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Abstract. We propose a level set method for the semiclassical limit of the Schrödinger equation with
discontinuous potentials. A discontinuous potential corresponds to a potential barrier, at which waves
can be partially transmitted and reflected. Previously such a problem was handled by Jin and Wen
using the Liouville equation–which arises as the semiclassical limit of the Schrödinger equation–with
an interface condition to account for partial transmissions and reflections (S. Jin and X. Wen, SIAM
J. Num. Anal. 44, 1801-1828, 2006). However, the initial data are Dirac-delta functions which are
difficult to approximate numerically with a high accuracy. In this paper, we extend the level set
method introduced in (S. Jin, H. Liu, S. Osher and R. Tsai, J. Comp. Phys. 210, 497-518, 2005) for
this problem. The advantage of this method is that, via a simple decomposition of the initial data
one can evolve in time with bounded solution, so as to avoid discretizing the singular delta function
numerically until at the output time, thus offering a more accurate numerical approximation.

Two new ideas are introduced here: 1) a decomposition of the problem with partial transmission
and reflection into the sum of problems with only complete transmissions and reflections, so the level
set method of Jin-Liu-Osher-Tsai can be used here; 2) a reinitialization technique, which allows us
to write the sum of several Dirac-delta functions into one delta function, enabling us to handle mul-
tiple transmissions and reflections. We carry out numerical experiments in both one and two space
dimensions to verify this new algorithm.

1. Introduction

In this paper, we construct and study a numerical scheme for the Liouville equation in d-dimension:

(1.1) ft + Hv · ∇xf −Hx · ∇vf = 0 , t > 0, x,v ∈ Rd ,

where the Hamiltonian H possesses the form

(1.2) H(x,v) =
1
2
|v|2 + V (x)

with V (x) the potential function. f(t,x,v) is the density distribution of particles depending on po-
sition x, time t and velocity v. We are concerned with the case when V (x) ∈ W 1,∞ with isolated
discontinuities due to potential barriers. Waves hitting a potential barrier can undergo partial trans-
missions and reflections.

The bicharacteristics of the Liouville equation (1.1) satisfy the Hamiltonian system:

(1.3)
dx
dt

= v ,
dv
dt

= −∇xV (x) .

In classical mechanics the Hamiltonian (1.2) of a particle remains a constant along the particle tra-
jectory, even when it is being transmitted or reflected by the interface.

This Liouville equation arises in the phase space description of the semiclassical limit [7, 21] of the
Schödinger equation:

(1.4) i~∂tψ
~ = −~

2

2
∆ψ~ + V (x)ψ~, x ∈ Rn,
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where ψ~ is the complex-valued wave function, ~ the reduced Planck constant. The Liouville equation
has been the basis of many recent numerical methods for high frequency waves or the semiclassical limit
of the Schödinger equation, see [2, 3, 5, 6, 9, 14, 23], when the potential function V is smooth. At the
discontunuities of V , the semiclassical limit has to account for partial transmissions and reflections
[1, 22, 25]. In the works of Jin and Wen [15, 17], the interface transmissions and reflections are
formulated as interface conditions that are used to couple the Liouville equation (1.1) away from
the interfaces, and then the interface conditions are built into the numerical fluxes for the Liouville
equation, resulting in a class of numerical methods for high frequency waves through interfaces that
can capture partial transmissios and reflections without numerically resolving the short wave length.
Such a method has been extended for quantum barriers [11, 12, 13] and for wave diffractions [18, 19].

One of the difficulties in using the Liouville equation is the singular initial data. Indeed, if one
considers the Schrödinger equation (1.4) with the WKB initial data

(1.5) ψ(x, 0) = A0(x) exp(iS0(x)/ε) ,

one arrives, in the semiclassical limit ~ → 0, the following mono-kinetic initial data for the Liouville
equation (1.1):

(1.6) f(0,x,v) = |A0(x)|2δ(v −∇xS0(x))

Even for a smooth potential, the solution to (1.1) and (1.6) are sum of Dirac-delta functions corre-
ponding to multivalued velocity and density [8, 26]. Numerical solutions of such singular solutions are
usually poor, since one needs to first approximate the delta function in (1.6) initially and then evolve
such data in time by solving the Liouville equation (1.1) (hereafter called the direct method) with nu-
merical schemes that typically introduce numerical dissipation. An improved method (hereafter called
the decomposition method) was introduced in [9], where f was decomposed into φ and ψi (i = 1, · · · , d)
where φ and ψi solve the same Liouville equation (1.1) with initial data

(1.7) φ(x,v, 0) = ρ0(x) , ψi(x,v, 0) = vi − ui0(x) ,

respectively. This allows the numerical computations for a bounded solution rather than measure-
valued solution of the Liouville equation with singular initial data (1.6), which greatly enhances the
numerical accuracy. The moments (such as the density ρ and momentum ρu can be recovered through

ρ(x, t) =
∫

φ(x,v, t)Πd
i=1δ(ψi)dv,(1.8)

u(x, t) =
∫

φ(x,v, t)vΠd
i=1δ(ψi)dv/ρ(x, t) .(1.9)

Numerical results in [9] showed an improved numerical accuracy and resolution of this decomposition
method than the direct method. This decomposition method can be extended to potential barriers
with complete transmissions and reflections [15, 16]. But for partial transmissions and reflections, extra
level set functions are needed each time the particle hits the interface and then splits into a reflected
one and a transmitted one, thus the total number of level set functions will increase exponentially in
time with multiple transmissions and reflections [2, 17].

The goal of this paper is to extend the decomposition method for partial transmissions and reflec-
tions. In order to achieve this, we introduce two new ideas here. First, we decompose the problem
with partial transmission and reflection into the sum of problems with only complete transmissions
and reflections, so the decomposition method of Jin-Liu-Osher-Tsai can be used here as in [15, 16].
Secondly, a reinitialization technique, which allows us to write the sum of several Dirac-delta functions
into one delta function, is introduced. This enables us to handle multiple transmissions and reflections.
We carry out numerical experiments to verify the proposed new algorithm.
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We give the details of decomposition in section 2. In section 3, we state the level set formulation of
the corresponding systems. In section 4, we give details of how we do the reinitialization. In section
5, we give some numerical examples. At last, we make some concluding remarks.

2. Decomposition of the interface problem

We illustrate our idea in the following simple 1D example. The result can be extended to any space
dimension and any geometry without difficulty.

Assuming the interface is at x = 0 with Vr − Vl = ∆V , we consider the following initial value
problem with interface conditions

(2.1)





Lf = ∂tf + ξfx − Vxfξ = 0,

f(0, x, ξ) = f0(x, ξ)

f(t, 0+, ξ+) = R(ξ+)f(t, 0+,−ξ+) + T (ξ−)f(t, 0−, ξ−), ξ+ ≥ 0

f(t, 0−, ξ−) = R(ξ−)f(t, 0−,−ξ−) + T (ξ+)f(t, 0+, ξ+), ξ− ≤ 0

Here L is the linear Liouville operator defined by

(2.2) L :=∂t + ξ∂x − Vx∂ξ ,

ξ+ and ξ−, having the same sign, satisfy the conservation of Hamiltonian

(2.3) (ξ−)2 + Vl = (ξ+)2 + Vr .

Note that the solution to the Liouville equation (1.1) cannot be suitably defined at the discontinuities
of V . With the interface condition in (2.1), the problem becomes well-posed [17]. In particular, the
solution to (2.1) can be solved by a method of (generalized) characteristics. Let Ω1(t) denote all
(x, ξ) such that they can be traced backward along the trajectory of the Hamiltonian system (1.3) to
t = 0 without hitting the interface x = 0, while Ω2(t) consists of all other (x, ξ), i.e., if we trace (x, ξ)
backward along the the trajectory of (1.3), it hits the interface at some time tc. The solution to (2.1)
is then given by (assuming that the backward trajectory of (1.3) hits x = 0 at most once):

• If (x(t), ξ(t)) ∈ Ω1, then

(2.4) f(t, x, ξ) = f0(x0, ξ0) ,

where (x0, ξ0) is the solution of (1.3) backward in time at t = 0 with initial data (x(t), ξ(t))
at time t.

• If (x(t), ξ(t)) ∈ Ω2, then

f(t, x, ξ) = R(ξ+)f(tc, 0+,−ξ+) + T (ξ−)f(tc, 0−, ξ−).

= R(ξ+)f0(xR
0 , ξR

0 ) + T (ξ−)f0(xT
0 , ξT

0 ).(2.5)

See Figure 1.

We now show that the solution to (2.1), as defined above, can be written as the sum of three interface
problems satisfied by the same Liouville equation, but with complete transmissions and reflection. The
result is stated in the following theorem.
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Interface

(tc, 0+,−ξ+)

(tc, 0+, ξ+)

(t, x, ξ) ∈ Ω2

(0, xR
0 , ξR

0 )(0, xT
0 , ξT

0 )

(t, x, ξ) ∈ Ω1

(tc, 0−, ξ−)

(0, x0, ξ0)

Figure 1: Illustration of the characteristic solution.

Theorem 2.1. Let f be the generalized characteristic solution of (2.1). Consider the following three
initial value problems with interface conditions:

(2.6)





LfR = 0, fR(0, x, ξ) = fR
0 (x, ξ) := f0(x, ξ)

fR(t, 0+, ξ+) = R(ξ+)fR(t, 0+,−ξ+), ξ+ ≥ 0

fR(t, 0−, ξ−) = R(ξ−)fR(t, 0−,−ξ−), ξ− ≤ 0

(2.7)





LfT1 = 0, fT1(0, x, ξ) = fT1
0 (x, ξ) := I{x<0}f0(x, ξ)

fT1(t, 0+, ξ+) = T (ξ−)fT1(t, 0−, ξ−), ξ+ ≥ 0

fT1(t, 0−, ξ−) = T (ξ+)fT1(t, 0+, ξ+), ξ− ≤ 0

and

(2.8)





LfT2 = 2, fT2(0, x, ξ) = fT2
0 (x, ξ) := I{x≥0}f0(x, ξ)

fT2(t, 0+, ξ+) = T (ξ−)fT2(t, 0−, ξ−), ξ+ ≥ 0

fT2(t, 0−, ξ−) = T (ξ+)fT1(t, 0+, ξ+), ξ− ≤ 0

where ξ+ and ξ− satisfy condition (2.3) with the same sign. If no characteristic hits the interface
x = 0 more than once for 0 ≤ t ≤ K, then

(2.9) f = fR + I{x≥0}fT1 + I{x<0}fT2, 0 ≤ t ≤ K.

Proof. Let 0 ≤ t ≤ K. We decompose the x-ξ plane into two parts: Ω1(t) and Ω2(t). According to
the definition of the solution to (2.1),

(2.10) f(t, x, ξ) = IΩ1f0(x0, ξ0) + IΩ2R(ξ+)f0(xR
0 , ξR

0 ) + IΩ2T (ξ−)f0(xT
0 , ξT

0 ).
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Similarly,

fR(t, x, ξ) = IΩ1f0(x0, ξ0) + IΩ2R(ξ+)f0(xR
0 , ξR

0 ),(2.11)

fT1(t, x, ξ) = IΩ1I{x0<0}f0(x0, ξ0) + IΩ2T (ξ−)I{xT
0 <0}f0(xT

0 , ξT
0 ),(2.12)

fT2(t, x, ξ) = IΩ1I{x0≥0}f0(x0, ξ0) + IΩ2T (ξ−)I{xT
0 ≥0}f0(xT

0 , ξT
0 ),(2.13)

By the definitions of Ω1, for all (x, ξ) ∈ Ω1, one can trace backward in time along the trajectory of
(1.3) to (x0, ξ0) without hitting the interface x = 0. Therefore, x0 < 0 if and only if x < 0. Thus

IΩ1I{x0<0} = IΩ1
T{x<0}, IΩ1I{x0≥0} = IΩ1

T{x≥0}.

Similarly, definitions of Ω2 and xT
0 imply that

IΩ2I{xT
0 <0} = IΩ2

T{x≥0}, IΩ2I{xT
0 ≥0} = IΩ2

T{x<0}.

Hence
fR(t, x, ξ) + I{x≥0}fT1(t, x, ξ) + I{x<0}fT2(t, x, ξ)

= IΩ1f0(x0, ξ0) + IΩ2R(ξ+)f0(xR
0 , ξR

0 )+

I{x≥0}IΩ1
T{x<0}f0(x0, ξ0) + I{x≥0}IΩ2

T{x≥0}T (ξ−)f0(xT
0 , ξT

0 )+

I{x<0}IΩ1
T{x≥0}f0(x0, ξ0) + I{x<0}IΩ2

T{x<0}T (ξ−)f0(xT
0 , ξT

0 )

= IΩ1f0(x0, ξ0) + IΩ2R(ξ+)f0(xR
0 , ξR

0 ) + IΩ2T (ξ−)f0(xT
0 , ξT

0 )

= f(t, x, ξ).

¤

Theorem 2.1 shows that an interface problem with partial transmissions and reflections can be
written as sum of interface problems with complete transmissions and reflections, as long as the
particle trajectory does not hit the interface more than once. Based on this result, we can use the
following strategy to obtain the solution of (2.1): for 0 ≤ t ≤ K, we solve problems (2.6), (2.7) and
(2.8), then

f(t, x, ξ) = fR(t, x, ξ) + fT1(t, x, ξ) + fT2(t, x, ξ), 0 ≤ t ≤ K .

Using f(K, x, ξ) as the initial data, we redo the previous step to get solution of (2.1) on [K, 2K]. One
can repeat this process to obtain the solution for any time interval [0, T ].

Remark 2.1. If all the characteristics hit the interface with |ξ+| > C > 0 and |ξ−| > C > 0, where
C is a positive constant, then we can always find a constant K, such that no characteristic will hit the
interface more than once in any time period with length K. Hence following the above strategy gives
us the exact solution of (2.1).

Remark 2.2. If there is no K can grantee that every characteristic hits the interface at most once in
any time period with length K, we can still perform our strategy to get a solution. And the difference
between our solution and the exact solution is bounded by a function of K (which goes to 0 as K goes
to 0), no matter how many steps were performed. We explain the details below.

For a chosen K, we can find C > 0, such that if |ξ+| > C and |ξ−| > C, then the characteristic
will not hit the interface more than once in any time period with length K. So no matter how many
steps were performed, the solution for this part is exact. The remaining part, which corresponds to
|ξ±| ≤ C(K), goes to 0 as K goes to 0.
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Remark 2.3. If there are N interfaces which divide R1 into N +1 parts denoted by A1, A2, . . . , AN+1

respectively, then the solution f will be

f = fR +
N+1∑

i=1

I{R1\Ai}f
Ti ,

where each fTi has the initial data

fTi(0, x, ξ) = fTi
0 (x, ξ) := IAif0(x, ξ).

Similarly, in the multi-dimensional case, if the interfaces divide Rn into N + 1 parts denoted by
A1, A2, . . . , AN+1 respectively, then the solution f will be

f = fR +
N+1∑

i=1

I{Rn\Ai}f
Ti ,

where each fTi has the initial data

fTi(0, x, ξ) = fTi
0 (x, ξ) := IAif0(x, ξ).

3. The level set decomposition

Consider the δ function initial data (1.6), namely,

(3.1) f(0, x, ξ) = f0(x, ξ) = ρ0(x)δ
(
ξ − u0(x)

)
.

Correspondingly, the initial data for fR, fT and fR, which only involve complete transmission or
reflection, are of the mono-kinetic form (3.1). According to [15, 16], they can be solved by the
decomposition method of [9]. More specifically, fR = ψRδ(φR) where φR and ψR satisfy

(3.2)





LφR = 0, φR
0 (x) = ξ − u0(x)

φR(t, 0+, ξ+) = φR(t, 0+,−ξ+), ξ+ ≥ 0

φR(t, 0−, ξ−) = φR(t, 0−,−ξ−), ξ− ≤ 0

(3.3)





LψR = 0, ψR
0 (x) = ρ0(x)

ψR(t, 0+, ξ+) = R(ξ+)ψR(t, 0+,−ξ+), ξ+ ≥ 0

ψR(t, 0−, ξ−) = R(ξ−)ψR(t, 0−,−ξ−), ξ− ≤ 0

Similarly, fT1 = ψT1δ(ψT1) and fT2 = ψT2δ(ψT2) where

(3.4)





LφT1 = 0, φT1
0 (x) = ξ − u0(x)

φT1(t, 0+, ξ+) = φT1(t, 0−, ξ−), ξ+ ≥ 0

φT1(t, 0−, ξ−) = φT1(t, 0+, ξ+), ξ− ≤ 0



LEVEL SET METHOD FOR THE SCHRÖDINGER EQUATION WITH DISCONTINUOUS POTENTIAL 7

(3.5)





LψT1 = 0, ψT1
0 (x) = I{x<0}ρ0(x)

ψT1(t, 0+, ξ+) = T (ξ+)ψT1(t, 0−, ξ−), ξ+ ≥ 0

ψT1(t, 0−, ξ−) = T (ξ−)ψT1(t, 0+, ξ+), ξ− ≤ 0

(3.6)





LφT2 = 0, φT2
0 (x) = ξ − u0(x)

φT2(t, 0+, ξ+) = φT2(t, 0−, ξ−), ξ+ ≥ 0

φT2(t, 0−, ξ−) = φT2(t, 0+, ξ+), ξ− ≤ 0

(3.7)





LψT2 = 0, ψT2
0 (x) = I{x≥0}ρ0(x)

ψT2(t, 0+, ξ+) = T (ξ+)ψT2(t, 0−, ξ−), ξ+ ≥ 0

ψT2(t, 0−, ξ−) = T (ξ−)ψT2(t, 0+, ξ+), ξ− ≤ 0

At time K, one can sum these solutions to obtain

(3.8) f(K) = fR + fT1 + fT2 = ψRδ(φR) + ψT1δ(φT1) + ψT2δ(φT2)

4. Reinitialization

As discussed in the previous section, even though f0 is monokinetic (3.1), at time K it is a sum of
more than one delta-functions. In fact, it may be the sum of more than three delta-functions shown in
(3.8), since φR,T1,T2 may have multiple zeroes, corresponding to multiphased velocities [8, 26]. Clearly,
to continue the decomposition of section 3, we need to reinitialize f(K, x, ξ) so it becomes mono-kinetic
data like (3.1). In other words, we want to find φ and ψ such that

f(x, ξ, K)

= ψR(x, ξ, K)δ
(
φR(x, ξ, K)

)
+ ψT1(x, ξ, K)δ

(
φT1(x, ξ, K)

)
+ ψT2(x, ξ, K)δ

(
φT2(x, ξ, K)

)

= ψ(x, ξ, K)δ
(
φ(x, ξ, K)

)
.(4.1)

The following theorems provide a generic stragety on how this can be done.

Theorem 4.1. (1-Dimension) Assume gj(x) are continuous functions with Nj distinct zeros xji,
i = 1, · · · , Nj , j = 1, · · · , N . Assume fj(x) are bounded continuous functions. Then there exists an
ε > 0 and a function κ defined by

(4.2) κ(x) =





1, |x| < ε

0, |x| ≥ ε

such that

(4.3)
N∑

j=1

fj(x)δ
(
gj(x)

)
= f(x)δ

(
g(x)

)
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in the distributional sense. Here

(4.4) f(x) =
N∑

j=1

fj(x)κ
(
gj(x)

)
,

and g(x) is defined by

(4.5) g(x) = sgn
(
gkx(x)

)
min

j

(∣∣gj(x)
∣∣
)
,

where kx is the index such that
∣∣∣gkx(x)

∣∣∣ ≤
∣∣∣gj(x)

∣∣∣, ∀ j.

Proof. Since gj(x) are continuous with distinct zeros, there exists an η > 0 small enough, such that

(xji − η, xji + η), i = 1, · · · , Nj , j = 1, · · · , N

are disjoint intervals and

max
1≤j≤N,1≤i≤Nj

(
max

x∈(xji
−η,xji

+η)

∣∣∣gj(x)
∣∣∣
)

< min
1≤j≤N,1≤i≤Nj

(
min

x∈(xji
−η,xji

+η),m 6=j

∣∣∣gm(x)
∣∣∣
)

,

Let

(4.6) ε = max
1≤j≤N,1≤i≤Nj

(
max

x∈(xji
−η,xji

+η)

(∣∣gj(x)
∣∣
))

,

then on each interval (xji − η, xji + η),

f(x) = fj(x)

and

g(x) = gj(x).

Furthermore, one can find a positive number θ, such that

(4.7) g(x) > θ > 0, ∀x ∈ R
∖ ⋃

1≤j≤N,1≤i≤Nj

(xji − η, xji + η).

Therefore, ∀ϕ ∈ C∞
c (R),

(4.8)
∫ ∞

−∞
ϕ(x)f(x)δ

(
g(x)

)
dx =

N∑

j=1

Nj∑

i=1

∫ xji
+η

xji
−η

ϕ(x)f(x)δ
(
g(x)

)
dx .



LEVEL SET METHOD FOR THE SCHRÖDINGER EQUATION WITH DISCONTINUOUS POTENTIAL 9

Hence, for all test functions ϕ ∈ C∞
c (R),

(4.9)

∫ ∞

−∞
ϕ(x)

N∑

j=1

fj(x)δ
(
gj(x)

)
dx

=
N∑

j=1

∫
ϕ(x)fj(x)δ

(
gj(x)

)
dx

=
N∑

j=1

Nj∑

i=1

∫ xji
+η

xji
−η

ϕ(x)fj(x)δ
(
gj(x)

)
dx

=
N∑

j=1

Nj∑

i=1

∫ xji
+η

xji
−η

ϕ(x)f(x)δ
(
g(x)

)
dx

=
∫ ∞

−∞
ϕ(x)f(x)δ

(
g(x)

)
dx.

This completes the proof. ¤

Theorem 4.2. (Multi-Dimension) Assume gj(x) are C1 continuous functions such that
∫
Rn δ

(
gj(x)

)
dx <

∞ for j = 1, · · · , N . Denote the zeros sets of gj(x) by Ωj. Assume that M
(
Ωj1 ∩ Ωj2

)
= 0, ∀ j1, j2.

Suppose there exists a constant C > 0 such that

(4.10)
∣∣∣Dgj(x)

∣∣∣ > C, ∀ j ∀x ∈ Ωj .

Let fj(x) be bounded continuous functions. Define the function κε by

(4.11) κε(x) =





1, |x| < ε

0, |x| ≥ ε .

Then

(4.12) fε(x)δ
(
g(x)

)
⇀

N∑

j=1

fj(x)δ
(
gj(x)

)
, ε → 0

in the distributional sense. Here

(4.13) fε(x) =
N∑

j=1

fj(x)κε

(
gj(x)

)
,

and g(x) is defined by

(4.14) g(x) = gkx(x)

where kx is the index such that
∣∣∣gkx(x)

∣∣∣ ≤
∣∣∣gj(x)

∣∣∣, ∀ j.

Proof. For every fixed test function ϕ(x) ∈ C∞
c (Rn), for every fixed η > 0, one can choose θ small

enough such that

(4.15)

∣∣∣∣∣
∫

Rn

ϕ(x)
N∑

j=1

fj(x)δ
(
gj(x)

)
dx−

N∑

j=1

∫

Ωθ
j

ϕ(x)fj(x)δ
(
gj(x)

)
dx

∣∣∣∣∣ <
1
2
η,
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where Ωθ
j is a subset of Ωj with M(Ωθ

j) < ∞ and dist(Ωj1 ,Ωj2) > C1 > 0, ∀ j1, j2. Following the same
idea of the proof of Theorem 4.1, one can further choose a % > 0 small enough, such that if 0 < ε < %
then

(4.16)
N∑

j=1

∫

Ωθ
j

ϕ(x)fj(x)δ
(
gj(x)

)
dx =

∫
S

Ωθ
j

ϕ(x)fε(x)δ
(
g(x)

)
dx.

We chose θ > 0 small enough so that

(4.17)
∫

Rn\SΩθ
j

ϕ(x)
( N∑

j=1

|fj(x)|
)
δ
(
g(x)

)
dx <

1
2
η.

Combining (4.15), (4.16) and (4.17), we obtain that for every fixed ϕ(x) ∈ C∞
c (Rn), and for every

fixed η > 0, there exists % > 0, such that if 0 < ε < %, then

(4.18)

∣∣∣∣∣
∫

Rn

ϕ(x)
N∑

j=1

fj(x)δ
(
gj(x)

)
dx−

∫

Rn

ϕ(x)fε(x)δ
(
g(x)

)
dx

∣∣∣∣∣ < η.

¤

Corollary 4.1. If n ≥ 2 and gj(x) are piecewise C1 continuous functions, then the conclusion of
Theorem 4.2 is still true.

5. Numerical examples

In this section, we give several numerical examples. In each example, we compute the density and
momentum which are given by

ρ =
∫

f(t, x, ξ)dξ,

ρu =
∫

ξf(t, x, ξ)dξ.

We use the upwind scheme to compute all the one-dimensional examples with a minmod slope limiter
and the two-dimensional example with no slope limiter.

When computing the physical observables, we use the following discretized delta function [4],

(5.1) δb(x) =





1
2b(1 + cos |πx|

b ),
∣∣x

b

∣∣ ≤ 1,

0, otherwise,

where the parameter b is taken as b = 0.5
√

∆x.

Example 5.1. (Plane waves) We consider (2.1) with the following parameters:

V =





0 x ≤ 0,

0.045 x > 0.
R = 0.2, T = 0.8,

and the initial conditions:
ρ0(x) = I{x≤0}, u0(x) = 0.5.
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dx 0.02 0.01 0.005

‖ρerr‖1 1.20× 10−1 8.06× 10−2 5.07× 10−2

‖(ρu)err‖1 5.51× 10−2 3.60× 10−2 2.15× 10−2

Table 1. Example 5.1, the l1 errors of the density and momentum.
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Figure 1: Example 5.1, the comparison of density and momentum between the analytical solution and
numerical solution.

One could solve this problem analytically, and the solution at the time t = 1 is

f(t, x, ξ) = I{x≤0}δ(ξ − 0.5) + 0.2I{−0.5≤x≤0}δ(ξ + 0.5) + 0.8I{0≤x≤0.4}δ(
√

ξ2 + 0.09− 0.5)

= I{x≤0}δ(ξ − 0.5) + 0.2I{−0.5≤x≤0}δ(ξ + 0.5) + I{0≤x≤0.4}δ(ξ − 0.4).

The analytical density and momentum are given by

ρ =





1 x ≤ −0.5,

1.2 − 0.5 < x ≤ 0,

1 0 < x ≤ 0.4,

0 0.4 < x.

ρu =





0.5 x ≤ −0.5,

0.4 − 0.5 < x ≤ 0,

0.4 0 < x ≤ 0.4,

0 0.4 < x.

The errors and comparison figures are given in Table 1 and Figure 1. The convergence orders for
the density and momentum are 0.6215 and 0.6775.

Example 5.2. (Harmonic oscillator) We consider (2.1) with the following parameters:

V =





x2/20 x ≤ 0,

x2/20 + 0.045 x > 0.
R = 0.2, T = 0.8,

and the initial conditions:

ρ0(x) = exp(−100(x + 0.3)2), u0(x) = 0.5.

The reference solution is computed in fine mesh and using small time steps. The comparison is
given in Figure 2.
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Figure 2: Example 5.2, the comparison of density and momentum between the reference solution and
numerical solution.

Example 5.3. (Reinitialization) We consider (2.1) with the following parameters:

V =





0 x ≤ 0,

2x2 + 0.045 x > 0.
R = 0.2, T = 0.8,

and the initial conditions:

ρ0(x) = I{x≤0}, u0(x) = 0.5.

In this example, the particles will hit the interface frequently due to the strong harmonic potential
in the domain {x > 0}. We assume the speed of the particle becomes zero at x = xturn, then by the
conservation of Hamiltonian,

0.52

2
= 0.045 +

(ξ+)2

2
= 0.045 + 4x2

turn,

one has ξ+ = 0.4, xturn = 0.2 which implies a lower bound for the reinitialization time is K = 1
(actually the second hitting time is t = π/2).

We compare the numerical solution with analytical solution at t = 1 and t = 2. When reinitializa-
tion, we let κ be the following cutoff function

κ(x) =





1, |x| ≤ 0.5
√

dx

0, |x| > 0.5
√

dx

Following [27], one can find the analytical solution. The analytical solution at t = 1 is given by
(5.2)

f(t, x, ξ) = I{x≤0}δ(ξ − 0.5) + 0.2I{−0.5≤x≤0}δ(ξ + 0.5) + 0.8I{0≤x≤0.2}
1

0.8
√

1− 25x2
δ
(
ξ − 0.4

√
1− 25x2

)

+0.8I{0.2 sin 2≤x<0.2}
1

0.8
√

1− 25x2
δ
(
ξ + 0.4

√
1− 25x2

)
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The analytical density and momentum at t = 1 are given by

ρ =





1 x ≤ −0.5,

1.2 −0.5 < x ≤ 0,
1√

1− 25x2
0 < x ≤ 0.2 sin 2,

2√
1− 25x2

0.2 sin 2 < x ≤ 0.2,

0 x > 0.2.

ρu =





0.5 x ≤ −0.5,

0.4 − 0.5 < x ≤ 0,

0.4 0 < x ≤ 0.2 sin 2,

0 0.2 sin 2 < x.

The analytical solution at t = 2 is given by

(5.3)

f(t, x, ξ) = I{x≤0}δ(ξ − 0.5) + 0.2I{−1≤x≤0}δ(ξ + 0.5) + 0.64I{π/4−1≤x<0}δ(ξ + 0.5)

+0.8I{0≤x≤0.2}
1

0.8
√

1− 25x2
δ
(
ξ − 0.4

√
1− 25x2

)

+0.8I{0≤x<0.2}
1

0.8
√

1− 25x2
δ
(
ξ + 0.4

√
1− 25x2

)

+0.16I{0≤x≤0.2 sin 2(2−π/2)}
1

0.8
√

1− 25x2
δ
(
ξ − 0.4

√
1− 25x2

)

The analytical density and momentum at t = 2 are given by

ρ =





1 x ≤ −1,

1.2 −1 < x ≤ π/4− 1,

1.84 π/4− 1 < x ≤ 0,
2.2√

1− 25x2
0 < x ≤ 0.2 sin 2(2− π/2),

2√
1− 25x2

0.2 sin 2(2− π/2) < x ≤ 0.2,

0 x > 0.2.

ρu =





0.5 x ≤ −1,

0.4 −1 < x ≤ π/4− 1,

0.08 π/4− 4 < x ≤ 0,

0.08 0 < x ≤ 0.2 sin 2(2− π/2),

0 0.2 sin 2(2− π/2) < x.

The comparison is given in Figures 3, 4 and 5.
We now compare with the direct method, in which one discretizes the δ function initial data and

solves the Liouville equation directly. Using the the same discretized delta function (5.1) with the
same parameter b = 0.5

√
dx, we compute the solution of this example by the direct method. The

comparison of the results at time t = 1 and t = 2 is given in Figures 6 and 7, which shows that
the decomposition method proposed in this paper gives a much more accurate solution especially for
longer time.

Example 5.4. (2d example) We consider a two-dimensional interface problem in the domain [−1, 1]×
[−1, 1]. The potential well is given by

V =





0 x ∈ Ω,

1 x ∈ Ωc.
R = 0.2, T = 0.8,
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Figure 3: Example 5.3, the comparison of density and momentum between the reference solution and
numerical solution at t=1.
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Figure 4: Example 5.3, the comparison of density and momentum between the reference solution and
numerical solution at t=2, reinitialization was performed at t=1.
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Figure 5: Example 5.3, the comparison of density and momentum between the reference solution and
numerical solution at t=2 with a finer grid and b = 0.15

√
dx, reinitialization was performed at t=1.
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Figure 6: Example 5.3, the comparison of density and momentum between the solutions obtained by
our method and by the direct method.
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Figure 7: Example 5.3, the comparison of density and momentum between the solutions obtained by
our method and by the direct method.

where Ω = {(x, y)| y > −0.4, y − x− 0.5 < 0, y + x− 0.5 < 0}. The initial condition is

ρ0(x, y) = I{|x+0.5|<0.05, y>0.2}, u0 = (0,−
√

2).

See Figure 8 for the of the interface and the initial data.
We compare the numerical solution with analytical solution at t = 1. The analytical solution of

the density at t = 1 can be obtained by the method of generalized characteristics, and it takes the
following form:

ρ(x, y) = Ireg1δ(u− (0,−
√

2)) + 0.2Ireg2δ(u− (−
√

2, 0)) +
0.8√

3
Ireg3δ(u− (2 sin(π/12),−2 cos π/12))

+
0.16√

3
Ireg4δ(u− (2 sin(π/12), 2 cos π/12)

+
1.28 cos(π/12)√
12 cos2(π/12)− 6

Ireg5δ(u− (2 sin(π/12),−
√

4 cos2(π/12)− 2),
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Figure 8: Illustration of the potential well and initial conditions in Example 5.4.

where

reg1 = {(x, y)| y − x− 0.5 > 0, −0.55 < x < −0.45.},
reg2 = {(x, y)| y − x− 0.5 > 0, −0.05 < y < 0.05.},
reg3 = {(x, y)| y − x− 0.5 < 0, y > −0.4, y < 0.05− (x + 0.45)/ tan(π/12),

y > −0.05− (x + 0.55)/ tan(π/12).},
reg4 = {(x, y)| y − x− 0.5 < 0, y > −0.4, y > −0.4 + (x− x1)/ tan(π/12),

y < −0.4 + (x− x2)/ tan(π/12).},

reg5 = {(x, y)| y − x− 0.5 < 0, y < −0.4, y < −0.4− (x− x1)

√
4 cos2(π/12)− 2
2 sin(π/12)

,

y > −0.4− (x− x2)

√
4 cos2(π/12)− 2
2 sin(π/12)

.},
x1 = 0.45 tan(π/12)− 0.45, x2 = 0.35 tan(π/12)− 0.55.

The comparison of the numerical solution and the exact solution was shown in Figure 9, where the
densities after the third transmission and reflection are ignored since their magnitudes are already very
small. The mesh size is dx = 0.000625, dy = 0.000625 and the time step is taken to be dt = 0.000125.

Figure 10 gives a bird eye view of the solution.
Figure 11 gives a bird eye view of the solution with interface plotted. To better illustrate the result,

the density in figure 11 was taken to be 2.5 times the original one.

6. Concluding remarks
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the result, density was taken to be 2.5 times the original one. Left: numerical solution. Right: true
solution.
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