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Abstract. In this paper, we develop a mean-field model for describing the dynamics of spin
transfer torque in multilayered ferromagnetic media. Specifically, we use the techniques of Wigner
transform and moment closure to connect the underlying physics at different scales, and reach a
macroscopic model for the dynamics of spin coupled with the magnetization within the material.
This provides a further understanding of the linear response model proposed by Zhang, Levy, and
Fert in [42], and in particular we get an extra relaxation term which helps to stabilize the system.
We develop efficient numerical methods to overcome the stiffness appearing in this new mean-field
model, and present several examples to analyze and show its validity.
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1. Introduction. Spintronics, i.e., the active control and manipulation of spin
degrees of freedom, plays a key role in advancing technologies and the design of new
electronic devices. The discovery of the Giant Magnetoresistance effect (GMR) by
A. Fert and P. Grünberg [5, 21] has enabled the development of new technologies.
This phenomenon has been observed in magnetic multi-layered media (e.g., [5]), and
has been used to detect domain-wall motion ([32]), a mechanism that is important
in operating spintronic memories and logic devices ([15]). When an electron current
flows in a ferromagnetic material, conservation of spin yields a transfer of spin angular
momentum to the magnetization, an effect known as spin-transfer torque (STT), and
this has been used in technological applications such as the magnetoresistance random
access memories (MRAMs), race-track memories (e.g., [9]), and the control of the
dynamics of domain walls (e.g., [31, 15]). In this article we are primarily interested
in the magnetization reversal process in ferromagnetic media as a result of this spin-
transfer torque (see Figure 4.1).

The magnetization reversal process in a spintronic device involves a multitude
of physical processes, including spin polarization, spin transport and diffusion with-
in ferromagnetic multilayers, and spin-magnetization interactions (e.g., [24, 35, 9]).
Experiments have been done in a large number of magnetic materials, ranging from
metals (e.g., Fe, Co, Ni, [24, 9]) and their alloys to semiconductors (e.g., diamond and
organic semiconductors, [22, 36]). The first models for STT were developed indepen-
dently by Berger and Slonczewski ([8, 38]). More recent results can be characterized
into two groups, according to whether the spin dynamics is included in the model or
not: In [43, 40, 13], the magnetization dynamics is considered with the STT term be-
ing described as external torques depending on the magnetization and its derivatives;
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while in [42, 34], the magnetization dynamics is coupled to the spin dynamics on an
equal footing. Under the assumption that spatial variation of the spin is neglectable,
the coupled system can be reduced to the magnetization dynamics with additional
torque terms [43]. However, this assumption may not be true in general and the cou-
pled system is highly nonlinear, hence the representability of spin dynamics in terms
of magnetization-related torques is not guaranteed.

In the STT context, very few attempts have been made to describe the spin dy-
namics at the microscopic level, with the exception of [13, 34]. Only the magnetization
dynamics was considered in [13], with additional torques derived from a microscop-
ic model. In [34], the authors derived the spin dynamics from a kinetic model, but
failed to recover the spin dynamics obtained from the linear response theory [42].
These issues are our main motivation to study the connection between models of spin
dynamics at different physical scales, and to derive mean-field models for the spin
dynamics coupled to magnetization dynamics.

The dynamics of the magnetization is typically described by the Landau-Lifshitz-
Gilbert (LLG) equation [26, 19]. To describe the electron transport, we start from
a Schrödinger equation in the spinor form, and use the wigner transform to obtain
a kinetic model. From this, we obtain a mean-field model by carrying on a moment
closure approximation of the kinetic model, including Bloch collision terms. To com-
pare the mean-field model with the one in [42], we restrict ourselves to the case of
metals by applying the quasi-static approximations on the spin current, in which an
additional term that stabilizes the system is obtained. Under the assumption that
the spin-magnetization coupling is weak, the mean-field model recovers the model in
[42]. We develop a time-splitting computational method to solve the equation of spin
dynamics, and use the Gauss-Seidel projection method [41] to solve the magnetization
dynamics. We illustrate the magnetization reversal process with several examples.

The paper is organized as follows: In Section 2, we derive the mean-field model
by applying the Wigner transform on the spinor dynamics, and the moment closure
on the resulting kinetic equations with Bloch collision terms; we also compare it to
the one in [42]. We describe the numerical methods for solving the mean-field model
coupled to LLG in Section 3, and present several examples on magnetization switching
in ferromagnetic multilayer in Section 4. Conclusive remarks are made in Section 5.

2. A mean-field model for spin dynamics. Figure 4.1 is the standard device
for ferromagnetic multilayers, where two ferromagnetic layers (FM1 and FM2) are
sandwiched by a nonmagnetic metallic spacer (NM). Denote domains occupied FM1,
FM2 and NM by ΩFM1,ΩFM2 and ΩNM with the thicknessD1, D2 andD3, respectively.
Let Σ = ΩFM1 ∪ ΩFM2 and Ω = Σ ∪ ΩNM. Spin currents are applied perpendicular
to the device to make ease of magnetization switching. In such a system, there are
two types of electrons essentially [43, 33]: one is below the Fermi level, which is
responsible for magnetization dynamics and the other is around the Fermi sea, which
is responsible for spin dynamics. It is impossible to unambiguously separate these
two types of electrons, so a surrogate ”s-d” Hamiltonian is employed to describe the
spin-magnetization interaction.

2.1. Spin dynamics. In this section, we drive the mean-field model for spin
dynamics. We first start with the spinor dynamics in quantum mechanics.

2.1.1. From one-body Schrödinger equation to kinetic description. A
simple model for spin dynamics is given by the following one-body Schrödinger equa-
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tion

(2.1) i~
∂

∂t
ψ(x, t) = H(x, t)ψ(x, t),

where ψ = (ψ+, ψ−)T is called the spinor, and the effective one-body Hamiltonian is
of the form [33]

(2.2) H(x, t) =

(
− ~2

2m
∇2

x + V (x)

)
I− J

2
σ̂ ·m(x, t),

where ~ is the rescaled Planck constant, m is the effective mass of an electron, V (x)
is the external potential, I is the identity matrix, J is the spin-magnetization coupling
constant, and m is the background magnetization. The Pauli matrices σ̂ = σxî +
σy ĵ + σzk̂ where

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

The last term is the “s-d” Hamiltonian, which mimics the spin-magnetization
interaction. The “s-d” Hamiltonian is obtained by neglecting the self-induced elec-
tromagnetic fields generated by the conduction electrons. It seems in the community
of spintronics that this is an adequate approximation, e.g., [43, 33].

Next we give a kinetic description of spinor dynamics via the following Wigner
transform of ψ,

(2.3) W (x,v, t) = (
m

2π~
)3

∫
R3

ψ(x− y
2
, t)⊗ψ∗(x+

y

2
, t)ei m~ v·y dy,

where the Wigner function W (x,v, t) is a 2×2 matrix function, and ψ∗ is the complex
conjugate transpose of ψ. For simplicity, the Wigner transform (2.3) is defined using
a single wave function. Due to the linearity of the Schrödinger equation, the normal-
ization constant for the wave function does not affect the derived model. Meanwhile,
the model can be modified to take into account either finitely many or infinitely many
wave functions; see [29] for example. We stress that all these will not change the
models derived in the current work.

W (x,v, t) is connected to the macroscopic quantities via its moments:

the charge density: n(x, t) =

∫
R3

Tr(W ) dv,(2.4)

the charge current: jn(x, t) =

∫
R3

vTr(W ) dv,(2.5)

the spin density: s(x, t) =

∫
R3

Tr(σ̂W ) dv,(2.6)

the spin current: Js(x, t) =

∫
R3

v ⊗ Tr(σ̂W ) dv.(2.7)

They are scalar, vector, vector, and matrix functions of x and t, respectively. Here Tr
represents the trace operator over the spin space. Differentiating (2.3) with respect
to t yields

(2.8) i~∂tW (x,v, t) = (
m

2π~
)3

∫
R3

[
(i~∂tψ(x− y

2
, t))⊗ψ∗(x+

y

2
, t)ei m~ v·y

+ψ(x− y
2
, t)⊗ (i~∂tψ∗(x+

y

2
, t))ei m~ v·y]dy.
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After some calculations (provided in Appendix A), one can reach the following Liou-
ville equation from (2.1),

(2.9) ∂tW (x,v, t) + v · ∇xW (x,v, t)− e

m
E · ∇vW (x,v, t)

− i

2~
[
Jσ̂ ·m(x, t),W (x,v, t)

]
= 0,

where e is the electron charge and E = ∇V/e.
In general ~ is a small parameter, which would naively indicate that the last left-

hand term of (2.9) is the dominating one. However, the last two terms are actually
comparable if one pays careful attention to their orders in physical units,

e

m

|E|
|v|
≈ 1.6× 10−19 × 107

9.109× 10−31 × 104
≈ 1.757× 1014s−1,(2.10)

J

~
≈ 1.602× 10−20

1.055× 10−34
≈ 1.518× 1014s−1,(2.11)

where the physical constants are e = 1.6×10−19C, ~ = 1.055×10−34J·s and m ∼ me =
9.109 × 10−31kg. For the device we considered here, typically |E| ≈ 105 ∼ 107V/m,
|v| ≈ 104 ∼ 106m/s, and J ≈ 1.602× 10−20J (0.1eV).

2.1.2. From the kinetic model to the mean-field model and its hydro-
dynamic limit. In order to derive the mean-field model, we need to add collision
terms in (2.9). For simplicity we consider the s-wave form used in the physical studies,
e.g., [34],

(2.12) ∂tW (x,v, t) + v · ∇xW (x,v, t)− e

m
E · ∇vW (x,v, t)

− i

2~
[
Jσ̂ ·m(x, t),W (x,v, t)

]
= −

(
∂W (x,v, t)

∂t

)
colli

,

where

(2.13)

(
∂W

∂t

)
colli

=
W −W

τ
+

2

τsf
(W − I

2
TrW ).

Here W = 1
4π

∫
dΩvW (x,v, t) is the angular average over the v space. Since an

electron carries both charge and spin, we describe the no-spin-flip collision and the
spin-flip collision by momentum-independent relaxation time approximations with the
characteristic time scale of electron collision τ and the characteristic time scale of spin
flipping τsf, respectively. Note that τ is much smaller than τsf [18, 25], which implies
that no-spin-flip collisions happen much faster than spin-flip collisions. Typically, τ
is of 10−15s (fs) and τsf is of 10−12s (ps).

Since {Î, σ̂} forms a complete set of 2× 2 matrices, one can decompose

(2.14) W = wI + σ̂ · r,

where w is the spin-independent part and r is the spin-dependent vector. Equation
(2.12) can be separated into two equations, one for w

∂tw + v · ∇xw −
e

m
E · ∇vw = −w − w

τ
,(2.15)
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and the other for r

(2.16) ∂t(σ̂ · r) + v · ∇x(σ̂ · r)− e

m
E · ∇v(σ̂ · r) +

J

~
σ̂ · (m× r)

= − (σ̂ · r)− (σ̂ · r)

τ
− 2

τsf
(σ̂ · r),

where we have used the fact that − i
2~ [Jσ̂ ·m(x, t),W (x,v, t)] = J

~ σ̂ · (m× r).
We also notice that (2.4)-(2.7), and (2.14) lead to

n(x, t) = 2

∫
R3

w dv, jn(x, t) = 2

∫
R3

wv dv,(2.17)

s(x, t) = 2

∫
R3

r dv, Js(x, t) = 2

∫
R3

v ⊗ r dv.(2.18)

Taking the first and second moment of (2.15) produces

∂tn(x, t) +∇ · jn(x, t) = 0,(2.19)

∂tjn(x, t) +

∫
R3

(v ⊗ v) · ∇w(x,v, t) dv +
e

m
En(x, t) = −jn(x, t)

τ
.(2.20)

Taking the first and second moment of (2.16) produces

∂ts(x, t) +∇ · Js(x, t) +
J

~
m× s = −s(x, t)

τsf
,(2.21)

∂tJs(x, t) +

∫
R3

(v ⊗ v) · ∇r(x,v, t) dv +
e

m
E ⊗ s(x, t)

+
J

~
εjklmk(Js)il(x, t) = −Js(x, t)

τ
.(2.22)

Note that (2.19)-(2.20) and (2.21)- (2.22) do not form closed systems for {n(x, t), jn(x, t)}
and {s(x, t), Js(x, t)} yet since (2.20) and (2.22) depend on the second moment of w
and r which in general are not functions of density and current.

There exists a vast literature on closure-related problems for different equations,
such as the Boltzmann equation [27], the relaxation-time Wigner equation [1], and the
Wigner-Fokker-Plank equation [3, 2]. The BBGKY hierarchy is a standard procedure
to derive a system of equations for the moments of the distribution and a truncation
is required for higher order moments to close the system. For example, with the
Maxwellian velocity distribution as the equilibrium state, one obtains the Euler system
by closing the classical Boltzmann equation with a quadratic collisional term [27];
see also related works in [11, 10, 7, 6, 39, 20, 28]. However, our problem is like
a linear neutron transport equation with a linear collision term with two relaxation
time scales τ and τsf, which is then coupled to the magnetization dynamics. Therefore,
the classical closures cannot be directly applied. The kinetic equation for chemotaxis
is similar to the kinetic model for spin dynamics in the sense that both equations
have similar forms with similar linear relaxation collision terms. In the modeling of
chemotaxis, the tumble-and-run pattern of E. coli also exhibits two time scales, one
for tumbling and the other one for running. Therefore, the closure assumption here is
motivated by the closure conditions proposed by Hillen for the modeling of chemotaxis
to get hyperbolic models and it has been shown to satisfy a minimization principle
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[23]. We truncate the higher order moments at an approximate level and project them
into the subspace spanned by lower order moments.

We project the second moment into the space spanned by the density and current
functions, i.e., to approximate w(x,v, t) by a linear function of v,

(2.23) w(x,v, t) = f(v)
(
γ0n(x, t) + γ1m · s(x, t) + γ2 · vn1(x, t) + γ3v ·m1(x, t)

)
,

where where f(v) is a normalized Gaussian function to make w decay at infinity of
momentum space.

By (2.23), Equation (2.20) becomes

(2.24) ∂tjn(x, t) + γ0v2∇xn(x, t) + γ1v2∇xs(x, t)m

+
e

m
En(x, t) = −jn(x, t)

τ
,

where v2 = 1
4π

∫
|v|2dΩv.

Similarly, we can assume

r(x,v, t) = g(v)
(
γ′0mn(x, t) + γ′1s(x, t) + γ′2vn1(x, t) + γ′3v(m ·m1(x, t))

)
,

where g(v) is a normalized Gaussian function to make r decay at infinity of momentum
space. Equation (2.22) then becomes

(2.25) ∂tJs(x, t) + γ′0v
2∇xn(x, t)⊗m+ γ′1v

2∇xs(x, t)

+
e

m
E ⊗ s(x, t) +

J

~
εjklmk(Js)il(x, t) = −Js(x, t)

τ
.

Note that the last term on the left-hand-side of (2.25) is independent of the closure
strategy we use.

In summary, we obtain a closed moment system for {n(x, t), jn(x, t), s(x, t), Js(x, t)},
which provides a mean-field description for the spin dynamics,

∂tn(x, t) +∇xjn(x, t) = 0,(2.26)

∂tjn(x, t) + γ0v2∇xn(x, t) + γ1v2∇xs(x, t)m

+
e

m
En(x, t) = −jn(x, t)

τ
,(2.27)

∂ts(x, t) +∇xJs(x, t) +
J

~
m× s(x, t) = −s(x, t)

τsf
,(2.28)

∂tJs(x, t) + γ′0v
2∇xn(x, t)⊗m+ γ′1v

2∇xs(x, t)

+
e

m
E ⊗ s(x, t) +

J

~
εjklmk(Js)il(x, t) = −Js(x, t)

τ
.(2.29)

2.1.3. Comparison to the linear response theory in [42]. Quasi-static
approximation of jn(x, t) in (2.27) produces

(2.30) jn(x, t) = − e

m
τEn(x, t)− γ0v2τ∇xn(x, t)− γ1v2τ∇xs(x, t)m.

Similarly, quasi-static approximation of Js(x, t) in (2.29) yields

(2.31) Js(x, t)A(m) = − e

m
τE ⊗ s(x, t)− γ′0v2τ∇xn(x, t)⊗m− γ′1v2τ∇xs(x, t),
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where

A(m) =

 1 Jτ
~ m3 −Jτ~ m2

−Jτ~ m3 1 Jτ
~ m1

Jτ
~ m2 −Jτ~ m1 1

 .

The governing equations for n and s then become

∂tn(x, t) +∇xjn(x, t) = 0,

jn(x, t) = − e

m
τEn(x, t)− γ0v2τ∇xn(x, t)− γ1v2τ∇xs(x, t)m,

∂ts(x, t) +∇xJs(x, t) +
J

~
m× s(x, t) = −s(x, t)

τsf
,

Js(x, t)A(m) = − e

m
τE ⊗ s(x, t)− γ′0v2τ∇xn(x, t)⊗m− γ′1v2τ∇xs(x, t).

For the characteristic parameters of Permalloy [37], we obtain the averaged veloc-
ity v̄ ∼ 5 × 106m/s, and τ ∼ 10−15s. The quasi-static approximation corresponds to
the parabolic scaling of (2.27) and (2.29), i.e., the long time behavior of the system is
dominated by relaxation. The equations above are only valid in the diffusive regime.
The moment system (2.26)-(2.29), however, is valid not just in the diffusive regime,
but also in other regimes, such as the hyperbolic regime. This becomes important if
fast spin dynamics is present [30].

In [42], the authors derived a diffusion model for spin dynamics based on the
linear response theory. The constitutive relations they have are

jn = 2C0E − 2β′D0∇xsm,(2.32)

Js = 2βC0E ⊗m− 2D0∇xs(2.33)

under the assumption that n(x, t) is homogeneous in space and time and s aligns up
with m. Here C0 is the conductivity, D0 is the diffusivity, β is the spin polariza-
tion parameter for conductivity, and β′ is the other spin polarization parameter for
diffusivity. The diffusion equation for spin dynamics is

∂ts(x, t) = −∇xJs(x, t)− 2D0(x)
s(x, t)

λ2
sf

− 2D0(x)
s(x, t)×m

λ2
J

(2.34)

with

Js(x, t) =
βµB

e
jn ⊗m− 2D0(x)[∇s− ββ′(∇s ·m)⊗m],(2.35)

which is obtained by solving E in terms of jn in (2.32) first and then substituting it
into (2.33).

Under the same assumption in [42], (2.30) and (2.31) become

jn = 2C0τE − 2β′D0(x)∇xsm,

JsA(m) = 2βC0E ⊗m− 2D0(x)∇xs,

where 2C0 = − e
mn(x, t), 2β′D0(x) = γ1v2τ , 2βC0m = − e

mτs, and 2D0(x) = γ′1v
2τ .

Note that the factor 2 comes from the fact that we include 2 in (2.17) and (2.18),
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while 2 is kept explicitly in [42]; see (5) and (6) in [42]. Playing with the same trick
to obtain (2.35), we get

Js(x, t)A(m) =
βµB

e
jn ⊗m− 2D0(x)[∇s− ββ′(∇s ·m)⊗m](2.36)

and

(2.37) A(m) =

 1 τ
τJ
m3 − τ

τJ
m2

− τ
τJ
m3 1 τ

τJ
m1

τ
τJ
m2 − τ

τJ
m1 1

 ,

where τJ = ~/J is the characteristic time scale of the spin-magnetization coupling.
In the diffusive regime, the moment system becomes

∂ts(x, t) = −∇xJs(x, t)− 2D0(x)
s(x, t)

λ2
sf

− 2D0(x)
s(x, t)×m

λ2
J

,(2.38)

which is the same as (2.34) except that Js satisfies (2.36).
As τJ � τ , A(m) approaches I, the moment system in the diffusive regime

recovers the diffusion model derived from the linear response theory [42], which cor-
responds to the limit of weak spin-magnetization coupling. However, beyond that,
these two models are different. In general, A(m) has eigenvalues 1, 1 ± τ

τJ
i and

detA(m) = 1 + ( ττJ )2. Since τ is the characteristic time of the electron collision and

λ =
√

2D0τ , we have

τ

τJ
=
λ2
J

λ2
,

where λ is the electron mean free path due to the electron collision. Physical in-
terpretation of this model will be given in a subsequent publication [12]. For a
permalloy, λ = 4nm. Values of τJ and λJ =

√
2D0τJ depend on the strength of

spin-magnetization coupling, which will be tested in section 4. For completeness, we
set

s(x, 0) = 0, ∀x ∈ Ω,(2.39)

∂s

∂ν
= 0, on ∂Ω(2.40)

with ν the outward unit normal vector on ∂Ω.

2.2. Magnetization dynamics. The dynamics of the magnetization, in the
presence of a spin-transfer torque, is described by the LLG equation ([26, 19]),

(2.41)
∂m

∂t
= −γm× (He + Js) + αm× ∂m

∂t
,

where the magnetization m(x, t), normalized to |m| = 1, is defined over Σ, and
the spin s(x, t) is defined over Ω. Here γ = 1.76 × 1011(Ts)−1 is the gyromagnetic
ratio, J is the coupling strength between the spin and the magnetization, and α is
the dimensionless damping constant, which we take to be 0.1 here. The first term
on the right-hand-side describes the precession of the magnetization around the local
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effective field He plus spin contribution Js, while the second term is known as the
Gilbert damping. Neumann boundary conditions are used for (2.41)

(2.42)
∂m

∂ν
= 0, on ∂Σ,

where ν is the outward unit normal vector on ∂Σ.
The effective field He has the form

(2.43) He = −2Ku

Ms
(m2e2 +m3e3) +

2Cex

Ms
∆m+ µ0 (Hs +H0) ,

and can be calculated as − δFLL

δm , where FLL is the Landau-Lifshitz energy given by

(2.44) FLL =
Ku

Ms

∫
Σ

(
m2

2 +m2
3

)
+
Cex

Ms

∫
Σ

|∇m|2 − µ0

2

∫
Σ

Hs ·m− µ0

∫
Σ

H0 ·m.

In (2.44), e2 = (0, 1, 0), e3 = (0, 0, 1), and µ0 = 4π×10−7N/A2 is the permeability of
vacuum. Ku and Cex are materials constants, and Ms is the saturation magnetization
which is also material-dependent. For physical constants characteristic of the permal-
loy, Ku = 5.0 × 102J/m3, Cex = 1.3 × 10−11J/m, and Ms = 8.0 × 105A/m. H0 is
the externally applied magnetic field and Hs is the stray field, given by Hs = −∇u,
where u satisfies the following magnetostatic equation

∆u = div m, x ∈ Σ

∆u = 0, x ∈ Σ
c

(2.45)

with jump boundary conditions

[u]∂Σ = 0,[
∂u

∂ν

]
∂Σ

= −m · ν,(2.46)

where [·] represents the jump at ∂Σ. The solution to this equation is

(2.47) u(x) =

∫
Σ

∇N(x− y) ·m(y) dy,

where N(x) = −1/(4π|x|) is the Newtonian potential.

3. Numerical method. We describe in Figure 4.1 a standard device for ferro-
magnetic multilayers, where two ferromagnetic layers (FM1 and FM2) are separated
by a nonmagnetic metallic spacer (NM). We consider an electron current applied per-
pendicular to the device. Heuristically, the electrons in the current are polarized in
the first layer, and exert an additional torque on the magnetization in the second
layer.

3.1. Spatial discretization. The domain is discretized using a uniform mesh.
The magnetization and the spin accumulation are defined at the center of the com-
putational cells. Spatial derivatives are approximated using standard centered dif-
ferences away from the interface between ferromagnetic and nonmagnetic layers, and
using one-sided differences near the interface [17].
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3.2. Temporal discretization. Although explicit schemes may achieve high
order of accuracy both in space and time, the time step size is severely constrained
by the stability of the numerical scheme. Considering that the precession timescale
is of the order of a picosecond, numerical stability issues can have a significant effect
on the performance of the algorithm. In order to overcome the stability constraint
of explicit schemes, one usually resorts to implicit schemes. However, due to the
strong nonlinearities present in both the gyromagnetic and damping terms in the
LLG equation, a direct implicit discretization of the system is not efficient and is
difficult to implement.

Here we use the Gauss-Seidel Projection Method (GSPM) introduced in [41] to
solve (2.41). The GSPM is a semi-implicit scheme that requires only the solution of
linear systems of equations; the nonlinearity in the equations is introduced a posterior-
i, resulting in an unconditionally stable method. For the coupled spin-magnetization
system (2.41)-(2.34), a splitting method for (2.34) is proposed, which together with
GSPM for (2.41) provides an unconditionally stable scheme for the coupled system.

Note that the spectral splitting method (SSM) proposed in [17] can not be directly
applied for the computation of (2.38) due to the existence of A(m) which introduces
the inhomogeneous diffusion. On the other hand, explicit solvers will significantly
increase the computational cost since the time step is limited by the diffusion. There-
fore, we propose to use a homogeneous diffusion as the penalization, which can be
dealt with easily by SSM in [17], and the difference between the homogeneous and
inhomogeneous diffusion is less stiff, and thus can be treated explicitly. The details
of the algorithm are given in (3.7) and (3.8). This is motivated by the penalization
techniques used for variable coefficient diffusion equations [14], phase field models [4]
and the Boltzmann equation [16].

This splitting procedure is then coupled to GSPM for magnetization dynamics
(2.41). Stability of the splitting method is confirmed by numerical examples.

For completeness, we include here a description of the GSPM, when spin currents
are present. It is convenient to rewrite equation (2.41) in the following form:

(3.1)
∂m

∂t
= −m× (ε∆m+ f(m, s))− αm× (m× (ε∆m+ f(m, s))) ,

where ε = 2Cexγ/(Ms(1 + α2)), and

(3.2) f(m, s) =
γ

1 + α2

(
−2Ku

Ms
(m2e2 +m3e3) + µ0 (Hs +H0) + Js

)
.

Equation (3.1) is obtained from (2.41) by evaluating the vector product of m and
(2.41), and solving for m× ∂m

∂t .
Given mn = m(tn) and sn = s(tn), in the GSPM we solve (3.1) in three steps:

Step 1: Implicit Gauss-Seidel. Define

gni = (I − ε∆t∆h)−1(mn
i + ∆tfni ),

g∗i = (I − ε∆t∆h)−1(m∗i + ∆tf∗i ), i = 1, 2, 3

(3.3)

and

(3.4)

 m∗1
m∗2
m∗3

 =

 mn
1 + (gn2m

n
3 − gn3mn

2 )
mn

2 + (gn3m
∗
1 − g∗1mn

3 )
mn

3 + (g∗1m
∗
2 − g∗2m∗1)

 ,
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where fni = fi(m
n, sn), and f∗i = fi(m

∗, sn), i.e., the most current values for m are
used in f∗. Note that the value of s is frozen at t = tn.
Step 2: Heat flow without constraints. Solve the Backward-Euler-type equations

(3.5)

 m∗∗1
m∗∗2
m∗∗3

 =

 m∗1 + α∆t(ε∆hm
∗∗
1 + f∗1 )

m∗2 + α∆t(ε∆hm
∗∗
2 + f∗2 )

m∗3 + α∆t(ε∆hm
∗∗
3 + f∗3 )

 .

Step 3: Projection onto S2, in order to normalize the magnetization.

(3.6)

 mn+1
1

mn+1
2

mn+1
3

 =
1

|m∗∗|

 m∗∗1
m∗∗2
m∗∗3


Only linear systems of equations are solved, and therefore the complexity of the
splitting algorithm is comparable to that of solving the linear heat equation using the
Backward Euler method.

Following [17], we solve the spin diffusion equation (2.38) coupled to the LLG
(3.1) in three steps:

Step 1: Solve the Cauchy problem

ds̃

dt
= −2D0(x)

s̃

λ2
sf

− 2D0(x)
s̃×mn

λ2
J

,(3.7)

s̃(tn) = sn.

The solution to this problem can be found analytically.

Step 2: Solve the following system of equations:

sn+1 − s̃(tn+1)

∆t
= ∇h · (2D0(x)∇hsn+1I)

+∇h ·
(

(2D0(x)∇hs̃(tn+1)(A−1(mn)− I)
)

−∇h
(

(ββ′2D0(x) ((mn,∇hsn)mn)

+
βµB

e
(jn ⊗mn))A−1(mn)

)
.(3.8)

Due to material heterogeneity in the z direction, FFTW is used only in the x and y
directions and the resulting system is therefore heptadiagonal, which can be effectively
solved using Gaussian elimination. Note that (3.8) reduces to (26) in [17] ifA(m) = I.

Step 3: Solve (3.1) by the GSPM described above.
The splitting method here is first-order accurate in time. In real applications,

we usually choose ∆t = 10−13s, which is at the sub time scale of spin flipping τsf,
and h = 2nm to resolve domain walls and vortices in our ferromagnetic samples. It
is worth mentioning that the temporal step size and spatial grid size are comparable
after nondimensionalization, which balances the spatial and temporal accuracies.

4. Results. We examine the magnetization switching for (2.41) (2.38) with dif-
ferent τ/τJ values under two different conditions: a) an applied current; b) an applied
current and an external magnetic field. Note that if τ/τJ = 0 in (2.37), (2.38) recov-
ers (2.34). Typical values for the remaining parameters are [37]: D0 = 10−3m2/s for
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the magnetic layer, and D0 = 5 × 10−3m2/s for the nonmagnetic layer, λsf = 10nm,
J = 0.1eV, β = 0.9, β′ = 0.8. The simulations presented here were carried out using
h = 2nm, and ∆t = 10−13s. No appreciable differences were found when smaller
values of h or ∆t were used.

4.1. Current-driven magnetization reversal. One of the main technological
applications of spin-polarized transport is the magnetization reversal in a multilayer
in the absence of externally applied magnetic fields, as this can allow an increase in
the density of magnetic memories. Consider a multilayer with in-plane dimensions
128nm × 64nm; see Figure 4.1. Choose D1 = 200nm, D2 = 20nm, and D3 = 60nm.
The multilayer is initialized in a uniform state, and it is allowed to reach steady state.
Subsequently, a perpendicular current jn is applied for 10 nanoseconds, and then it
is removed.

NM

FM1

FM2

Fig. 4.1. A typical ferromagnetic multilayer device: Two ferromagnetic layers (FM1 and
FM2) of thickness D1 and D3, respectively, sandwiched by a nonmagnetic metallic spacer
(NM) of thickness D2.

Figure 4.2 shows a S state, and an intermediate vortex state that nucleates inside
the sample during the reversal of the S state. For clarity of presentation, we plot only
the in-plane components of the magnetization, measured at the center slice of the top
layer.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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L

(a) S state

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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0.25
0.3

0.35
0.4

0.45
0.5

x/L
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L

(b) Vortex state

Fig. 4.2. States during the magnetization switching: (a): S state; (b): Vortex state.
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The average magnetization in the top and bottom layers are plotted as a function
of time in Figure 4.3. For an appropriate current in (2.38), the magnetization in the
top layer was reversed as a consequence of the spin-currents, in agreement with recent
experiments.
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(a) jn = 10.3
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(b) jn = 9.9

Fig. 4.3. Results of (2.41) (2.38) for a perpendicular current jn with different magnitudes
when τ/τJ = 1. (a): jn = 10.3× 1010A/m2; (b): jn = 9.9× 1010A/m2.

As the applied current raises gradually, the magnetization of the top layer expe-
riences a transition from the S state to the vortex state, the reversed S state, and the
vortex state again, respectively. Critical currents for these transitions are recorded in
Table 4.1. It is clear that (2.38) has a larger effective window for the S→S transition
compared with (2.34). Since eigenvalues of A(m) are always greater than or equal to
1, A(m) plays an role as a contraction matrix, so critical currents required in (2.38)
are always larger than those required in (2.34). Table 4.2 further confirms the above
observation. Besides, critical currents increase as the top layer becomes thinner. A
careful examination shows that magnetization of the top layer becomes more uniaxi-
al as its thickness reduces, and magnetization switching happens mainly by in-plane
rotation with less out-of-plane rotation.

τ/τJ S S→Vortex S→S S→Vortex
0 ≤ 7.8 [7.9, 9.8] {9.9} ≥ 10.0
1 ≤ 9.7 [9.8, 10.1] [10.2, 10.4] ≥ 10.5
2 ≤ 9.9 [10.0, 12.8] [12.9, 18.5] ≥ 18.6

Table 4.1
Critical currents jn of magnetization switching for different τ/τJ values (unit:

1010A/m2).

4.2. Reduction in the coercive field. Maximal GMR can be achieved if the
magnetization of both layers changes from parallel (antiparallel) state to antiparallel
(parallel) state. Therefore, understanding the reversal process is of technological
importance.

Consider a multilayer of in-plane dimensions 128nm × 64nm, and thicknesses
D1 = 60nm, D2 = 10nm, and D3 = 20nm. We compute the hysteresis loop with and
without spin currents. The hysteresis loop is computed in the following way: Initially,
an external field of magnitude H0 is applied in order to saturate the sample, and the
magnetization is allowed to reach an equilibrium state. Once steady state is reached,
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Thickness(nm) τ/τJ = 0 τ/τJ = 1
60 {9.9} [10.2, 10.4]
56 [10.5, 10.6] [12.0, 12.2]
52 [10.8, 11.4] [12.7, 15.0]
48 [12.5, 13.1] [12.7, 17.1]

Table 4.2
Effective switching window (S→S transition) for different τ/τJ values as a function of

thickness of the top layer.

the applied field is reduced, and the magnetization is allowed to reach equilibrium
again. This process is repeated, decreasing the applied field each time by a fixed
amount, until a negative field of magnitude H0 is reached. In the hysteresis loop, we
plot the average equilibrium magnetization as a function of the applied field. In our
example, we consider H0 = 600Oe in the x direction.

Typically, in a multilayer, the magnetization can be found in one of two states:
The S state, and the C state. The magnetization reversal process associated to the S
state usually occurs by a rotation of the magnetization in the interior of the domain,
followed by the appearance of boundary layers, which can be removed if the applied
field is strong enough. In the C state, the magnetization reversal process occurs by
nucleating a magnetic vortex, which is subsequently expelled.

In Figure 4.4, we plot hysteresis loops associated with a double layer initialized
with S states in each layer, and loops associated with a double layer with C states in
each layer. For the given dimensions, and in the absence of spin currents, a magnetic
field of −300Oe is required to switch the magnetization of the top layer when both
layers are in the S state. When both layers are in the C state, in the absence of
spin currents, a vortex nucleates at approximately 100Oe. A field of approximately
−100Oe is required to expel the vortex, and successfully reverse the magnetization
of the bottom layer. Due to thickness difference, the bottom layer is easier to be
switched, which requires a weaker external field (−100Oe instead of −300Oe).
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(a) S/S
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(b) C/C

Fig. 4.4. Hysteresis loops for a multilayer with thicknesses D1 = 60nm, D2 = 10nm, and
D3 = 20nm and without spin currents: (a): S/S; (b): C/C.

Figure 4.5 shows hysteresis loops simulated by (2.38) when jn = 15× 1010A/m2

and τ/τJ = 1. Similar phenomena are observed for a smaller jn and τ/τJ = 0. Mag-
netization of the bottom layer initially tends to be a vortex state and magnetization
of the top layer is still uniaxially. Accumulation of spin transfer torque eventually
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makes the magnetization reversal of the bottom layer happen.
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(a) S/S
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(b) C/C

Fig. 4.5. Hysteresis loops for a multilayer with thicknesses D1 = 60nm, D2 = 10nm, and
D3 = 20nm and with larger spin currents by Equation (2.38): (a): S/S; (b): C/C.

From Figure 4.4, the bottom layer is easy to be switched. Moreover, spin current
is applied from the bottom layer, which contributes to the effective field. Therefore,
magnetization of the bottom layer initially tends to be a vortex state and magnetiza-
tion of the top layer is still uniaxially. Spin current acts as a torque for the top layer,
so the magnetization reversal happens in the top layer after the accumulation of spin
transfer torque is strong enough.

When jn = 10× 1010A/m2 is applied from the top layer, magnetization of both
layers is plotted in Figure 4.6 for τ/τJ = 1. Spin current is applied from the top layer,
which contributes to the effective field, so magnetization reversal of the top layer
happens at first since this layer is only 20nm thick, 300Oe for both S/S and C/C
states. Magnetization of the bottom layer is still uniaxially since spin transfer torque
is not strong enough. Afterwards, spin transfer torque tends to drive magnetization
of the bottom layer escape from its initial state. A vortex state is observed since
the bottom layer is 60nm thick. Eventually, magnetization reversal of the bottom
layer happens around −600Oe. Maximum GMR can be easily achieved in this case
(300Oe).
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Fig. 4.6. Hysteresis loops for a multilayer with thicknesses D1 = 60nm, D2 = 10nm, and
D3 = 20nm and with inverse spin currents by Equation (2.38): (a): S/S; (b): C/C.
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4.3. Magnetic reversal for information manipulation and storage. Based
on the above results, we propose a possible procedure to operate magnetization of both
top and bottom layers for the purpose of information manipulation and storage:

Step 0 : Initialize the device with S/S states for 5ns.
Step 1 : Apply external magnetic field with strength 600Oe, and current jn = 15×

1010A/m2 from the bottom layer based on Figure 4.5 for 5ns.
Step 2 : Remove all external fields and let the device relax for 5ns.
Step 3 : Apply external magnetic field with strength 300Oe, and current jn = 10×

1010A/m2 from the top layer based on Figure 4.6 for 5ns.
Step 4 : Remove all external fields and let the device relax for 5ns.
Step 5 : Repeat Steps 1 to 4 to check the reproducibility of above reversals.

Figure 4.7 shows the magnetization of above steps. Magnetization of top and
bottom layers is antiparallel in Step 0, parallel in Step 1 which is also stable as
verified in Step 2, antiparallel in Step 3 which is stable as verified in Step 4. This
process is reproduceable as verified in Step 5.
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Fig. 4.7. A sequence of magnetization reversals for manipulation and storage of infor-
mation.

5. Conclusion. We have derived a macroscopic model to describe the spin dy-
namics starting from a Schrödinger equation in the spinor form using the Wigner
transform and a moment closure. This model, together with the magnetization dy-
namics described by the Landau-Lifshitz-Gilbert equation, gives a full description of
the magnetization in ferromagnetic multilayers in the presence of spin currents. More-
over, this model recovers the model in [42] when the spin-magnetization coupling is
weak. Its validation is analyzed and shown by several examples. Successful applica-
tion of our model (2.34)-(2.36) to current-driven domain wall motions has also been
conducted with quantitative agreements with experimental data [12].
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From a modeling viewpoint, we stress that our approach produces a connection
from quantum mechanics (2.1), to the Boltzmann equation (2.12), and then to the
moment system (2.26)-(2.29), and finally to the drift-diffusion equation (2.34)-(2.36).
Although only the drift-diffusion equation has been examined carefully, other mod-
els, such as the moment system and the Boltzmann equation, could be helpful to
understand experimental results in other scenarios. For example, femtosecond spin
dynamics in experiments [30] cannot be well described by the drift-diffusion equation
(2.34)-(2.36), and the moment system (2.26)-(2.29) shall play an important role in
this case.

Appendix A. In this Appendix, we give the derivation of (2.9) from (2.1) by
the Wigner transform (2.3) in details. Plugging (2.1) into (2.8) produces

i~∂tW (x,v, t) = (
m

2π~
)3

∫
R3

(
− ~2

2m
∇2

xψ(x− y
2
, t)⊗ψ∗(x+

y

2
, t)ei m~ v·y

+ψ(x− y
2
, t)⊗

( ~2

2m
∇2

xψ
∗(x+

y

2
, t)
)

ei m~ v·y
)

dy

+ (
m

2π~
)3

∫
R3

((
V (x− y

2
)ψ(x− y

2
, t)
)
⊗ψ∗(x+

y

2
, t)ei m~ v·y

+ψ(x− y
2
, t)⊗

(
−V (x+

y

2
)ψ∗(x+

y

2
y, t)

)
ei m~ v·y

)
dy

− (
m

2π~
)3

∫
R3

((J
2
σ̂ ·m(x− y

2
, t)ψ(x− y

2
, t)
)
⊗ψ∗(x+

y

2
, t)ei m~ v·y

+ψ(x− y
2
, t)⊗

(
−ψ∗(x+

y

2
, t)

J

2
σ̂ ·m(x+

y

2
, t)
)

ei m~ v·y
)

dy.

The equation (2.9) is obtained by simplifying the above three integrals individually
as described below.

Noticing that

∇xψ(x− y
2
, t) = −2∇yψ(x− y

2
, t),

∇xψ(x+
y

2
, t) = 2∇yψ(x+

y

2
, t)

brings

∇2
yψ ⊗ψ

∗ei m~ v·y = ∇y · (∇yψ ⊗ψ∗ei m~ v·y)−∇yψ ⊗ ·∇yψ
∗ei m~ v·y − i

m

~
v · ∇yψ ⊗ψ∗ei m~ v·y,

ψ ⊗∇2
yψ
∗ei m~ v·y = ∇y · (ψ ⊗∇yψ

∗ei m~ v·y)−∇yψ ⊗ ·∇yψ
∗ei m~ v·y − i

m

~
v ·ψ ⊗∇yψ

∗ei m~ v·y,

where the first ψ acts on the variable x − y
2 and the second ψ acts on the variable

x+ y
2 .

The divergence theorem along with the fact that ψ,ψ∗ vanish at ±∞ simplifies



18 J. CHEN, C. J. GARCÍA-CERVERA AND X. YANG

the first integral as

(
m

2π~
)3

∫
R3

2~iv ·
(
∇yψ(x− y

2
, t)⊗ψ∗(x+

y

2
, t)

−ψ(x− y
2
, t)⊗∇yψ

∗(x+
y

2
, t)

)
ei m~ v·y dy

= (
m

2π~
)3

∫
R3

i~v ·
(
−∇xψ(x− y

2
, t)⊗ψ∗(x+

y

2
, t)

−ψ(x− y
2
, t)⊗∇xψ

∗(x+
y

2
, t)

)
ei m~ v·y dy

= −i~v · ∇x

(
(
m

2π~
)3

∫
R3

ψ(x− y
2
, t)⊗ψ∗(x+

y

2
, t)ei m~ v·y dy

)
= −i~v · ∇xW (x,v, t).

Taylor expansion gives

V (x− y
2

) = V (x)− 1

2
y · ∇xV (x) +O

((
1

2

)2
)
,

V (x+
y

2
) = V (x) +

1

2
y · ∇xV (x) +O

((
1

2

)2
)
,

which simplifies the second integral as

(
m

2π~
)3

∫
R3

y · (−eE)ψ(x− y
2
, t)⊗ψ∗(x+

y

2
, t)ei m~ v·y dy

= (
m

2π~
)3

∫
R3

ψ(x− y
2
, t)⊗ψ∗(x+

y

2
, t)

~
im

(−eE) · ∇vei m~ v·y dy

=
ie~
m
E · ∇vW (x,v, t),

where E = ∇V/e. Similarly,

m(x− y
2
, t) = m(x)− 1

2
y · ∇xm(x) +O

((
1

2

)2
)
,

m(x+
y

2
, t) = m(x) +

1

2
y · ∇xm(x) +O

((
1

2

)2
)
,

which simplifies the third integral as

− (
m

2π~
)3

∫
R3

(
(
J

2
σ̂ ·m(x, t)ψ(x− y

2
, t))⊗ψ∗(x+

y

2
, t)ei m~ v·y

+ψ(x− y
2
, t)⊗ (−ψ∗(x+

y

2
, t)

J

2
σ̂ ·m(x, t))ei m~ v·y

)
dy

= −
(J

2
σ̂ ·m(x, t)W (x,v, t)−W (x,v, t)

J

2
σ̂ ·m(x, t)

)
= −[

J

2
σ̂ ·m(x, t),W (x,v, t)].

Combining above three terms, we get (2.9).
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