TAILORED FINITE CELL METHOD FOR SOLVING HELMHOLTZ EQUATION IN LAYERED HETEROGENEOUS MEDIUM

ZHONGYI HUANG AND XU YANG

ABSTRACT. In this paper, we propose a tailored finite cell method for the computation of two-dimensional Helmholtz equation in layered heterogeneous medium. The idea underlying the method is to construct a numerical scheme based on a local approximation of the solution to Helmholtz equation. This provides a computational tool of achieving high accuracy with coarse mesh even for large wave number (high frequency). The stability analysis and error estimates of this method are also proved. We present several numerical results to show its efficiency and accuracy.

1. INTRODUCTION

In this paper, we study the Helmholtz equation in a layered heterogeneous medium

\begin{align}
\Delta u(x) + k^2 n^2(x) u(x) &= f(x), \quad \text{for } x = (x, y) \in \Omega, \\
|_{x=0} = u_0(y), \quad \left. \left(\frac{\partial u}{\partial x} - i k n(x) u \right) \right|_{x=R} &= 0, \quad \text{for } y \in \mathbb{R}, \\
\frac{\partial u}{\partial r}(x) - i k n(x) u(x) &= o \left(\frac{1}{\sqrt{r}} \right), \quad \text{as } r = |x| \to +\infty,
\end{align}

where \(\Omega = (0, R) \times \mathbb{R}, i = \sqrt{-1} \) is the imaginary unit, \(k \) is the wave number, \(f \in L^2(\Omega), u_0 \in H^1(\mathbb{R}). \) Here the index of refraction \(n(x) \in L^\infty(0, R) \) is a piecewise smooth function, which satisfies

\begin{equation}
 n_0 \leq n(x) \leq N_0.
\end{equation}

The boundary value problem of the Helmholtz equation (1.1)–(1.3) arises in many physical fields, for example in seismic imaging where the interior structure of the Earth is layered indeed. Moreover, we can also see similar problems in acoustic wave propagation and electromagnetic wave propagation. The numerical computation of Helmholtz equation with large wave number in heterogeneous medium is extremely difficult \([2, 22, 23, 24]\) since the mesh size has to be small enough to resolve the wave length. In the last three decades, many scientists have presented efficient methods for this kind of problem, such as the fast multipole method \([12]\), multifrontal method \([26]\), discrete singular convolution method \([4]\), hybrid numerical asymptotic method \([11]\), spectral approximation method \([31]\), element-free Galerkin method \([34, 36]\), geometrical optics-based numerical method \([6, 7]\), etc. In general one has the restriction \(k h = O(1) \) for the mesh size

Date: October 10, 2011.

Key words and phrases. Tailored finite cell method, Helmholtz equation, heterogeneous media, Sommerfeld condition.

This work was supported by the NSFC Project No. 11071139, the National Basic Research Program of China under the grant 2011CB309705, Tsinghua University Initiative Scientific Research Program.
To achieve a satisfactory numerical accuracy. On the other hand, if we use asymptotic method, we usually need to overcome the difficulties about caustics [6, 7, 10, 30].

Tailored finite point method (TFPM) [9, 25, 28, 29] is a development of finite difference method, in which the meshless technique is emphasized. Recently this method has been further developed to solve various numerical problems. For example, Han and Huang studied TFPM for the Helmholtz equation in one dimension [13], and obtained the uniform convergence in L^2-norm with respect to the wave number. Han et al. also studied TFPM for singular perturbation problems [14, 15, 16, 18], without any prior knowledge of the boundary/interior layers. This method can provide high accuracy even on the uniform coarse mesh $h \gg \varepsilon$, where ε is the small parameter in the singular perturbation problem. For the interface problem [20], the method produces uniform convergence in energy norm even for the PDEs of mixed type. Later, Shih et al. proposed a characteristic TFPM and rotate the stencil an angle to keep the grids be a streamline aligned [32, 33], that improved the accuracy on coarse mesh. Furthermore, the method was applied to solve the steady MHD duct flow problems with boundary layers successfully [19]. TFPM also works well for time-dependent problem [21] and fourth-order singular perturbation problem [17]. More related work can be found in two review papers [5, 35] and the references therein. Note that there was also much work about meshless methods for Helmholtz equation [1, 3, 8, 27].

In this paper, we introduce a new approach to construct a discrete scheme for the equation (1.1) based on the former studies [13, 20]. We call the new scheme “tailored finite cell method” (TFCM), because the method has been tailored to some local properties of the problem. As we consider the layered medium at here, we will apply our idea after a Fourier transform in y-direction. Hence this is a semi-discrete method designed on the properties of the local approximate problem. The method can achieve high accuracy with relatively cheap computational cost. Especially, we can get the exact solution with fixed points for piecewise linear coefficient for both small and large wave number.

2. Tailored Finite cell method

In this section, we describe the method in details. To be more precise, in the rest of this paper, we shall assume that the piecewise smooth function $n(x)$ is also piecewise monotone, i.e. there are some points χ_j ($j = 0, 1, \cdots, L$) such that $0 = \chi_0 < \chi_1 < \cdots < \chi_L = R$, and

$$I_j = (\chi_{j-1}, \chi_j), \quad n|_{I_j} \in C^2(\bar{I}_j) \text{ and } n|_{I_j} \text{ is monotone}, \quad j = 1, \cdots, L.$$

First, we take a Fourier transform with respect to y, i.e. for $v(x, y) \in L^2(\Omega)$,

$$\hat{v}(x, \xi) \equiv \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} v(x, y) e^{-i\xi y} dy.$$

From (1.1)–(1.3), we have

(2.1) $$\frac{\partial^2 \hat{u}}{\partial x^2}(x, \xi) + (k^2 n^2(x) - \xi^2) \hat{u}(x, \xi) = \hat{f}(x, \xi), \quad x \in (0, R), \; \xi \in \mathbb{R},$$

(2.2) $$\hat{u}(0, \xi) = \hat{u}_0(\xi), \quad \frac{\partial \hat{u}}{\partial x}(R, \xi) - i\kappa n(R)u(R, \xi) = 0, \quad \xi \in \mathbb{R}.$$
We approximate the function \(n^2(x) \) by a piecewise linear function \(\tilde{n}^2(x) \), i.e. we take a partition of the interval \((0,R)\) as \(0 = x_0 < x_1 < \cdots < x_J = R \), such that \(\{\chi_l, \ l = 0, \cdots, L\} \subset \{x_j, \ j = 0, \cdots, J\} \) and

\[
\tilde{n}^2(x) = \alpha_j x + \beta_j, \quad \text{for} \quad x \in (x_{j-1}, x_j), \quad j = 1, \cdots, J,
\]

with

\[
\alpha_j = \frac{n^2(x_j) - n^2(x_{j-1})}{x_j - x_{j-1}}, \quad \beta_j = n^2(x_{j-1}) - \alpha_j x_{j-1}, \quad j = 1, \cdots, J.
\]

Denote by \(h = \max_{1 \leq j \leq J} |x_j - x_{j-1}| \), we have

\[
|\tilde{n}^2(x) - n^2(x)| \leq Ch^2, \quad \text{for} \quad x \in [0, R].
\]

For \(j = 1, \cdots, J \), let \(a_j = k^2 \alpha_j, \quad b_j = k^2 \beta_j - \xi^2 \), we have three cases:

I) If \(a_j = b_j = 0 \), let

\[
G_j(x, s) = \begin{cases}
 s - x, & x \geq s, \\
 0, & s \geq x.
\end{cases}
\]

Then the solution of (2.1) in \(D_j \) can be expressed by

\[
U_h(x, \xi) = A_j(\xi) + B_j(\xi)x + \int_{x_{j-1}}^{x_j} \tilde{f}(s, \xi)G_j(x, s)ds, \quad \text{for} \quad x \in D_j.
\]

Let

\[
\lambda_j^+ = \lambda_j^- = 1, \quad \gamma_j^+ = \gamma_j^- = 0, \quad \mu_j^+ = x_j, \quad \mu_j^- = x_{j-1}, \quad \delta_j^+ = \delta_j^- = 1,
\]

and

\[
F_j^+(\xi) = \int_{x_{j-1}}^{x_j} \tilde{f}(s, \xi)(s - x_j)ds, \quad F_j^- = 0, \quad G_j^+(\xi) = -\int_{x_{j-1}}^{x_j} \tilde{f}(s, \xi)ds, \quad G_j^- = 0.
\]

II) If \(a_j = 0, \ b_j \neq 0 \), let

\[
G_j(x, s) = \frac{1}{2 \sqrt{b_j}} \begin{cases}
 \sinh \sqrt{b_j}(s - x), & x \geq s, \\
 \sinh \sqrt{b_j}(x - s), & s \geq x.
\end{cases}
\]

Then the solution of (2.1) in \(D_j \) can be expressed by

\[
U_h(x, \xi) = A_j(\xi)e^{x\sqrt{b_j}} + B_j(\xi)e^{-x\sqrt{b_j}} + \int_{x_{j-1}}^{x_j} \tilde{f}(s, \xi)G_j(x, s)ds, \quad \text{for} \quad x \in D_j,
\]

Let

\[
\lambda_j^+ = e^{x\sqrt{b_j}}, \quad \lambda_j^- = e^{-x\sqrt{b_j}}, \quad \gamma_j^+ = \sqrt{b_j} e^{x\sqrt{b_j}}, \quad \gamma_j^- = \sqrt{b_j} e^{-x\sqrt{b_j}},
\]

\[
\mu_j^+ = e^{-x\sqrt{b_j}}, \quad \mu_j^- = e^{-x\sqrt{b_j}}, \quad \delta_j^+ = -\sqrt{b_j} e^{-x\sqrt{b_j}}, \quad \delta_j^- = \sqrt{b_j} e^{-x\sqrt{b_j}},
\]

and

\[
F_j^+(\xi) = \int_{x_{j-1}}^{x_j} \tilde{f}(s, \xi)G_j(x_j, s)ds, \quad G_j^+(\xi) = \int_{x_{j-1}}^{x_j} \tilde{f}(s, \xi)\partial_s G_j(x, s)|_{x=x_j}ds,
\]

\[
F_j^- = \int_{x_{j-1}}^{x_j} \tilde{f}(s, \xi)G_j(x_{j-1}, s)ds, \quad G_j^- = \int_{x_{j-1}}^{x_j} \tilde{f}(s, \xi)\partial_s G_j(x, s)|_{x=x_{j-1}}ds.
\]
III) If \(a_j \neq 0 \), let

\[
 z(x) = -(a_j)^{-\frac{3}{2}}(a_jx + b_j), \quad z_{j-1} = z(x_{j-1}), \quad z_j = z(x_j),
\]

\[
 \tilde{f}(s, \xi) = (a_j)^{-\frac{3}{2}} \tilde{f} \left((a_j)^{-\frac{1}{2}} s - \frac{b_j}{a_j}, \xi \right),
\]

(2.12) \[
 G_j(t, s) = -\frac{1}{2} \begin{cases}
 \text{Ai}(s)\text{Ai}(t) + \text{Bi}(s)\text{Bi}(t), & t \geq s, \\
 \text{Ai}(s)\text{Ai}(s) + \text{Bi}(s)\text{Bi}(s), & s \geq t,
 \end{cases}
\]

where \(\text{Ai}(s) \) and \(\text{Bi}(s) \) are the Airy functions of the first and second kind respectively, and

\[
 \text{Ai}(t) = \int_0^t (\text{Ai}(\eta))^{-2} d\eta, \quad \text{Bi}(t) = \int_0^t (\text{Bi}(\eta))^{-2} d\eta.
\]

Then the solution of (2.1) in \(D_j \) can be expressed by

(2.13) \[
 U_h(z(x), \xi) = A_j(\xi)\text{Ai}(z(x)) + B_j(\xi)\text{Bi}(z(x)) + \int_{z_{j-1}}^{z_j} \tilde{f}(x, \xi)(s)G_j(z(x), s) ds, \quad \forall x \in D_j,
\]

with two constants \(A_j, B_j \in \mathbb{R} \). Let

\[
 \lambda_j^+ = \text{Ai}(z(x_j)), \quad \lambda_j^- = \text{Ai}(z(x_{j-1})),
\]

\[
 \gamma_j^+ = (a_j)^{\frac{1}{2}} \text{Ai}'(z(x_j)), \quad \gamma_j^- = (a_j)^{\frac{1}{2}} \text{Ai}'(z(x_{j-1})),
\]

\[
 \mu_j^+ = \text{Bi}(z(x_j)), \quad \mu_j^- = \text{Bi}(z(x_{j-1})),
\]

\[
 \delta_j^+ = (a_j)^{\frac{3}{2}} \text{Bi}'(z(x_j)), \quad \delta_j^- = (a_j)^{\frac{3}{2}} \text{Bi}'(z(x_{j-1})),
\]

(2.14) \[
 F_j^+(\xi) = \int_{z_{j-1}}^{z_j} \tilde{f}(s, \xi)G_j(z(x_j), s) ds, \quad G_j^+(\xi) = \int_{z_{j-1}}^{z_j} \tilde{f}(s, \xi)\partial_x G_j(z(x_j), s)|_{x=x_j} ds,
\]

(2.15) \[
 F_j^-(\xi) = \int_{z_{j-1}}^{z_j} \tilde{f}(s, \xi)G_j(z(x_{j-1}), s) ds, \quad G_j^-(\xi) = \int_{z_{j-1}}^{z_j} \tilde{f}(s, \xi)\partial_x G_j(z(x_{j-1}), s)|_{x=x_{j-1}} ds.
\]

From (2.4)–(2.15), considering the boundary conditions (2.2) and the continuities of \(\hat{u}(x, \xi) \) at \(x_j \) (\(j = 1, \cdots, J - 1 \)), we have

(2.16) \[
 \lambda_1^- A_1 + \mu_1^- B_1 + F_1^- = \hat{u}_0, \quad \gamma_j^+ A_j + \delta_j^+ B_j + G_j^+ - i\kappa(R) (\lambda_j^+ A_j + \mu_j^+ B_j + F_j^+) = 0,
\]

(2.17) \[
 \begin{aligned}
 \lambda_j^- A_j + \mu_j^- B_j + F_j^- &= \lambda_{j+1}^- A_{j+1} + \mu_{j+1}^- B_{j+1} + F_{j+1}^-; \\
 \gamma_j^+ A_j + \delta_j^+ B_j + G_j^+ &= \gamma_{j+1}^+ A_{j+1} + \delta_{j+1}^+ B_{j+1} + G_{j+1}^+; \quad j = 1, \cdots, J - 1,
 \end{aligned}
\]

Solving the linear system (2.16)–(2.17) gives the coefficients \(A_j(\xi) \) and \(B_j(\xi), \ j = 1, \cdots, J. \)

Finally, we obtain the solution of (1.1)–(1.3) by the inverse Fourier transform

(2.18) \[
 u_h(x, y) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} U_h(z(x), \xi)e^{i\xi y} d\xi.
\]
3. Stability analysis

In this section, we study the stability estimate of the model problem (1.1)–(1.3) and the error analysis of our discrete solution by (2.18). First, we establish the following regularity estimate.

Lemma 3.1 (regularity estimate for analytic solution). Suppose that \(n(x) \in L^\infty(0, R) \) is piecewise smooth and piecewise monotone, \(f \in L^2(\Omega) \). Then the solution of the problem (1.1)–(1.3), \(u(x, y) \), satisfies the following estimates

\[
|u|_{1, \Omega} + k\|u\|_{0, \Omega} \leq C (\|f\|_{L^2(\Omega)} + k\|u_0\|_{L^2(\Omega)} + \|u'_0\|_{L^2(\Omega)}),
\]

with a constant \(C \) independent of the wave number \(k \).

Proof. Let \(U(x, y) = u(x, y) + u_0(y)(Ax - 1) \) with \(A = \frac{ikn(R)}{\|kn(R)\|^2} \), then we have

\[
\Delta U(x, y) + k^2n^2(x)U(x, y) = F(x, y), \quad (x, y) \in \Omega,
\]

\[
U(0, y) = 0, \quad U_x(R, y) - ikn(R)U(R, y) = 0, \quad y \in \mathbb{R},
\]

\[
U_i(x, y) = o \left(\frac{1}{\sqrt{r}} \right), \quad \text{as} \quad r = \sqrt{x^2 + y^2} \to \infty
\]

with \(F(x, y) = f(x, y) + k^2n^2(x)(Ax - 1)u_0(y) + (Ax - 1)u'_0(y) \). From the boundary conditions (3.3), we can immediately get

\[
\|U\|_{L^2(\Omega)} \leq R\|U_x\|_{L^2(\Omega)}.
\]

Multiplying (3.2) by \(\bar{U} \) and integrating over \(\Omega \) yields

\[
\int_{\mathbb{R}} \int_{\mathbb{R}} \int_{\mathbb{R}^2} |U(R, y)|^2 dy - \int_{\mathbb{R}} \int_{\mathbb{R}} \left(|\nabla U|^2 - k^2n^2(x)|U|^2 \right) dxdy = \int_{\mathbb{R}} \int_{\mathbb{R}} F\bar{U} dxdy.
\]

Taking the real and imaginary parts of the above equation gives

\[
- \int_{\mathbb{R}} \int_{\mathbb{R}} \left(|\nabla U|^2 - k^2n^2(x)|U|^2 \right) dxdy = \text{Re} \int_{\mathbb{R}} \int_{\mathbb{R}} F\bar{U} dxdy,
\]

\[
\text{Im} \int_{\mathbb{R}} \int_{\mathbb{R}} F\bar{U} dxdy.
\]

Using Cauchy’s inequality and the expression of function \(F \) produces, \(\forall \varepsilon_j > 0, j = 1, \cdots, 6 \),

\[
|k^2\|nU\|_{L^2(\Omega)}^2 - |\nabla U\|_{L^2(\Omega)}^2| \leq \frac{\varepsilon_1}{2} \|U\|_{L^2(\Omega)}^2 + \frac{1}{2\varepsilon_1} \|f\|_{L^2(\Omega)}^2
\]

\[
+ \left(\frac{1}{2\varepsilon_2} \|n|u_0|\|_{L^2(\Omega)}^2 + \frac{\varepsilon_2}{2} \|nU\|_{L^2(\Omega)}^2 \right) + \frac{1}{2\varepsilon_3} \|u'_0\|_{L^2(\Omega)}^2 + \frac{\varepsilon_3}{2} \|U_y\|_{L^2(\Omega)}^2,
\]

\[
|kn(R)\|U(R, \cdot)\|_{L^2(\Omega)}^2 \leq \frac{\varepsilon_4}{2} \|U\|_{L^2(\Omega)}^2 + \frac{\|f\|_{L^2(\Omega)}^2}{2\varepsilon_4}
\]

\[
+ \left(\frac{1}{2\varepsilon_5} \|n|u_0|\|_{L^2(\Omega)}^2 + \frac{\varepsilon_5}{2} \|nU\|_{L^2(\Omega)}^2 \right) + \frac{1}{2\varepsilon_6} \|u'_0\|_{L^2(\Omega)}^2 + \frac{\varepsilon_6}{2} \|U_y\|_{L^2(\Omega)}^2.
\]

It is similar to the procedure in Lemma 2.1 in [13], we can define a function \(z(x) \), such that

\[
z(0) = 0, \quad 0 \leq z(x) \leq C, \quad 1 \leq z'(x) \leq C, \quad n_0^2 \leq \left(z(x)n^2(x) \right)' \leq C.
\]
Multiplying (3.2) by \((z(x)U_x + z'(x)yU_y)\) and integrating over \(\Omega\) and taking the real part yields

\[
k^2n^2(R)z(R)\|U(R, \cdot)\|_{L^2(\mathbb{R})}^2 - \int_\mathbb{R} \int_0^R k^2 ((zn^2)' + z'n^2) |U|^2 \, dx \, dy - \int_0^R \frac{z^2(R)}{2} |U_y(R, y)|^2 \, dy = \Re \int_\mathbb{R} \int_0^R F(x, y) (z(x)U_x(x, y) + z'(x)yU_y(x, y)) \, dx \, dy.
\]

Using Cauchy’s inequality and the properties (1.4), (3.8), we have, \(\forall \varepsilon_8, \varepsilon_9 > 0,\)

\[
2k^2n_0^2\|U\|_{L^2(\Omega)}^2 \leq C \left(k^2\|U(R, \cdot)\|_{L^2(\mathbb{R})}^2 + \frac{k^2}{2\varepsilon_7} \|U_0\|_{L^2(\mathbb{R})}^2 + \varepsilon_7 k^2 \|U\|_{L^2(\Omega)}^2 \right) + \frac{\varepsilon_8}{2} \|\nabla U\|_{L^2(\Omega)}^2 + \frac{1}{2\varepsilon_8} \|U_0\|_{L^2(\mathbb{R})}^2 + \frac{\varepsilon_9}{2} \|\nabla U\|_{L^2(\Omega)}^2 + \frac{1}{2\varepsilon_9} \|f\|_{L^2(\Omega)}^2.
\]

Combining with (3.6)–(3.7) and choosing \(\varepsilon_j\) small enough, we get

\[
\|\nabla U\|_{L^2(\Omega)}^2 + k^2\|U\|_{L^2(\Omega)}^2 \leq C \left(\|f\|_{L^2(\Omega)}^2 + k^2 \|U_0\|_{L^2(\mathbb{R})}^2 + \|U_0\|_{L^2(\Omega)}^2 \right).
\]

That implies (3.1) immediately. \(\square\)

Suppose that \(u(x, y)\) is the solution of problem (1.1)–(1.3), \(u_h(x, y)\) is the approximation obtained by our method in Section 2 from (2.18). Let \(E(x, y) = u(x, y) - u_h(x, y)\), be the error of our approximation. Then \(E(x, y)\) satisfies the following problem

\[
\Delta E(x, y) + k^2\overline{n}^2(x)E(x, y) = k^2 \left(\overline{n}^2(x) - n^2(x) \right) u(x, y), \quad (x, y) \in \Omega,
\]

\[
E(0, y) = 0, \quad \tilde{E}_x(R, y) + ikn(R)E(R, y) = 0,
\]

\[
E_r(x, y) - ikn(x)E(x, y) = o \left(\frac{1}{r} \right), \quad \text{as } r = \sqrt{x^2 + y^2} \to \infty,
\]

By Lemma 3.1 and (2.3), we arrive at the following result immediately.

Theorem 3.1 (error estimates). Suppose that \(n(x) \in L^\infty(0, R)\) is piecewise smooth and piecewise monotone, \(f \in L^2(\Omega)\). Then the error function \(E\) satisfies the following estimate:

\[
|E|_{1, \Omega} + k\|E\|_{0, \Omega} \leq Ckh^2 \left(\|f\|_{L^2(\Omega)} + k\|u_0\|_{L^2(\mathbb{R})} + |u_0|_{H^1(\mathbb{R})} \right),
\]

with a constant \(C\) independent of the wave number \(k\) and mesh size \(h\).

4. Numerical examples

In this section, we present some numerical examples to show the efficiency and reliability of our new method.

Example 4.1. First, for a sake of simplicity, we consider

\[
\Delta u(x) + k^2n^2(x)u(x) = f(x), \quad \text{for } x = (x, y) \in \Omega = (0, R) \times (-L, L),
\]

\[
u|_{x=0} = u_0(y), \quad \left(\frac{\partial u}{\partial x} - ikn(x)u \right) \bigg|_{x=R} = 0, \quad \text{for } y \in (-L, L),
\]

with a periodic boundary condition in \(y\)-direction, and

\[
f(x) \equiv 0, \quad n^2(x) = 1 - x, \quad u_0(y) = e^{iky/2}, \quad R = L = 1.
\]
The exact solution is
\[u(x, y) = e^{iky/2} \frac{\text{Ai}(k^{2/3}(x - \frac{3}{4}))}{\text{Ai}(-\frac{3}{4}k^{2/3})}. \]

Note that there is a caustic line at \(x = 0.75 \) if we use WKB asymptotic expansion to solve this problem (cf. [6, 7]). But there is no caustic by our method (cf. Fig. 1). We give the error of \(u^{TFCM} \) (the approximation by our TFCM) in Fig. 2 (a). Because \(n^2(x) \) is a linear function, from Fig. 2 (a), we can see that our method can achieve the machine accuracy in this case, although our mesh size \(h \) is much larger than the wavelength.

Furthermore, even if \(n^2(x) \) is a piecewise linear function, for example,
\begin{equation}
(4.3) \quad n^2(x) = \begin{cases}
1 + x, & x \in [0, 0.25); \\
1 - x, & x \in [0.25, 1];
\end{cases}
\end{equation}

we can also achieve the machine accuracy (cf. Fig. 2 (b)) with only one node in each subdomain.

Example 4.2. Then we consider a more complex case with \(n^2(x) = 0.6 + 0.5x - x^2 \).

In this case, the ‘exact’ solution is solved on very fine mesh \(h = \frac{1}{512} \). The results of this example are given in Fig. 3 and Table 1. Because \(n^2(x) \) is not a linear function anymore, we can not achieve the machine accuracy in this case. But we still have the second order convergence rate from Table 1, although our mesh size \(h \) is much larger than the wavelength. It is consistent with our theoretical result (cf. Theorem 3.1).
Table 1. Example 4.2, the ℓ^∞ and relative ℓ^2 errors for TFCM, $k = 500$.

<table>
<thead>
<tr>
<th>h</th>
<th>2^{-5}</th>
<th>2^{-6}</th>
<th>2^{-7}</th>
<th>2^{-8}</th>
</tr>
</thead>
<tbody>
<tr>
<td>ℓ^∞ error</td>
<td>1.35×10^{-1}</td>
<td>3.71×10^{-2}</td>
<td>9.49×10^{-3}</td>
<td>2.38×10^{-3}</td>
</tr>
<tr>
<td>ℓ^2 error</td>
<td>6.83×10^{-2}</td>
<td>1.84×10^{-2}</td>
<td>4.76×10^{-3}</td>
<td>1.19×10^{-3}</td>
</tr>
</tbody>
</table>

Example 4.3. Next we consider a case with discontinuous index of refraction

$$n^2(x) = \begin{cases}
 e^{-2x} (1 + \sin(2\pi x)) + 0.25, & x \in [0, 0.75]; \\
 1 - x, & x \in (0.75, 1].
\end{cases}$$

Here the ‘exact’ solution is also solved on very fine mesh $h = \frac{1}{512}$. The results of this example are given in Fig. 4 and Table 2. We still have the second order convergence rate from Table 2.

Table 2. Example 4.3, the ℓ^∞ and relative ℓ^2 errors for TFCM, $k = 400$.

<table>
<thead>
<tr>
<th>h</th>
<th>2^{-5}</th>
<th>2^{-6}</th>
<th>2^{-7}</th>
<th>2^{-8}</th>
</tr>
</thead>
<tbody>
<tr>
<td>ℓ^∞ error</td>
<td>4.96×10^{-1}</td>
<td>1.36×10^{-1}</td>
<td>3.44×10^{-2}</td>
<td>8.84×10^{-3}</td>
</tr>
<tr>
<td>ℓ^2 error</td>
<td>1.71×10^{-1}</td>
<td>4.72×10^{-2}</td>
<td>1.21×10^{-2}</td>
<td>3.08×10^{-3}</td>
</tr>
</tbody>
</table>

Example 4.4. Finally we consider a more complex case with discontinuous index of refraction

$$n^2(x) = \begin{cases}
 \cos(\pi x) - 0.5, & x \in [0, 0.25); \\
 1 + x, & x \in [0.25, 0.5); \\
 1 - x^2, & x \in [0.5, 0.75); \\
 1 - x, & x \in [0.75, 1].
\end{cases}$$
In this case, the ‘exact’ solution is also solved on very fine mesh $h = \frac{1}{64}$. The results of this example are given in Fig. 5 and Table 3. The convergence rate is also of second order.

Table 3. Example 4.4, the ℓ^∞ and relative ℓ^2 errors for TFCM, $k = 200$.

<table>
<thead>
<tr>
<th>h</th>
<th>2^{-5}</th>
<th>2^{-6}</th>
<th>2^{-7}</th>
<th>2^{-8}</th>
</tr>
</thead>
<tbody>
<tr>
<td>ℓ^∞ error</td>
<td>2.37×10^{-1}</td>
<td>6.09×10^{-2}</td>
<td>1.54×10^{-2}</td>
<td>3.88×10^{-3}</td>
</tr>
<tr>
<td>ℓ^2 error</td>
<td>7.14×10^{-2}</td>
<td>1.75×10^{-2}</td>
<td>4.47×10^{-3}</td>
<td>1.12×10^{-3}</td>
</tr>
</tbody>
</table>

Figure 5. The approximation and the error of Example 4.4 at $y = 0$, $k = 200$, $h = \frac{1}{64}$.

5. Conclusion

In this paper, we present a tailored finite cell method for Helmholtz equation in the layered heterogeneous medium. This is a semi-discrete method designed on the properties of the local approximate problem. Following the idea of our previous works about TFPM [13, 20], we solve the problem numerically after taking the Fourier transform in y-direction and approximating the squared index of refraction function using piecewise linear function. We analyze the stability of the original problem, prove the second order convergence rate of the method, and present several numerical examples to confirm the theoretical results. The numerical examples also show that this method can achieve high accuracy on coarse mesh even with discontinuous coefficient. When the coefficient $n^2(x)$ is a piecewise linear function, we can obtain the exact solution with only one point in each subdomain. The method applied to more general cases will be studied later.

References

(Z.Y. Huang) DEPT. OF MATHEMATICAL SCIENCES, TSINGHUA UNIVERSITY, BEIJING 100084, CHINA

E-mail address: zhuang@math.tsinghua.edu.cn

(X. Yang) DEPARTMENT OF MATHEMATICS, COURANT INSTITUTE OF MATHEMATICAL SCIENCES, NEW YORK UNIVERSITY, NEW YORK, NY 10012, USA

E-mail address: xuyang@cims.nyu.edu