(b^\gamma(x) = \langle x - \gamma(0), \gamma'(0) \rangle \). The level sets of \(b^\gamma \) are hyperplanes.

Lemma 3.4.3 If \(M \) has \(\text{Ric}_M \geq 0 \) and \(\gamma \) is a ray on \(M \) then \(\Delta(b^\gamma) \geq 0 \) in the barrier sense.

Proof. For each \(p \in M \), we construct a support function of \(b^\gamma \) at \(p \). We first construct asymptotic rays of \(\gamma \) at \(p \).

Pick \(t_i \to \infty \). For each \(i \), connect \(p \) and \(\gamma(t_i) \) by a minimal geodesic \(\sigma_i \). Then \(\{\sigma'_i(0)\} \subset S^{n-1} \), so there is a subsequential limit \(\tilde{\gamma}'(0) \). The geodesic \(\tilde{\gamma} \) is called an asymptotic ray of \(\gamma \) at \(p \); note that \(\tilde{\gamma} \) need not be unique.

We claim that \(b^\tilde{\gamma}(x) + b^\gamma(p) \) is a support function of \(b^\gamma \) at \(p \). For \(b^\tilde{\gamma}(p) = 0 \), so the functions agree at \(p \). In addition, \(\tilde{\gamma} \) is a ray, so \(\tilde{\gamma}(t) \) is not a cut point of \(\tilde{\gamma} \) along \(p \). Hence \(d(\tilde{\gamma}(t), *) \) is smooth at \(p \), so \(b^\tilde{\gamma}(x) \) is smooth in a neighborhood of \(p \).
Now
\[
b^\tilde{\gamma}(x) = \lim_{t \to \infty} t - d(x, \tilde{\gamma}(t)) \\
\leq \lim_{t \to \infty} t - d(x, \gamma(s)) + d(\tilde{\gamma}(t), \gamma(s)) \\
= \lim_{t \to \infty} t + s - d(x, \gamma(s)) - s + d(\tilde{\gamma}(t), \gamma(s)) \\
= \lim_{t \to \infty} t + b^\gamma_s(x) - b^\gamma_s(\tilde{\gamma}(t));
\]
letting \(s \to \infty \), we obtain
\[
b^\tilde{\gamma}(x) \leq \lim_{t \to \infty} t + b^\gamma(x) - b^\gamma(\tilde{\gamma}(t)).
\]
We also have
\[
b^\gamma(p) = \lim_{t_i \to \infty} t_i - d(p, \gamma(t_i)) \\
= \lim_{t_i \to \infty} t_i - d(p, \sigma_i(t)) - d(\gamma(t_i)) \\
= -d(p, \tilde{\gamma}(t)) + \lim_{t_i \to \infty} t_i - d(\sigma_i(t), \gamma(t_i)) \\
= -d(p, \tilde{\gamma}(t)) + b^\gamma(\tilde{\gamma}(t)) \\
= -t + b^\gamma(\tilde{\gamma}(t)).
\]
Thus
\[
b^\tilde{\gamma}(x) + b^\gamma(p) \leq \lim_{t \to \infty} t + b^\gamma(x) - b^\gamma(\tilde{\gamma}(t)) - t + b^\gamma(\tilde{\gamma}(t)) \\
= b^\gamma(x),
\]
so \(b^\tilde{\gamma}(x) + b^\gamma(p) \) is a support function for \(b^\gamma \) at \(p \). By a similar argument, each \(b^\gamma_t(x) + b^\gamma(p) \) is a support function for \(b^\gamma \) at \(p \).

Finally, since \(\text{Ric}_M \geq 0 \),
\[
\Delta(b^\gamma_t(x) + b^\gamma(p)) = \Delta(t - d(x, \tilde{\gamma}(t))) \\
= -\Delta(x, \tilde{\gamma}(t)) \\
\geq -\frac{n-1}{d(x, \tilde{\gamma}(t))},
\]
which tends to 0 as \(t \to \infty \). Thus \(\Delta(b^\gamma) \geq 0 \) in the barrier sense.

The level sets of \(b^\gamma_t \) are geodesic spheres at \(\gamma(t) \). The level sets of \(b^\gamma_t \) are geodesic spheres at \(\gamma(\infty) \).
Lemma 3.4.4 Suppose γ is a line in M, $\text{Ric}_M \geq 0$. Then γ defines two rays, γ^+ and γ^-. Let b^+ and b^- be the associated Busemann functions. Then:

1. $b^+ + b^- \equiv 0$ on M.
2. b^+ and b^- are smooth.
3. Given any point $p \in M$ there is a unique line passing through p that is perpendicular to $v_0 = \{x : b^+(x) = 0\}$ and consists of asymptotic rays.

Proof. For

1. Observe that
\[
 b^+(x) + b^-(x) = \lim_{t \to \infty} (t - d(x, \gamma^+(t))) + \lim_{t \to \infty} (t - d(x, \gamma^-(t))) \\
 = \lim_{t \to \infty} 2t - (d(x, \gamma^+(t)) - d(x, \gamma^-(t))) \\
 \leq 2t - d(\gamma^+(t), \gamma^-(t)) = 0.
\]

Since $b^+(\gamma(0)) + b^- (\gamma(0)) = 0$, 0 is a global maximum. But
\[
 \Delta (b^+ + b^-) = \Delta b^+ + \Delta b^- \geq 0,
\]
so $b^+ + b^- \equiv 0$.

2. We have $b^+ = -b^-$. Thus
\[
 0 \leq \Delta b^+ = -\Delta b^- \leq 0,
\]
so both b^+ and b^- are smooth by regularity.

3. At p there are asymptotic rays $\tilde{\gamma}^+$ and $\tilde{\gamma}^-$. We first show that $\tilde{\gamma}^+ + \tilde{\gamma}^-$ is a line. Since
\[
 d(\tilde{\gamma}^+(s_1), \tilde{\gamma}^-(s_2)) \geq d(\tilde{\gamma}^-(s_2), \gamma^+(t)) - d(\tilde{\gamma}^+(s_1), \gamma^+(t)) \\
 = (t - d(\tilde{\gamma}^+(s_1), \gamma^+(t))) - (t - d(\tilde{\gamma}^-(s_2), \gamma^+(t)))
\]
holds for all t, we have
\[
 d(\tilde{\gamma}^+(s_1), \tilde{\gamma}^-(s_2)) \geq b^+(\tilde{\gamma}^+(s_1)) - b^+(\tilde{\gamma}^-(s_2)) \\
 = b^+(\gamma^+(s_1)) + b^-(\gamma^-(s_2)) \\
 \geq b^+(\tilde{\gamma}^+(s_1)) + b^+(p) + b^-(\tilde{\gamma}^-(s_2)) + b^-(p) \\
 = s_1 + s_2.
\]
Thus $\tilde{\gamma}^+ + \tilde{\gamma}^-$ is a line. But our argument shows that any two asymptotic rays form a line, so the line is unique.

Set $\tilde{v}_{t_0} = (\tilde{b}^+)^{-1}(t_0)$. Then if $y \in \tilde{v}_{t_0}$ we have
\[
d(y, \tilde{\gamma}^+(t)) \geq |\tilde{b}^+(y) - \tilde{b}^+(\tilde{\gamma}^+(t))| = |t_0 - t| = d(\tilde{\gamma}^+(t_0), \tilde{\gamma}^+(t)),
\]
which shows $\tilde{\gamma} \perp \tilde{v}_{t_0}$.

Finally, since $\tilde{b}^+(x) + b^+(p) \leq b^+(x)$,
\[
-(\tilde{b}^+(x) + b^+(p)) \geq -b^+(x).
\]
But $\tilde{b}^+ = -\tilde{b}^-$ and $b^+ = -b^-$, so
\[
\tilde{b}^-(x) + b^-(p) \geq b^-(x).
\]
Since $\tilde{b}^-(x) + b^-(p) \leq b^-(x)$ as well,
\[
\tilde{b}^-(x) + b^-(p) = b^-(x).
\]
Thus the level sets of b^+ are the level sets of \tilde{b}^+, which proves the result.

Note that $b^+ : M \to \mathbb{R}$ is smooth. Since b^+ is linear on γ with a Lipschitz constant 1, $\|\nabla b^+\| = 1$. Thus $v_0 = (b^+)^{-1}(0)$ is a smooth (n-1) submanifold of M.

Proof of Splitting Theorem. Let $\phi : \mathbb{R} \times v_0 \to M$ be given by $(t, p) \mapsto \gamma(t) = \exp_p t\gamma'(0)$, where γ is the unique line passing through p, perpendicular to v_0. By the existence and uniqueness of γ, ϕ is bijective. Since \exp_p is a local dierhomorphism and $\gamma'(0) = (\nabla b^+)(v)$ smooth, ϕ is a dierhomorphism.

To show that ϕ is an isometry, set $v_t = (b^+)^{-1}(t)$ and let $m(t)$ be the mean curvature of v_t. Then $m(t) = \Delta b^+ = 0$. In the proof of the Laplacian comparison, we derived
\[
\text{Ric}(N, N) + \|\text{Hess}(r)\|^2 = m'(r, \theta),
\]
where $N = \nabla \gamma$. Note that γ is the integral curve of ∇b^+ passing through p, so $\Delta \gamma = m(t)$ and $\nabla b^+ = N$.

In our case, $\text{Ric}(N, N) \geq 0$ and $m'(r, \theta) = 0$, so
\[
\|\text{Hess}(b^+)\| = \|\text{Hess}(r)\| \leq 0.
\]
Thus \(\|\text{Hess}(b^+)\| = 0 \), so that \(\nabla b^+ \) is a parallel vector field.

Now \(\phi \) is an isometry in the \(t \) direction since \(\exp_b \) is a radial isometry. Suppose \(X \) is a vector field on \(v_0 \). Then

\[
R(N,X)N = \nabla_N \nabla_X N - \nabla_X \nabla_N N - \nabla_{[X,N]} N.
\]

But \(\nabla_N N = 0 \), and we may extend \(X \) in the coordinate direction so that \([X,N] = 0 \). Since

\[
\nabla_X N = \nabla_X \nabla b^+ = 0,
\]

we have \(R(N,X)N = 0 \).

Let \(J(t) = \phi_s(x) = \frac{d}{ds}(\phi(c(s)))\big|_{s=t} \), where \(c : (-\varepsilon, \varepsilon) \to v_0 \) has \(c'(t) = X \). Then \(J(t) \) is a Jacobi field, \(J''(t) = 0 \) and \(J \perp N \). Thus \(J(t) \) is constant. Hence \(\|\phi_s(X)\| = \|X\| \), so \(\phi \) is an isometry.

Remark: Since \(\|\text{Hess}(b^+)\| = 0 \), we have \(\nabla_X \nabla b^+ = 0 \) for all vector fields \(X \). By the de Rham decomposition, \(\phi \) is a locally isometric splitting.

Summary of Proof of Splitting Theorem.

1. Laplaceian Comparison in Barrier Sense
2. Maximal Principle
3. Bochner Formula: Generalizes \(\text{Ric}(N,N) + \|\text{Hess}(r)\| = m'(r,\theta) \)
4. de Rham Decomposition

Also, the Regularity Theorem was used.

3.5 Applications of the Splitting Theorem

Theorem 3.5.1 (Cheeger-Gromoll 1971) If \(M^n \) is compact with \(\text{Ric}_M \geq 0 \) then the universal cover \(\tilde{M} \cong N \times \mathbb{R}^k \), where \(N \) is a compact \((n-k)\)-manifold. Thus \(\pi_1(M) \) is almost \(\pi_1(\text{Flat Manifold}) \), i.e.

\[
0 \to F \to \pi_1(M) \to B_k \to 0,
\]

where \(F \) is a finite group and \(B_k \) is the fundamental group of some compact flat manifold.
B_k is called a Bieberbach group.

Proof. By the splitting theorem, \(\tilde{M} \simeq N \times \mathbb{R}^k \), where \(N \) has no line. We show \(N \) is compact.

Note that isometries map lines to lines. Thus, if \(\psi \in Iso(\tilde{M}) \), then \(\psi = (\psi_1, \psi_2) \), where \(\psi_1 : N \to N \) and \(\psi_2 : \mathbb{R}^k \to \mathbb{R}^k \) are isometries. Suppose \(N \) is not compact, so \(N \) contains a ray \(\gamma : [0, \infty) \to N \). Let \(F \) be a fundamental domain of \(M \), so \(\bar{F} \) is compact, and let \(p_1 \) be the projection \(\tilde{M} \to N \).

Pick \(t_i \to \infty \). For each \(i \) there is \(g_i \in \pi_1(M) \) such that \(g_i(\gamma(t_i)) \in p_1(F) \). But \(p_1(\bar{F}) \) is compact, so we may assume \(g_i(\gamma(t_i)) \to p \in N \). Set \(\gamma_i(t) = g_i(\gamma(t + t_i)) \). Then \(\gamma_i : [-t_i, \infty) \to N \) is minimal, and \(\{\gamma_i\} \) converges to a line \(\sigma \) in \(N \).

Thus \(N \) is compact. For the second statement, let \(p_2 : \pi_1(M) \to Iso(\mathbb{R}^k) \) be the map \(\psi = (\psi_1, \psi_2) \mapsto \psi_2 \). Then

\[
0 \to \text{Ker}(p_2) \to \pi_1(M) \to \text{Im}(p_2) \to 0
\]

is exact. Now \(\text{Ker}(p_2) = \{(\psi_1, 0)\} \), while \(\text{Im}(\psi_2) = \{(0, \psi_2)\} \). Since \(\text{Ker}(p_2) \) gives a properly discontinuous group action on a compact manifold, \(\text{Ker}(p_2) \) is finite. On the other hand, \(\text{Im}(p_2) \) is an isometry group on \(\mathbb{R}^k \), so \(\text{Im}(p_2) \) is a Bieberbach group.

Remark: The curvature condition is only used to obtain the splitting \(\tilde{M} \simeq N \times \mathbb{R}^k \). Thus, if the conclusion of the splitting theorem holds, the curvature condition is unnecessary.

Corollary If \(M^n \) is compact with \(\text{Ric}_M \geq 0 \) and \(\text{Ric}_M > 0 \) at one point, then \(\pi_1(M) \) is finite.

Remark: This corollary improves the theorem of Bonnet-Myers. The corollary can also be proven using the Bochner technique. In fact, Aubin’s deformation gives another metric that has \(\text{Ric}_M > 0 \) everywhere.

Corollary If \(M^n \) has \(\text{Ric}_M \geq 0 \) then \(b_1(M) \leq n \), with equality if and only if \(M^n \cong T^n \), where \(T^n \) is a flat torus.

Definition 3.5.1 Suppose \(M^n \) is noncompact. Then \(M \) is said to have the geodesic loops to infinity property if for any ray \(\gamma \) in \(M \), any \(g \in \pi_1(M, \gamma(0)) \) and any compact \(K \subset M \) there is a geodesic loop \(c \) at \(\gamma_0 \) in \(M - K \) such that \(g = [c] = [(\gamma|^{\infty}_0)^{-1} \circ c \circ \gamma|^{\infty}_0] \).

Example 3.5.1 \(M = N \times \mathbb{R} \) If the ray \(\gamma \) is in the splitting direction, then any \(g \in \pi_1(M, \gamma) \) is homotopic to a geodesic loop at infinity along \(\gamma \).
Theorem 3.5.2 (Sormani, 1999) If M^n is complete and noncompact with $\text{Ric}_M > 0$ then M has the geodesic loops to infinity property.

Theorem 3.5.3 (Line Theorem) If M^n does not have the geodesic loops to infinity property then there is a line in \tilde{M}.

Application: (Shen-Sormani) If M^n is noncompact with $\text{Ric}_M > 0$ then $H_{n-1}(M, \mathbb{Z}) = 0$.

3.6 Excess Estimate

Definition 3.6.1 Given $p, q \in M$, the excess function associated to p and q is

$$e_{p,q}(x) = d(p, x) + d(q, x) - d(p, q).$$

For fixed $p, q \in M$, write $e(x)$. If γ is a minimal geodesic connecting p and q with $\gamma(0) = p$ and $\gamma(1) = q$, let $h(x) = \min_{0 \leq t \leq 1} d(x, \gamma(t))$. Then

$$0 \leq e(x) \leq 2h(x).$$

Let y be the point along γ between p and q with $d(x, y) = h(x)$.

Set

$$s_1 = d(p, x), \quad t_1 = d(p, y)$$

$$s_2 = d(q, x), \quad t_2 = d(q, y).$$

We consider triangles pqx for which h/t_1 is small; such triangles are called thin.

Example 3.6.1 In \mathbb{R}^n,

$$s_1 = \sqrt{h^2 + t_1^2} = t_1 \sqrt{1 + (h/t_1)^2}.$$

For a thin triangle, we may use a Taylor expansion to obtain $s_1 \leq t_1(1 + (h/t_1)^2)$. Thus

$$e(x) = s_1 + s_2 - t_1 - t_2$$

$$\leq h^2/t_1 + h^2/t_2$$

$$= h(h/t_1 + h/t_2)$$

$$\leq 2h(h/t),$$

where $t = \min\{t_1, t_2\}$. Thus $e(x)$ is small is h^2/t is small.
If \(M \) has \(K \geq 0 \) then the Toponogov comparison shows that \(s_1 \leq \sqrt{h^2 + t^2_1} \), so the same estimate holds.

Lemma 3.6.1 \(e(x) \) has the following basic properties:

1. \(e(x) \geq 0 \).
2. \(e|_\gamma = 0 \).
3. \(|e(x) - e(y)| \leq 2d(x, y) \).
4. If \(M \) has \(\text{Ric} \geq 0 \),
 \[
 \Delta(e(x)) \leq (n - 1)(1/s_1 + 1/s_2) \leq (n - 1)(2/s),
 \]
 where \(s = \min\{s_1, s_2\} \).

Proof. (1), (2) and (3) are clear. (4) is a consequence of the following Laplacian comparison.

Lemma 3.6.2 Suppose \(M \) has \(\text{Ric} \geq (n - 1)H \). Set \(r(x) = d(p, x) \), and let \(f : \mathbb{R} \to \mathbb{R} \). Then, in the barrier sense,

1. If \(f' \geq 0 \) then \(\Delta f(r(x)) \leq \Delta_H f|_{r=r(x)} \).
2. If \(f' \leq 0 \) then \(\Delta f(r(x)) \geq \Delta_H f|_{r=r(x)} \).

Proof. Recall that \(\Delta = \frac{\partial^2}{\partial r^2} + m(r, \theta) \frac{\partial}{\partial \theta} + \hat{\Delta} \), where \(\hat{\Delta} \) is the Laplacian on the geodesic sphere. Hence
 \[
 \Delta f(r(x)) = f'' + m(r, \theta)f' + \Deltarf',
 \]
so we need only show \(\Delta r \leq \Delta_H r \) in the barrier sense.

We have proved the result where \(r \) is smooth, so need only prove at cut points. Suppose \(q \) is a cut point of \(p \). Let \(\gamma \) be a minimal geodesic with \(\gamma(0) = p \) and \(\gamma(\ell) = q \). We claim that \(d(\gamma(\varepsilon), x) + \varepsilon \) is an upper barrier function of \(r(x) = d(p, x) \) at \(q \), as

1. \(d(\gamma(\varepsilon), x) + \varepsilon \geq d(p, x) \),
2. \(d(\gamma(\varepsilon), q) + \varepsilon = d(p, q) \) and

3. \(d(\gamma(\varepsilon), x) + \varepsilon \) is smooth near \(q \), since \(q \) is not a cut point of \(\gamma(\varepsilon) \) for \(\varepsilon > 0 \).

Since

\[
\Delta(d(\gamma(\varepsilon), x) + \varepsilon) \leq \Delta_H(d(\gamma(\varepsilon), x)) = m_H(d(\gamma(\varepsilon), x)) \leq m_H(d(p, x)) + c\varepsilon = \Delta_H(r(x)) + c\varepsilon,
\]

we have the result.

Definition 3.6.2 The dilation of a function is

\[
\text{dil}(f) = \min_{x,y} \frac{|f(x) - f(y)|}{d(x,y)}.
\]

By property (2) of \(e(x) \), we have \(\text{dil}(e(x)) \leq 2 \).

Theorem 3.6.1 Suppose \(U : B(y, R + \eta) \to \mathbb{R} \) is a Lipschitz function on \(M, \text{Ric}_M \geq (n - 1)H \) and

1. \(U \geq 0 \),
2. \(\text{dil}(U) \leq a \),
3. \(u(y_0) = 0 \) for some \(y_0 \in B(y, R) \) and
4. \(\Delta U \leq b \) in the barrier sense.

Then \(U(y) \leq ac + G(c) \) for all \(0 < c < R \), where \(G(r(x)) \) is the unique function on \(M_H \) such that:

1. \(G(r) > 0 \) for \(0 < r < R \).
2. \(G'(r) < 0 \) for \(0 < r < R \).
3. \(G(R) = 0 \).
4. \(\Delta_H G \equiv b \).
Proof. Suppose $H = 0$, $n \geq 3$. We want $\Delta H G = b$. Since $\Delta H = \frac{\partial^2}{\partial r^2} + m_H(r, \theta) \frac{\partial}{\partial r} + \tilde{\Delta}$, we solve

$$G'' + (n - 1)G'/r = b$$

$$G''r^2 + (n - 1)G' = br^2,$$

which is an Euler type O.D.E. The solutions are $G = G_p + G_h$, where $G_p = b/2nr^2$ and $G_h = c_1 + c_2 r^{-(n-2)}$.

Now $G(R) = 0$ gives

$$\frac{b}{2n} R^2 + c_1 + c_2 R^{-(n-2)} = 0,$$

while $G' < 0$ gives

$$\frac{b}{n} r - (n - 2)c_2 r^{-(n-1)} > -0$$

for all $0 < r < R$. Thus $c_2 \geq \frac{b}{n(n-2)} R^n$.

Hence $G(r) = \frac{b}{2n} r^2 + \frac{2}{n-2} r^{-(n-2)} - \frac{n}{n-2} R^2$. Note that $G > 0$ follows from $G(R) = 0$ and $G' < 0$.

For general $H < 0$,

$$G(r) = b \int_r^R \int_r^t \left(\frac{\sinh \sqrt{-H}t}{\sinh \sqrt{-H}s} \right)^{n-1} ds dt.$$

Note that $\Delta H G \geq b$ by the Laplacian comparison.

To complete the proof, fix $0 < c < R$. If $d(y, y_0) \leq c$,

$$U(y) = U(y) - U(y_0) \leq ad(y, y_0) \leq ac \leq ac + G(c).$$

If $d(y, y_0) > c$ then consider G defined on $B(y, R + \varepsilon)$, where $0 < \varepsilon < \eta$. Letting $\varepsilon \to 0$ gives the result.

Consider $V = G - U$. Then $\Delta V = \Delta G - \Delta U \geq 0$, $V|_{\partial B(R+\varepsilon)} \leq 0$ and $V(y_0) > 0$. Now y_0 is in the interior of $B(y, R + \varepsilon) - B(y, c)$, so $V(y') > 0$ for some $y' \in \partial B(y, c)$. Since

$$U(y) - U(y') \leq ad(y, y') = ac.$$
and
\[G(c) - U(y') = V(y') > 0, \]
we have
\[U(y) \leq ac + U(y') < ac + G(c). \]

We now apply this result to \(e(x) \). Here \(e(x) \geq 0 \), \(a = 2 \) and \(R = h(x) \).
We assume \(s(x) \geq 2h(x) \). On \(B(x, R) \),
\[\Delta e \leq \frac{4(n-1)}{s(x)}, \]
so \(b = 4(n-1)/s(x) \). Thus
\[e(x) \leq 2c + G(c) \]
\[= 2c + \frac{2(n-1)}{ns}(c^2 + frac{2n}{2} - 2h^n e^{-(n-2)} + \frac{n}{n-2}h^2) \]
for all \(0 < c < h \).

To find the minimal value for \(ar + G(r) \), \(0 < r < R \), consider
\[a + G'(r) = a + \frac{b}{2n}(2r - 2R^n r^{1-n}) = 0. \]
This gives \(r(R^n/r^n - 1) = an/b \). To get an estimate, choose \(r \) small. Then \(R^n/r^n \) is large, so \(R^n/r^n \approx an/b \). Hence
\[r = \left(\frac{R^n b}{an} \right)^{\frac{1}{n-1}} \]
is close to a minimal point.

For the excess function, choose
\[c = \left(\frac{2h^n}{s} \right)^{\frac{1}{n-1}} \approx \left(\frac{h^n 4(n-1)}{2n} \right)^{\frac{1}{n-1}}. \]
Then
\[G(c) = \frac{2(n-1)}{ns} \left(\left(\frac{2h^n}{s} \right)^{2/(n-1)} \right) + \frac{2}{n-2}h^n \left(\frac{2h^n}{s} \right)^{\frac{n-2}{n-1}} - \frac{n}{n-2}h^2 \].
Now
\[
\left(\frac{2h^n}{s} \right)^{\frac{2}{n-1}} = h^2 \left(\frac{2h}{s} \right)^{\frac{2}{n-1}},
\]
and
\[
\frac{2h}{s} \leq 1
\]
so
\[
G(c) \leq \frac{2(n-1)}{n} \frac{2}{n-2} \frac{h^n}{s} \left(\frac{2h^n}{s} \right)^{\frac{1}{n-1}} \frac{1}{n-1}
\]
\[
\leq \frac{2(n-1)}{n(n-2)} \left(\frac{2h^n}{s} \right)^{\frac{1}{n-1}}
\]
\[
\leq 2c.
\]
Thus
\[
e(x) \leq 2c + G(c)
\]
\[
= 2c + 2c
\]
\[
= \left(\frac{2h^n}{s} \right)^{\frac{1}{n-1}}
\]
\[
\leq 8 \left(\frac{h^n}{s} \right)^{\frac{1}{n-1}}.
\]

Remarks:

1. A more careful estimate is
\[
e(x) \leq 2 \left(\frac{n-1}{n-2} \right) \left(\frac{c_3 h^n}{2} \right)^{\frac{1}{n-1}} = 8h \left(\frac{h}{s} \right)^{\frac{1}{n-1}},
\]
where \(c_3 = \frac{n-1}{n} \left(\frac{1}{s_1-h} + \frac{1}{s_2-h} \right) \) and \(h < \min(s_1, s_2) \).

2. In general, if \(\text{Ric}_M \geq (n-1)H \) then \(e(x) \leq hF \left(\frac{h}{s} \right) \) for some continuous \(F \) satisfying \(F(0) = 0 \). \(F \) is given by an integral; consider the proof of the estimate in the case \(\text{Ric}_M \geq 0 \).
3.7 Applications of the Excess Estimate

Theorem 3.7.1 (Sormani, 1998) Suppose M^n complete and noncompact with $\text{Ric}_M \geq 0$. If, for some $p \in M$,

$$\limsup_{r \to \infty} \frac{\text{diam}(\partial B(p, r))}{r} < 4s_n,$$

where

$$s_n = \frac{1}{2} \frac{1}{3^n} \frac{1}{4^{n-1}},$$

then $\pi_1(M)$ is finitely generated.

Compare this result with:

Theorem 3.7.2 (Abresch and Gromoll) If M is noncompact with $\text{Ric}_M \geq 0$, $K \geq -1$ and diameter growth $o(r^{\frac{d}{2}})$, then M has finite topological type.

Note: Diameter growth is the growth of $\text{diam}(\partial B(p, r))$. When $\text{Ric} \geq 0$, $\text{diam}(\partial B(p, r)) \leq r$. To say M has finite topological type is to say that each $H_i(M, \mathbb{Z})$ is finite.

To prove Sormani’s result we choose a desirable set of generators for $\pi_1(M)$.

Lemma 3.7.1 For M^n complete we may choose a set of generators g_1, \ldots, g_n, \ldots of $\pi_1(M)$ such that:

1. $g_i \in \text{span}\{g_1, \ldots, g_{i-1}\}$.

2. Each g_i can be represented by a minimal geodesic loop γ_i based at p such that if $\ell(\gamma_i) = d_i$ then $d(\gamma(0), \gamma(d_i/2)) = d_i/2$, and the lift $\tilde{\gamma}_i$ based at \tilde{p} is a minimal geodesic.

Proof. Fix $\tilde{p} \in \tilde{M}$. Let $G = \pi_1(M)$. Choose $g_1 \in G$ such that $d(\tilde{p}, g_1(\tilde{p})) \leq d(\tilde{p}, g(\tilde{p}))$ for all $g \in G - \{e\}$. Note that since G acts discretely on \tilde{M}, only finitely many elements of G satisfy a given distance restraint.

Let $G_i = \langle g_1, \ldots, g_{i-1} \rangle$. Choose $g_i \in G - G_i$ such that $d(\tilde{p}, g_i(\tilde{p})) \leq d(\tilde{p}, g(\tilde{p}))$ for all $g \in G - G_i$. If $\pi_1(M)$ is finitely generated, we have a sequence g_1, \ldots, g_n, \ldots; otherwise we have a list. The g_i’s satisfy (1). Let γ_i be the minimal geodesic connecting \tilde{p} to $g_i(\tilde{p})$. Set $\gamma_i = \pi(\tilde{\gamma}_i)$, where is the covering $\pi : \tilde{M} \to M$. We claim that if $\ell(\gamma_i) = d_i$ then $d(\gamma(0), \gamma(d_i/2)) = d_i/2$.
Otherwise, for some i and some $T < d_i/2$, $\gamma_i(T)$ is a cut point of p along γ_i. Since M and \tilde{M} are locally isometric, and $\tilde{\gamma}_i(T)$ is not conjugate to \tilde{p} along $\tilde{\gamma}_i$, $\gamma_i(T)$ is not conjugate to p along γ. Hence we can connect p to $\gamma_i(T)$ with a second minimal geodesic σ. Set

$$h_1 = \sigma^{-1} \circ \gamma_i|_{[0,T]}$$

and

$$h_2 = \gamma_i|_{[T,d_i]} \circ \sigma.$$

Now h_1 is not a geodesic, so

$$d(\tilde{p}, h_1(\tilde{p})) < 2T < d_i.$$

Similarly,

$$d(\tilde{p}, h_2(\tilde{p})) < T + d_i - T = d_i.$$

Hence $h_1, h_2 \in G_i$. But then $\gamma_i = h_2 \circ h_1 \in G_i$, which is a contradiction.

Lemma 3.7.2 Suppose M^n has $\text{Ric} \geq 0$, $n \geq 3$ and γ is a geodesic loop based at p. Set $D = \ell(\gamma)$. Suppose

1. $\gamma|_{[0,D/2]}$, and $\gamma|_{[D/2,D]}$ are minimal.
2. $\ell(\gamma) \leq \ell(\sigma)$ for all $[\sigma] = [\gamma]$.

Then for $x \in \partial B(p,RD)$, $R \geq 1/2 + s_n$, we have $d(x, \gamma(D/2)) \geq (R - 1/2)D + 2s_nD$.

Remark: $\gamma(D/2)$ is a cut point of p along γ. Since $d(p,x) > D/2$, any minimal geodesic connecting p and x cannot pass through $\gamma(D/2)$. Thus

$$d(\gamma(D/2), x) > d(p, x) - d(p, \gamma(D/2)) = RD - D/2 = (R - 1/2)D.$$

The lemma gives a bound on how much larger $d(\gamma(D/2), x)$ is.

Proof. It is enough to prove for $R = 1/2 + s_n$. For if $R > 1/2 + s_n$, we may choose $y \in \partial B(p,(1/2 + s_n))$ such that

$$d(x, \gamma(D/2)) = d(x, y) + d(y, \gamma(D/2)).$$
Then
\[d(x, \gamma(D/2)) \geq d(x, y) + 3s_n D \]
\[\geq (R - (1/2 + s_n))D + 3s_n D \]
\[= (R - 1/2)D + s_n D. \]

Suppose there exists \(x \in \partial B(p, (1/2 + s_n)D) \) such that
\[d(x, \gamma(D/2)) = H < 3s_n D. \]

Let \(c \) be a minimal geodesic connecting \(x \) and \(\gamma(D/2) \). Let \(\tilde{p} \) be a lift of \(p \), and lift \(\gamma \) to \(\tilde{\gamma} \) starting at \(\tilde{p} \). If \(g = [\gamma] \), then \(\tilde{\gamma} \) connects \(\tilde{p} \) and \(g(\tilde{p}) \).

Lift \(c \) to \(\tilde{c} \) starting at \(\tilde{\gamma}(D/2) \), and lift \(c \circ \gamma|_{[0,D/2]} \) to \(\tilde{c} \circ \tilde{\gamma}|_{[0,D/2]} \). Then
\[d(\tilde{p}, \tilde{x}) \geq d(p, x) = (1/2 + s_n)D, \]
and
\[d(g(\tilde{p}), \tilde{x}) \geq (1/2 + s_n)D. \]

Thus
\[e_{\tilde{p}, g(\tilde{p})}(\tilde{x}) = d(\tilde{p}, \tilde{x}) + d(g(\tilde{p}), \tilde{x}) - d(\tilde{p}, g(\tilde{p})) \geq (1/2 + s_n)D + (1/2 + s_n)D - D = 2s_n D. \]

But, by the excess estimate, if \(s \geq 2h \),
\[e(\tilde{x}) \leq 8 \left(\frac{h^n}{s} \right)^{\frac{1}{n-1}}. \]

In this case, \(h \leq H < 3s_n D \). Also,
\[s \geq (1/2 + s_n)D > D/2. \]

Since \(s_n < 1/12 \) for \(n \geq 2 \), we have \(s \geq 2h \). Thus
\[e(\tilde{x}) \leq 8 \left(\frac{(3s_n D)^n}{D/2} \right)^{\frac{1}{n-1}}. \]

But this gives
\[2s_n D \leq 8D (2(3s_n)^n)^{\frac{1}{n-1}}, \]

42
whence
\[s_n > \frac{1}{2} \frac{1}{3^n} \frac{1}{4^{n-1}}. \]

We may now prove Sormani’s result.

Proof of Theorem. Pick a set of generators \(\{g_k\} \) as in the lemma, where \(g_k \) is represented by \(\gamma_k \). If \(x_k \in \partial B(p, (1/2 + s_n)d_k) \), where \(d_k = \ell(\gamma_k) \to \infty \), we showed that
\[d(x_k, \gamma(d_k/2)) \geq 3s_nd_k. \]

Let \(y_k \in \partial B(p, d_k/2) \) be the point on a minimal geodesic connecting \(p \) and \(x_k \). Then
\[
\limsup_{r \to \infty} \frac{\text{diam}(\partial B(p, r))}{r} \geq \lim_{k \to \infty} \frac{d(y_k, \gamma_k(d_k/2))}{d_k/2} \geq \lim_{k \to \infty} \frac{2s_nd_k}{d_k/2} = 4s_n,
\]
so we have a contradiction if there are infinitely many generators.

The excess estimate can also be used for compact manifolds.

Lemma 3.7.3 Suppose \(M^n \) with \(\text{Ric}_M \geq (n - 1) \). Then given \(\delta > 0 \) there is \(\varepsilon(n, \delta) > 0 \) such that if \(d(p, q) \geq \pi - \varepsilon \) then \(e_{p,q}(x) \leq \delta \).

This lemma can be used to prove the following:

Theorem 3.7.3 There is \(\varepsilon(n, H) \) such that if \(M^n \) has \(\text{Ric}_M \geq (n - 1) \), \(\text{diam}_M \geq \pi - \varepsilon \) and \(K_M \geq H \) then \(M \) is a twisted sphere.

Proof of Lemma. Fix \(x \) and set \(e = e_{p,q}(x) \). Then \(B(x, e/2), B(p, d(p, x) - e/2) \) and \(B(q, d(x, q) - e/2) \) are disjoint. Thus
\[
\text{vol}(M) \geq \text{vol}(B(x, e/2)) + \text{vol}(B(p, d(p, x) - e/2)) + \text{vol}(B(q, d(q, x) - e/2))
\geq \text{vol}(M) \left(\frac{\text{vol}(B(x, e/2))}{\text{vol}(B(x, \pi))} + \frac{\text{vol}(B(p, d(p, x) - e/2))}{\text{vol}(B(p, \pi))} + \frac{\text{vol}(B(q, d(q, x) - e/2))}{\text{vol}(B(q, \pi))} \right)
\geq \text{vol}(M) \left(\frac{v(n, 1, e/2) + v(n, 1, d(p, x) - e/2) + v(n, 1, d(q, x) - e/2)}{v(n, 1, \pi)} \right),
\]
where \(v(n, H, r) = \text{vol}(B(r)), B(r) \subset M^n_H \).
Now in $S^n(1)$, $\text{vol}(B(r)) = \int_0^r \sin^{n-1} t \, dt$ is a convex function of r. Thus we have

\[
v(n, 1, \pi) \geq v(n, 1, e/2) + v(n, 1, d(p, x) - e/2) + v(n, 1, d(q, x) - e/2)
\]

\[
\geq v(n, 1, e/2) + 2v\left(n, 1, \frac{d(p, x) + d(q, x) - e}{2}\right)
\]

\[
= v(n, 1, e/2) + 2v\left(n, 1, \frac{d(p, q)}{2}\right).
\]

Hence

\[
v(n, 1, e/2) \leq v(n, 1, \pi) - 2v\left(n, 1, \frac{d(p, q)}{2}\right),
\]

which tends to 0 as $\varepsilon \to 0$. Thus $e \to 0$.

44