The midterm will be from sections 4.10, 5.1-5.5, 6.1-6.3. Following are some practice problems.

1. Find the following integrals.
 (a) \(\int e^s \cos(e^s) \, ds \)
 (b) \(\int_0^1 \frac{e^x}{1+e^x} \, dx \)
 (c) \(\int_0^1 (\sqrt{u} + 1)^2 \, du \)
 (d) \(\int_0^2 t \sqrt{1 + t^2} \, dt \)
 (e) \(\int \frac{e^{\sqrt{x}}}{\sqrt{x}} \, dx \)
 (f) \(\int \tan x \ln(\cos x) \, dx \)

2. Find the area of the region enclosed by the line \(y = x - 1 \) and the parabola \(y^2 = -2x + 5 \).

3. Find the volume of the solid obtained by rotating the region bounded by \(y = x^2, \ y^2 = x \) about the \(x \)-axis.

4. Find the volume of the solid generated by rotating the region bounded by the curves \(y = e^{-x^2}, \ y = 0, \ x = 0, \ x = 1 \) about \(y \)-axis.

5. Find the derivative of the function.
 (a) \(f(x) = \int_1^x \sqrt{1 + t^4} \, dt \).
 (b) \(f(x) = \int_0^x 3^{\frac{t}{4}} \sin(t^2) \, dt \).
 (c) \(f(x) = \int_1^{3x+1} \sin(t^4) \, dt \).

6. A particle moves along a line with velocity function \(v(t) = t^2 - t - 12 \), where \(v \) is measured in meters per second. Find (a) the displacement and (b) the distance traveled by the particle during the time interval \([1, 6]\).