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Abstract

We study the semi-classical limit of the Schrödinger equation in a

crystal in the presence of an external potential and magnetic field. We

first introduce the Bloch-Wigner transform and derive the asymptotic

equations governing this transform in the semi-classical setting. For

the second part, we focus on the appearance of the Berry curvature

terms in the asymptotic equations. These terms play a crucial role in

many important physical phenomena such as the quantum Hall effect.

We give a simple derivation of these terms in different settings using

asymptotic analysis.

1 Introduction

This is the first of a series of papers on the asymptotic analysis of the quan-

tum dynamics of electrons in materials. In the present paper, we introduce

the Bloch-Wigner transform, which is a natural extension of the well-known

Wigner transform for crystals, to study the macroscopic behavior of the

electron dynamics in the presence of an external potential. We then carry

out a WKB analysis of the Bloch dynamics for an electron in a bulk crystal,

1



and focus on the derivation of the Berry phase terms and the related Bloch

dynamics with Berry curvature. The asymptotic equations derived in this

paper are not new. But we introduce a slightly different perspective from

the existing literature and this is going to be very useful for our subsequent

work.

The electronic dynamics in crystals have been studied for many years

in the semiclassical regime, where the Liouville equations replace the role

of the Schrödinger equation in the limit when the rescaled Planck constant

tends to zero. With the help of the Bloch-Floquet theory [13], Markowich,

Mauser and Poupaud [10] derived the semiclassical Liouville equation for

describing the propagation of the phase-space density for an energy band,

which controls the macroscopic dynamic behavior of the electrons. Later

these results were generalized to the case when a weak random potential [3]

and nonlinear interactions [7] were present.

Berry phase is an important result that appears during the adiabatic

limit of quantum dynamics, as some external parameters are varied slowly

[4, 14]. As B. Simon observed in [15], the adiabatic Berry phase has an

elegant mathematical interpretation as the holonomy of a certain connection,

the Berry connection, in the appropriate fiber bundle. This setup gives rise

to the Berry curvature, which is gauge invariant and can be considered as

a physical observable. It has been used in the Bloch dynamics to explain

various important phenomena in crystals, see for example [18] and related

references. Panati, Spohn and Teufel later gave a rigorous derivation of such

Bloch dynamics in [11, 12] by writing down the effective Hamiltonian with

the help of the Weyl quantization.

The main purpose of this paper is to give a simple derivation of the

effective Bloch dynamics in crystals based on asymptotic analysis. The end

results that we obtain are not new, but our approach is considerably simpler

than that in previous works. In particular, we give a simple derivation of

the Berry curvature terms in the semi-classical limit of the Bloch dynamics.

We will also introduce a natural extension of the Wigner transform for the

setting of crystals. This new Wigner transform, which we call the Bloch-

Wigner transform, seems to be an effective tool for analyzing the dynamics

of electrons in crystals.

In subsequent papers, we will study electron dynamics in metals and

insulators in the presence of external fields within the context of the time-
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dependent Thomas-Fermi model, Hartree-Fock model or density functional

theory. Our ultimate objective is to give a unified treatment of electron

dynamics in materials, with applications to nano-optics and quantum trans-

port.

2 Preliminaries on the Bloch theory

Given a crystal lattice Γ, we consider a rescaled Schrödinger equation:

iε
∂Ψε

∂t
= −

ε2

2
∆Ψε + VΓ

(x

ε

)

Ψε − φ(x)Ψε, x ∈ R
n , (2.1)

where VΓ(·) is a potential, which is periodic with respect to Γ and φ(x) is

a scalar potential. Eq. (2.1) is a standard model for describing the motion

of electrons in a perfect crystal when an external macroscopic potential is

applied. In physical units, the equation is given by

i~
∂Ψ

∂t
= −

~
2

2m
∆Ψ + VΓ(x)Ψ − φ(x)Ψ, (2.2)

where m is the atomic mass and ~ is the reduced Planck constant. As in [2],

we introduce ℓ as the lattice constant and τ = mℓ2/~ as the small (quantum)

time scale, and denote L and T as the large (macroscopic) length and time

scales, then

VΓ(x) =
mℓ2

τ2
Ṽ (

x

ℓ
), φ(x) =

mL2

T 2
φ̃(

x

L
).

By defining

x̃ =
x

L
, t̃ =

t

T
, ε =

ℓ

L
, h =

~T

mL2
,

one obtains after dropping the tildes,

ih
∂Ψ

∂t
= −

h2

2
∆Ψ +

h2

ε2
VΓ(

x

ε
)Ψ − φ(x)Ψ.

This equation has two small parameters, ε and h. We will only consider the

distinguished limit when h = ε. This is a difficult case, as was pointed out

in [2].

In the case when the external potential is absent, the time evolution

is determined by the Bloch-Floquet theory [13]. Denote the Hamiltonian

operator

H0 = −
1

2
∆ + VΓ(z). (2.3)
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The Bloch decomposition of H0 is given by

H0 =
1

|Γ∗|

∫

Γ∗
Hkdk, (2.4)

where |Γ∗| is the measure of the first Brillouin zone, and

Hk = −
1

2
∆k + VΓ(z) (2.5)

is the Laplacian operator acting on f ∈ L2(Γ) with the Bloch boundary

condition:

e−ik·zf is periodic on [0, 2π]n. (2.6)

The eigenvalues and corresponding eigenfunctions of Hk are obtained from

solving
[

1

2
(−i∇z + k)2 + VΓ(z)

]

χm(k,z) = Em(k)χm(k,z). (2.7)

with χ(k, ·) periodic on Γ. It is also convenient to extend the domain of χ

so that the functions involved are periodically extended.

Let us also denote the eigenvalues of (2.7) as Em(k) with the ordering

that E1(k) ≤ E2(k) ≤ · · · . We have

σ(H0) =
⋃

m

Em(Γ∗). (2.8)

For each m, Em(Γ∗) gives a band (as a map from Γ∗ to R), and

ϕm(z,k) = eik·zχm(k,z)

satisfies H0ϕm = Emϕm.

3 The Bloch-Wigner transform

When VΓ = 0,

iε
∂Ψε

∂t
= −

ε2

2
∆Ψε − φ(x)Ψε, x ∈ R

n , (3.9)

the (asymmetric) Wigner transform defined as

W (t,x,k) =

∫

Rn

dy

(2π)n
Ψε(t,x − εy)Ψε(t,x)e−iky, (3.10)
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is a useful tool for studying the Schrödinger equation in the semi-classical

regime [9, 7].

In the presence of a periodic background potential VΓ, for each n and m,

we introduce the (asymmetric) Bloch-Wigner transform:

σε
mn(t,x,k) =

∫

Rn

dy

(2π)n
Ψε(t,x−εy)Ψε(t,x)ϕm(

x

ε
−y,k)ϕn(

x

ε
,k), (3.11)

where k is in the first Brillouin zone, and f means the complex conjugate of

f . The motivation of the Bloch-Wigner transform is the following. In the

Wigner transform (3.10), the phase factor exp(−iky) can be understood as

e−iky = eik(x/ε−y)e−ikx/ε,

where the Fourier term e−ikx/ε is the generalized eigenfunction for the oper-

ator −1
2ε2∆. Now, due to the presence of the periodic background potential

VΓ, the generalized eigenfunction for the time-independent operator without

external potential −1
2ε2∆ + VΓ(x/ε) is no longer the Fourier wave, but the

Bloch wave as we have seen in the last section. Thus, it is natural to replace

the Fourier waves used in the original Wigner transform by the Bloch waves.

This gives rise to the Bloch-Wigner transform defined in (3.11).

We notice that the Bloch-Wigner transform is related but different from

the discrete Wigner transform introduced in [10]. In a sense, it is closer to

the approach taken in [3]. Instead of decomposition of the equation into

separate energy bands, the current approach treats the solution as a whole,

but use a different (but natural) approach to analyze the phase space density.

Taking the time derivative of (3.11) yields

∂tσ
ε
mn =

1

iε

∫

Rn

dy

(2π)n

(

−
ε2

2
∆xΨε(t,x − εy) + V (

x

ε
− y)Ψε(t,x − εy)

− φ(t,x − εy)Ψε(t,x − εy)
)

Ψε(t,x)ϕm(
x

ε
− y,k)ϕn(

x

ε
,k)

−
1

iε

∫

Rn

dy

(2π)n
Ψε(t,x − εy)ϕm(

x

ε
− y,k)ϕn(

x

ε
,k)

(

−
ε2

2
∆xΨε(t,x)

+ V (
x

ε
)Ψε(t,x) − φ(t,x)Ψε(t,x)

)

= I1 + I2 + I3,
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where Ij , j = 1, 2, 3 are given by

I1 =
1

iε

∫

Rn

dy

(2π)n

(

−
ε2

2
∆xΨε(t,x − εy) + V (

x

ε
− y)Ψε(t,x − εy)

)

× Ψε(t,x)ϕm(
x

ε
− y,k)ϕn(

x

ε
,k),

I2 = −
1

iε

∫

Rn

dy

(2π)n
Ψε(t,x − εy)ϕm(

x

ε
− y,k)ϕn(

x

ε
,k)

×
(

−
ε2

2
∆xΨε(t,x) + V (

x

ε
)Ψε(t,x)

)

,

I3 =
1

iε

∫

Rn

dy

(2π)n
(

φ(t,x) − φ(t,x − εy)
)

Ψε(t,x − εy)

× Ψε(t,x)ϕm(
x

ε
− y,k)ϕn(

x

ε
,k).

Using integration by parts, one obtains

I1 =
1

iε
Em(k)σε

mn,

I2 = −
1

iε
En(k)σε

mn +
ε

2i
∆xσε

mn −
1

i
∇x ·

∫

Rn

dy

(2π)n
Ψε(t,x − εy)

× Ψε(t,x)ϕm(
x

ε
− y,k)(ε∇x)ϕn(

x

ε
,k)

= −
1

iε
En(k)σε

mn +
ε

2i
∆xσε

mn −
1

i
∇x ·

(

(ε∇x)ϕn(x
ε ,k)

ϕn(x
ε ,k)

σε
mn

)

.

Therefore we obtain the Bloch-Wigner equation

∂tσ
ε
mn + ∇x ·

(

ε∇xϕn(x
ε ,k)

iϕn(x
ε ,k)

σε
mn

)

+
iε

2
∆xσε

mn

=
1

iε
(Em(k) − En(k))σε

mn + I3. (3.12)

We now derive the asymptotic limit of the above equation as ε → 0. For

this, multiplying both sides (3.12) by a smooth, compactly supported test

function f(t,x) and integrating in time and space, we get

∫∫

f(t,x)

(

∂tσ
ε
mn + ∇x ·

(

ε∇xϕn(x
ε ,k)

iϕn(x
ε ,k)

σε
mn

)

+
iε

2
∆xσε

mn

)

=

∫∫

f(t,x)

(

1

iε
(Em(k) − En(k))σε

mn + I3

)

. (3.13)
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Substituting into the ansatz for σε
mn = σ0

mn + εσ1
mn + · · · , to the O(ε−1)

order, we have
∫∫

f(t,x)(Em(k) − En(k))σ0
mn = 0. (3.14)

For simplicity, we will assume that for m 6= n, Em(k) 6= En(k). Hence,

σ0
mn = 0 for m 6= n.

To the O(1) order, we have

∫∫

σ0
mm∂tf − σ0

mm∇kEm · ∇xf + ∇xφ · ∇kσ0
mmf = 0, (3.15)

where we have used the fact that

I3 = −∇xφ(t,x) · ∇kσ0
mn + O(ε) (3.16)

∇zϕn(z,k) = ∇kEn(k)ϕn(z,k) +
∑

m6=n

cmϕm(z,k). (3.17)

Note that the terms involving ϕm(z,k) do not contribute because σ0
mn = 0

for m 6= n.

Summarizing, we arrive at the equation for σ0
mm

∂tσ
0
mm(t,x,k)+∇kEm ·∇xσ0

mm(t,x,k)+∇xφ ·∇kσ0
mm(t,x,k) = 0. (3.18)

This gives the leading order behavior of σε
mm.

The Bloch-Wigner transform is an elegant way for obtaining the leading

order asymptotics in fairly general situations. In principle, it can also be

used to study the next order behavior. However, the procedure becomes

quite involved. In the following, we will turn to more traditional WKB

methods. Our interest is the Berry curvature terms, which arise in the next

order asymptotic equations.

4 Derivation of the Berry curvature using the WKB

method

We will assume that the initial condition of (2.1) is well prepared in the

sense that it is concentrated on a single isolated energy band:

Ψε(0,x) = a0(x)χm(∇xS0,
x

ε
) exp(

iS0(0,x)

ε
). (4.1)
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The band index will be omitted from now on. Note that for this WKB type

of initial condition, our asymptotic method is only valid before caustics.

To overcome this difficulty one needs to consider for example the Gaussian

beam methods [6, 8] or the Wigner functions [9, 16].

We will take the following ansatz for (2.1):

Ψε
asym(t,x) = a(t,x)χ(∇xS0,

x

ε
) exp(

iS0(t,x)

ε
). (4.2)

Substituting (4.2) into (2.1), we obtain the eikonal-transport equations for

a(t,x) and S(t,x):

∂tS0 + E(∇xS0) − φ = 0, (4.3)

∂ta + ∇kE(∇xS0) · ∇xa +
1

2
a∇x(∇kE(∇xS0))

−iaA(∇xS0) · ∇xφ = 0, (4.4)

where A(k) = 〈χ(k, ·)|i∇k|χ(k, ·)〉 ∈ R
n is the Berry connection. Here

Dirac’s notation of bra 〈·| and ket |·〉 are used:

〈f |g〉 =

∫

f̄ gdz,

〈f |A|g〉 =

∫

f̄Agdz,

where f̄ is the complex conjugate of f and A is an operator. We omit the

derivation of these equations here, since we will provide the derivation in

appendix for more general cases.

Up to this point, the result is standard. What we have done is just

a higher order expansion of WKB methods. Same equations have been

obtained in a similar way, for example, in [5]. We have the following theorem

which states that the WKB method works up to the formation of caustics.

Theorem 4.1 Define Ψε to be the solution to (2.1) with the single band

initial condition (4.1). Assume for the initial condition, a0(x) ∈ S(Rn) and

S0(0,x) ∈ C∞(Rn). Assume there is no caustic formed before time t0, then

the asymptotic solution given by (4.2) is valid up to any t < t0, and there

exists a constant C such that

sup
0≤τ≤t

∥

∥Ψε(τ,x) − Ψε
asym(τ,x)

∥

∥

L2(Rn)
≤ Cε.
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The proof of this theorem is standard and essentially contained in the paper

[5], and therefore we will omit the proof here.

Now we are going to link (4.3)-(4.4) to the Bloch dynamics with Berry

curvature. As the Bloch dynamics is quite useful in physics (see for ex-

ample a recent review article [18]), a better physical interpretation of the

asymptotic analysis is provided.

The key observation is that the equation (4.4) is a complex equation, we

can rewrite a(t,x) = A(t,x) exp(iS1(t,x)) and separate (4.4) into its real

and imaginary parts:

∂tA + ∇kE(∇xS0) · ∇xA +
1

2
∇x

(

∇kE(∇xS0)
)

A = 0, (4.5)

∂tS1 + ∇kE(∇xS0) · ∇xS1 −A(∇xS0) · ∇xφ = 0. (4.6)

We now define a new phase function S = S0 +εS1 and write an equation

for S according to (4.3) and (4.6):

∂tS + E(∇xS) − φ − εA(∇xS) · ∇xφ = 0. (4.7)

Taking the gradient of (4.7) with respect to x yields

∂t(∇xS) +
[

∇kE − ε∇kA ·∇xφ
]

· ∇x∇xS −∇xφ− εA ·∇x∇xφ = 0. (4.8)

The equation for the characteristics of (4.8) is given by

dx

dt
= ∇kE(k) − ε∇kA(k) · ∇xφ(x), (4.9)

then (4.8) becomes, by letting k = ∇xS,

dk

dt
= ∇xφ(x) + εA(k) · ∇x∇xφ(x). (4.10)

If we use the change of variables

x = x̃ − εA(k̃), k = k̃,

we obtain, after dropping the tilde,

dx

dt
= ∇kE(k) − ε

dk

dt
×∇k ×A(k), (4.11)

dk

dt
= ∇xφ(x). (4.12)
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Here ∇k × A(k) is the Berry curvature. We remark that compared with

the traditional Bloch dynamics [1], the new terms depending on the Berry

curvature are of higher order in ε.

The equations (4.11)-(4.12) are not new, they have been obtained from a

physical argument by Sundaram and Niu [17]. In the mathematics literature,

the equations have been rigorously derived by Panati, Spohn and Teufel [11].

However, the derivation here is considerably simpler than that in [11] and

provides an easier way to understand the results.

It is straightforward to extend this procedure to more general cases. We

will see that the above strategy can be used to derive Bloch dynamics in

various situations.

5 Bloch dynamics in inhomogeneous crystals

Now we turn to a rescaled Schrödinger equation with the time dependent

two scale potential:

iε
∂Ψε

∂t
= −

ε2

2
∆Ψε + V

(

t,x,
x

ε

)

Ψε, x ∈ R
n , (5.1)

where V (t,x,z = x
ε ) is periodic in z on the lattice Γ.

Again we only consider initial conditions that are concentrated on one

single band and drop the band index. We will use time dependent two scale

WKB ansatz as:

Ψε
asym = a(t,x)χ(t,∇xS0,x,

x

ε
) exp(

iS0(t,x)

ε
). (5.2)

Here the time dependent two scale Bloch function χ(t,k,x,z) is the eigen-

function of the following equation

[

1

2
(−i∇z + k)2 + V (t,x,z)

]

χ(t,k,x,z) = E(t,k,x)χ(t,k,x,z). (5.3)

Note that in (5.3), t, k and x are parameters. In other words, we consider a

cell problem in z while freezing the macroscopic position in space and time.

Substituting in the ansatz, we get the eikonal-transport equations in this
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case (the derivation is provided in Appendix I)

∂tS0 + E(t,∇xS0, x) = 0, (5.4)

∂ta + ∇kE · ∇xa +
1

2
a∇x · (∇kE|k=∇xS) − ia〈χ|i∂t|χ〉

+ia∇xE · 〈χ|i∇k|χ〉 − ia∇kE · 〈χ|i∇x|χ〉 = 0, (5.5)

To give a better interpretation for the equations we just obtained, we

follow the same trick that we used in the last section. Define a(t, x) =

A(t, x) exp(iS1(t, x)), then the first order corrected phase S = S0 + εS1

satisfies

∂tS + E(t,∇xS,x) + εAk · ∇xE − εAt − εAx · ∇kE = 0, (5.6)

where the Berry connections Ak, At, Ax are given by

Ak = 〈χ|i∇k|χ〉, At = 〈χ|i∂t|χ〉, Ax = 〈χ|i∇x|χ〉, (5.7)

where χ = χ(t,x,k). Note that we now have three type of Berry connec-

tions, as the Bloch Hamiltonian depends on t, x and k as parameters.

The equation (5.6) implies the following ray (characteristics) equations:

dx

dt
= ∇kE + ε∇kAk · ∇xE + εAk · ∇x∇kE − ε∇kAt

− ε∇kAx · ∇kE − εAx · ∇k∇kE,

dk

dt
= −∇xE − εAk · ∇x∇xE − ε∇xAk · ∇xE + ε∇xAt

+ ε∇xAx · ∇kE + εAx · ∇x∇kE.

Using the change of variables,

x = x̃ − εAk(k̃, x̃), k = k̃ + εAx(k̃, x̃), (5.8)

one recovers the Bloch dynamics in inhomogeneous crystals shown in [12, 19],

after dropping the tilde, we obtain

dx

dt
= ∇kE − εΩkx

dx

dt
− εΩkk

dk

dt
− εΩkt,

dk

dt
= −∇xE + εΩxx

dx

dt
+ εΩxk

dk

dt
+ εΩxt.
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The curvatures Ωkx, Ωkk, Ωxk, Ωxx, Ωkt, Ωxt are defined as

Ωkx = ∇kAx − (∇xAk)T , Ωkk = ∇kAk − (∇kAk)T ,

Ωxk = ∇xAk − (∇kAx)T , Ωxx = ∇xAx − (∇xAx)T ,

Ωkt = ∇kAt − (∂tAk)T , Ωxt = ∇xAt − (∂tAx)T ,

where MT means the transpose matrix of M .

6 Magnetic Bloch dynamics in inhomogeneous crys-

tals

In this section, we consider a more general case with the presence of magnetic

field. The rescaled Schrödinger equation becomes

iε
∂Ψε

∂t
=

1

2

(

−iε∇x + b(t,x,
x

ε
)
)2

Ψε + V
(

t,x,
x

ε

)

Ψε, x ∈ R
n , (6.1)

where b(x) is the vector potential and the magnetic field is given by B =

∇ × b. The positive sign before b(x) comes from the negative charge of

electrons.

We take an ansatz of the form (5.2), after some lengthy calculation (cf.

Appendix II), we obtain the corresponding eikonal-transport equations:

∂tS0 + E(t,∇xS0, x) = 0, (6.2)

∂ta + ∇kE · ∇xa +
1

2
a∇x · (∇kE|k=∇xS) − ia〈χ|i∂t|χ〉

−ia∇kE · 〈χ|i∇x|χ〉 −
1

2
〈∇kχ|

[

∇xb − (∇xb)T
]

(H − E)|∇kχ〉

+ia〈∇xV χ| · i∇k|χ〉 +
1

2
〈∇kχ|

[

∇xb − (∇xb)T
]

∇kE|χ〉 = 0,(6.3)

where χ(t,k,x,z) is the eigenfunction for magnetic Bloch Schrödinger op-

erator H,

Hχ =

[

1

2

(

− i∇z + k + b(t,x,z)
)2

+ V (t,x,z)

]

χ(t,k,x,z)

= E(t,k,x)χ(t,k,x,z). (6.4)
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In the equation, t, k and x are parameters, therefore, similarly as in the last

section, we will obtain three type of Berry connections.

To derive the magnetic Bloch dynamics, we rewrite (6.3) in terms of the

Berry connections defined in (5.7) with the help of (A.11),

∂ta + ∇kE · ∇xa +
1

2
a∇x · (∇kE|k=∇xS) − iaAt

+ia∇xE · Ak − ia∇kE · Ax − iaMB = 0,

where MB is given by

MB = Im〈∇kχ|(H − E)|∇xχ〉.

Note that if b(t,x,z) is independent of z, then

MB =
1

2i
〈∇kχ|

(

∇xb − (∇xb)T
)

(H − E)|∇kχ〉

=
1

2i
〈∇kχ| × (H − E)|∇kχ〉 · B.

Similarly as before, we write a(t,x) = A(t,x) exp(S1(t,x)), then the

equation for the new phase function S = S0 + εS1 is

∂tS + E(t,∇xS,x) + εAk · ∇xE − εAt − εAx · ∇kE − εMB = 0,

which implies the following dynamic equations after performing the change

of variables (5.8),

dx

dt
= ∇k(E − εMB) − εΩkx

dx

dt
− εΩkk

dk

dt
− εΩkt, (6.5)

dk

dt
= −∇x(E − εMB) + εΩxx

dx

dt
+ εΩxk

dk

dt
+ εΩxt. (6.6)

We obtain the above equations for the general situation, as have been

seen, the derivation using WKB method is straightforward.

We remark that, in [6], a simplified situation is considered in which the

vector potential b(t,x,z) does not depend on z and V (t,x,z) = VΓ(z) −

φ(x). Therefore, the sum of the last four terms of (6.3) can be simplified as

−i〈χ|i∇k|χ〉 · (∇xφ −∇kE × B) −
1

2
〈∇kχ| × (H − E)|∇kχ〉 · B,

which is consistent with the equation (29) in [6].
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In addition, using Peierls substitution p = k + b, we see that (6.5)-(6.6)

can be rewritten for the simplified case as

dx

dt
= ∇p(E − εMB) − ε

dp

dt
× Ω̃,

dp

dt
= ∇xφ −

dx

dt
× B − ε∇xMB ,

where

MB =
1

2i
〈∇kχ| × (H − E)|∇kχ〉 · B

∣

∣

k=p−b
,

and

Ω̃ = ∇k ×Ak

∣

∣

k=p−b
.

These are consistent with the equation (59) in [11]. Therefore one recovers

the usual magnetic Bloch dynmaics in this specific case.

7 Conclusions and discussions

We have introduced a natural generalization of Wigner transform to the

crystal case. We have also given a simple and unified treatment of the the

Berry curvature terms in the context of Bloch dynamics, which is the semi-

classical limit of one-particle Schrödinger equation in crystal. This offers an

alternative approach to the work of Panati, Spohn and Teufel [11, 12]. So

far we have been only focused on the case when the waves are all in a single

isolated energy band. In some materials the effects from the many-body

electron interaction is important. This has inspired the efforts to include

the Berry phase in the density functional theory with spin degree of freedom

which is going to the subject of our subsequent papers.
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Appendix: Derivation of the transport equations

I. The case of the vector potential b = 0

Substituting the WKB ansatz (5.2) into (5.1) yields, after taking the inner

product with χ,

∂ta + a〈χ|dtχ〉 + ∇xa · (〈χ| − i∇zχ〉 + ∇xS) +
1

2
a∆xS

+a〈χ|∇kχ〉∇xS : ∇x∇xS − a〈χ|i∇k∇zχ〉 : ∇x∇xS

+a〈χ|∇xχ〉 · ∇xS − a〈χ|i∇x · ∇zχ〉 = 0, (A.1)

where we have used the notation

dtχ = ∂tχ −∇kχ∇kE : ∇x∇xS −∇kχ · ∇xE.

Differentiating (5.3) with respect to k and taking the inner produce with χ,

we have

∇kE = 〈χ| − i∇zχ〉 + k. (A.2)

Differentiating (5.3) with respect to k twice and then taking the inner prod-

uct with χ gives

(−∇kE + k)〈χ|∇kχ〉 − 〈χ|i∇z∇kχ〉 =
1

2
(−I + ∇k∇kE) ,

where I is the identity tensor. Taking ∇x· of (A.2) yields

∇x · ∇kE = 〈χ| − i∇x · ∇zχ〉 + 〈−i∇x · ∇zχ|χ〉.

Note that

1

2
∇x ·

(

∇kE|k=∇xS

)

=
1

2

(

∇k∇kE : ∇x∇xS + ∇x · ∇kE
)

|k=∇xS , (A.3)

and

〈χ|∇xχ〉 · ∇xS =
1

2

(

〈χ|∇xχ〉 · ∇xS − 〈∇xχ|χ〉 · ∇xS
)

.

Putting these identities together, (A.1) is simplified to be (5.5).

15



II. The case of the vector potential b 6= 0

The equations become more complicated when the magnetic field is nonzero.

Substituting (5.2) in (6.1) produces

∂ta + a〈χ|dtχ〉 + ∇xa · (〈χ| − i∇zχ〉 + ∇xS + 〈χ|bχ〉) +
1

2
a∆xS

+a〈χ|∇kχ〉∇xS : ∇x∇xS − a〈χ|i∇k∇zχ〉 : ∇x∇xS

+a〈χ|∇xχ〉 · ∇xS − a〈χ|i∇x · ∇zχ〉 + a〈χ|b · ∇xχ〉

+a〈χ|b∇kχ〉 : ∇x∇xS = 0, (A.4)

where

dtχ = ∂tχ −∇kχ∇kE : ∇x∇xS −∇kχ · ∇xE.

Note that H =
1

2

(

− i∇z + k + b(t,x,z)
)2

+ V (t,x,z). Differentiating (6.4)

with respect to k twice gives

(H − E)∇kχ + ∇kHχ −∇kEχ = 0, (A.5)

(H − E)∇k∇kχ + 2(∇kH −∇kE)∇kχ + (∇k∇kH −∇k∇kE)χ = 0.

Taking the inner product of the last two equations with χ yields

∇kE = 〈χ| − i∇zχ〉 + k + 〈χ|bχ〉, (A.6)

(−∇kE + k)〈χ|∇kχ〉 − 〈χ|i∇z∇kχ〉 + 〈χ|b∇kχ〉

=
1

2
(−I + ∇k∇kE) . (A.7)

(A.6) and (A.7) simplify (A.4) to give

∂ta + ∇kE · ∇xa +
1

2
a∇x · (∇kE|k=∇xS) −

1

2
a
(

∇x · ∇kE
)

|k=∇xS

−a∇xE · 〈χ|∇kχ〉 + a∇xS · 〈χ|∇xχ〉 + a〈χ|b · ∇xχ〉

+a〈χ| − i∇z∇xχ〉 = 0, (A.8)

in which we have also used the identity (A.3).
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Since ∇x · b = 0, by taking ∇x· of (A.6), one has

∇x · ∇kE = 〈χ| − i∇x · ∇zχ〉 + 〈−i∇x · ∇zχ|χ〉

+ 〈χ|b · ∇xχ〉 + 〈b · ∇xχ|χ〉.

The last five terms of (A.8) simplify to give

1

2

(

−∇xE · 〈χ|∇kχ〉 + 〈χ|∇kH · ∇xχ〉
)

− c.c.

=
1

2

(

−∇xE · 〈χ|∇kχ〉 + 〈∇kHχ|∇xχ〉
)

− c.c. (A.9)

Differentiating (6.4) with respect to x yields

(H − E)∇xχ + ∇xHχ −∇xEχ = 0. (A.10)

Therefore

−∇xE · 〈χ|∇kχ〉 + 〈∇kHχ|∇xχ〉

= −∇xE · 〈χ|∇kχ〉 − 〈(H − E)∇kχ|∇xχ〉 + ∇kE · 〈χ|∇xχ〉

= −∇xE · 〈χ|∇kχ〉 − 〈∇kχ|(H − E)∇xχ〉 + ∇kE · 〈χ|∇xχ〉 (A.11)

= −∇xE · 〈χ|∇kχ〉 −
(

∇xE · 〈∇kχ|χ〉 − 〈∇kχ|∇xHχ〉
)

+ ∇kE · 〈χ|∇xχ〉

=〈∇kχ|∇xHχ〉 + ∇kE · 〈χ|∇xχ〉.

Here the first and third equalities come from (A.5) and (A.10) respectively,

and the fourth equality is due to 〈χ|∇kχ〉 ∈ iRn.

Since ∇xH = ∇xA∇kH + ∇xV , the last equality combined with (A.8)

and (A.9) imply (6.3).
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