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SUMMARY

We present a novel earthquake location method using acoustic wave-equation-based traveltime

inversion. The linear relationship between the location perturbation (δt0, δxs) and the resulting

traveltime residual δt of a particular seismic phase, represented by the traveltime sensitivity ker-

nel K(t0,xs) with respect to the earthquake location (t0,xs), is theoretically derived based on the

adjoint method. Traveltime sensitivity kernel K(t0,xs) is formulated as a convolution between the

forward and adjoint wavefields, which are calculated by numerically solving two acoustic wave

equations. The advantage of this newly derived traveltime kernel is that it not only takes into ac-

count the earthquake-receiver geometry but also accurately honors the complexity of the velocity

model. The earthquake location is obtained by solving a regularized least-squares problem. In 3-D

realistic applications, it is computationally expensive to conduct full wave simulations. Therefore

we propose a 2.5-D approach which assumes the forward and adjoint wave simulations within a

2-D vertical plane passing through the earthquake and receiver. Various synthetic examples show

the accuracy of this acoustic wave-equation-based earthquake location method. The accuracy and

efficiency of the 2.5-D approach for 3-D earthquake location are further verified by its application

to the 2004 Big Bear earthquake in Southern California.
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1 INTRODUCTION

The earthquake location can be defined as its origin time t0 and hypocenter xs, the initiating point of

fault rupture or explosion (Thurber 2014). Determining the location of an earthquake is a fundamental

seismological problem and essential for many quantitative seismological analyses (e.g. Thurber 2014;

Pesicek et al. 2014). For example, the key component of the earthquake early warning system is to de-

tect the P-wave and immediately determine the location and size of the quake (http://www.usgs.gov).

In earthquake seismology, the studies of earthquake dynamics and tectonic processes require good

knowledge of earthquake locations (Waldhauser & Ellsworth 2000). Meanwhile, investigating the re-

lationship between the generation of earthquakes and structural heterogeneities in seismogenic zone

relies on precise locations of earthquakes (e.g. Huang & Zhao 2013; Lin 2013). In the fields of explo-

ration seismology, such as geothermal exploration, hydraulic fracturing, reservoir monitoring, carbon

sequestration and mining operations, accurately locating earthquakes is important for exploring the

underground properties and guiding future activities (e.g. Castellanos & van der Baan 2013; Polian-

nikov et al. 2014). In addition, earthquake location techniques also have applications in locating and

monitoring nuclear explosion tests (e.g. Wen & Long 2010; Zhang & Wen 2015).

As one of the oldest research problems in seismology, earthquake location can be determined by

a wide variety of techniques nowadays. Some of the first quantitative methods for locating earth-

quakes, such as the methods of circles, hyperbolas, and coordinates, were devised in the late of

the nineteenth century (Milne 1886; Thurber 2014). These methods still have some applications in

early warning systems, tectonic and volcanic processes (e.g. Horiuchi et al. 2005; Font et al. 2004;

Sumiejski et al. 2009) as mentioned by Thurber (2014). Geiger (1910, 1912) developed an iterative

least-squares method for earthquake location, which has become the most widely used one so far (e.g.

Thurber 1985; Ge 2003a,b; Thurber 2014). For Geiger’s method, the relationship between the travel-

time perturbation δt of a particular seismic phase (such as P- or S-wave) and the earthquake location

perturbation (δt0, δxs) can be written as

δt = δt0 +
∂t

∂xs
· δxs = δt0 −

1

Vxs

dxs
ds
· δxs, (1)

where Vxs is the velocity of the considered seismic phase at the source xs and s is the length param-
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eter along the ray path (e.g. Thurber 1985; Ge 2003b; Chen et al. 2006; Thurber 2014). The Simplex

method (e.g. Prugger & Gendzwill 1988; Rabinowitz 1988) is another primary algorithm for earth-

quake location (Ge 2003a,b). It utilizes a curve-fitting technique to search the mimimums (optimal

source locations) of the objective function in terms of the traveltime residuals. Different from Geiger’s

method, the Simplex method does not require derivative calculations (Prugger & Gendzwill 1988).

It is also computationally efficient and stable (Rabinowitz 1988; Ge 2003b). More general reviews

of various earthquake location methods, including the noniterative/iterative algorithms (Ge 2003a,b)

or the methods for single-event/multiple-event location location (Thurber 2014), can be found in Ge

(2003a,b) and Thurber (2014).

As discussed in many previous studies, the main factors determining the accuracy of earthquake

location are the network geometry, measurement of phase arrival times, knowledge of background ve-

locity model, and inversion algorithm (e.g. Waldhauser & Ellsworth 2000; Zhang et al. 2003; Schaff

et al. 2004; Bondar et al. 2008; Maxwell et al. 2010). For the inversion algorithm, one of the key

components is to accurately simulate seismic waves propagation (or at least predict the arrival times)

in the given velocity model (e.g. Font et al. 2004; Chen et al. 2006). So far, most earthquake loca-

tion methods are based on ray theory which assumes that traveltime and amplitude of an arrival only

depend on (an)elastic properties along the geometrical ray paths and ignores scattering, wavefront

healing and other finite-frequency effects (e.g. Thurber 1985; Waldhauser & Ellsworth 2000; Zhang

et al. 2003; Dahlen et al. 2000; Tong et al. 2011). However, seismic measurements such as traveltime

and amplitude are sensitive to three-dimensional (3-D) volumetric region off the ray path (e.g. Mar-

quering et al. 1999; Dahlen et al. 2000; Tape et al. 2007). Furthermore, the ray theory is only valid

when the scale length of the variation of material properties is much larger than the seismic wave-

length (e.g. Rawlinson et al. 2010; Tong et al. 2014c,d). To accurately locate earthquakes and predict

arrival times, it is necessary to take into account the influence of off-ray structures by correctly captur-

ing the interactions between the seismic waves and the potentially complex velocity model (e.g. Font

et al. 2004; Liu et al. 2004). As pointed out by Tape et al. (2007) and Liu & Gu (2012), numerically

solving the full wave equation is a promising approach to achieve this purpose. In the field of seismic

tomography over the past decade, many high-resolution seismic images have been generated based
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upon numerical simulation of the full seismic wavefield, also known as full waveform inversion or

adjoint tomogrpahy (e.g. Tape et al. 2009, 2010; Fichtner & Trampert 2011; Zhu et al. 2012; Rickers

et al. 2013; Tong et al. 2014d). Generally speaking, the main advantages of numerically solving the

full wave equations in seismic inverse problems are the freedom to choose either a 1-D or 3-D veloc-

ity model and the accurate calculation of synthetic seismograms and sensitivity kernels for complex

models which may help generate more reliable images (Kim et al. 2011; Liu & Gu 2012; Tong et al.

2014b).

Based upon 3-D numerical wave simulations with the spectral-element solvers (e.g. Komatitsch

& Tromp 1999; Komatitsch et al. 2004), Liu et al. (2004) and Kim et al. (2011) developed and im-

plemented a moment tensor inversion procedure to obtain focal mechanisms, depths, and moment

magnitudes of earthquakes. In this study, we only focus on earthquake location and intend to incorpo-

rate the advantages of numerical solutions to the full wave equations. For the sake of simplicity, we use

a simple acoustic wave equation to approximate the wavefield. The Fréchet derivative of traveltime

with respect to earthquake location is derived based on a different procedure from Liu et al. (2004)

and Kim et al. (2011). We call the proposed method the acoustic wave-equation-based earthquake

location method.

2 THEORY

An earthquake that occurred at the source location xs is detected by a seismic station at xr. A pertur-

bation δm = (δt0, δxs) in earthquake location m = (t0,xs) generally leads to a traveltime shift δt of

a particular seismic phase at the receiver xr. As a perturbation δt0 in earthquake origin time t0 directly

causes an arrival-time shift δt0, only the traveltime shift δt−δt0 caused by hypocenter perturbation δxs

is considered in the following discussion. We assume that u(t,xr) and s(t,xr) are the synthetic seis-

mograms calculated with earthquake location parameters m = (t0,xs) and m+ δm = (t0,xs+ δxs),

respectively. If |δm| << |m|, we may expect that seismograms u(t,xr) and s(t,xr) are reasonably

similar to each other. Based on this assumption, the traveltime shift δt− δt0 of a particular phase can
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be calculated with high accuracy by maximizing the cross-correlation formula,

max
δt−δt0

∫ T
0
w(τ)s(τ,xr)u(τ − (δt− δt0),xr)dτ[∫ T

0
w(τ)s2(τ,xr)dτ

∫ T
0
w(τ)u2(τ − (δt− δt0),xr)dτ

]1/2
, (2)

where w(t) is a time window function for isolating the interested seismic phase in the time interval

[0, T ] (Tromp et al. 2005; Tong et al. 2014c). Based on the Born approximation (Dahlen et al. 2000),

the maximum value of δt−δt0 in eqn. (2) can be alternatively computed via the following relationship

δt− δt0 =
1

Nr

∫ T

0

w(t)
∂u(t,xr)

∂t
[s(t,xr)− u(t,xr)] dt, (3)

where

Nr =

∫ T

0

w(t)u(t,xr)
∂2u(t,xr)

∂t2
dt.

2.1 Fréchet derivatives

We assume that seismic wave propagation with earthquake location parameter m = (t0,xs) satisfies

the acoustic wave equation

∂2

∂t2
u(t,x) = ∇ · [c2(x)∇u(t,x)] + f(t− t0)δ(x− xs), x ∈ Ω,

u(0,x) = ∂
∂t
u(0,x) = 0, x ∈ Ω,

n̂ · [c2(x)∇u(t,x)] = 0, x ∈ ∂Ω,

(4)

where u(t,x) is the displacement field, c(x) represents the velocity distribution in the medium, and

f(t) denotes the source time function (if t ≤ 0 then f(t) = 0) at the source location xs. Similarly,

displacement field s(t,x) = u(t,x) + δu(t,x) for an earthquake with location parameter m + δm =

(t0,xs + δxs) satisfies the following equation

∂2

∂t2
s(t,x) = ∇ · [c2(x)∇s(t,x)] + f(t− t0)δ(x− xs − δxs), x ∈ Ω,

s(0,x) = ∂
∂t
s(0,x) = 0, x ∈ Ω,

n̂ · [c2(x)∇s(t,x)] = 0, x ∈ ∂Ω.

(5)

After a coordinate transformation from x to x + δxs (Alkhalifah 2010), it can be shown that

seismic waves generated at hypocenter xs + δxs, propagated in the velocity model c(x), and recorded

at receiver xr (Fig. 1a) are identical to the waves that are generated at xs, propagated in c(x + δxs),
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Figure 1. (a) Illustration of the initial hypocenter location xs, perturbated hypocenter location xs + δxs, and

the receiver location xr in the velocity model c(x). Dashed and solid black curves denote the ray paths of the

direct arrivals at xr generated at xs and xs + δxs, respectively. (b) An equivalent system in the velocity model

c(x + δxs) for the perturbated hypocenter xs + δxs and the receiver xr in (a). Identical seismic waves are

generated at xs and recorded at xr − δxs . The black curve is the corresponding ray path of the direct arrival,

same as the one in (a).

and recorded at xr − δxs (Fig. 1b). The wavefield p(t,x) in velocity model c(x+ δxs) for a source at

xs can be described as

∂2

∂t2
p(t,x) = ∇ · [c2(x + δxs)∇p(t,x)] + f(t− t0)δ(x− xs), x ∈ Ω,

p(0,x) = ∂
∂t
p(0,x) = 0, x ∈ Ω,

n̂ · [c2(x + δxs)∇p(t,x)] = 0, x ∈ ∂Ω.

(6)

The relationship between s(t,x) and p(t,x) is

s(t,x) = p(t,x− δxs) ≈ p(t,x)− δxs · ∇p(t,x). (7)

Clearly, the only difference between eqn. (6) and eqn. (4) lies in a velocity perturbation δxs ·∇c(x)

from c(x) in eqn. (4) to c(x + δxs) in eqn. (6) which accounts for the displacement perturbation

δu(t,x) from u(t,x) to p(t,x) = u(t,x)+ δu(t,x). Subtracting eqn. (4) from eqn. (6) and neglecting
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the second order terms, we obtain

∂2

∂t2
δu(t,x) = ∇ · [c2(x)∇δu(t,x) + 2c(x)δxs · ∇c(x)∇u(t,x)] , x ∈ Ω,

δu(0,x) = ∂
∂t
δu(0,x) = 0, x ∈ Ω,

n̂ · [c2(x)∇δu(t,x) + 2c(x)δxs · ∇c(x)∇u(t,x)] = 0, x ∈ ∂Ω.

(8)

Multiplying an arbitrary test function q(t,x) on both sides of the first equation in (8) and then

integrating in the volume Ω and the time interval [0, T ], we have∫ T

0

dt

∫
Ω

q(t,x)
∂2

∂t2
δu(t,x)dx

=

∫ T

0

dt

∫
Ω

q(t,x)∇ ·
[
c2(x)∇δu(t,x) + 2c(x)δxs · ∇c(x)∇u(t,x)

]
dx. (9)

Integrating eqn. (9) by parts gives∫ T

0

dt

∫
Ω

{
∂

∂t

[
q(t,x)

∂

∂t
δu(t,x)− δu(t,x)

∂

∂t
q(t,x)

]
+ δu(t,x)

∂2

∂t2
q(t,x)

}
dx (10)

=

∫ T

0

dt

∫
Ω

∇ ·
{
q(t,x)

[
c2(x)∇δu(t,x) + 2c(x)δxs · ∇c(x)∇u(t,x)

]}
dx

−
∫ T

0

dt

∫
Ω

∇ ·
[
δu(t,x)c2(x)∇q(t,x)

]
dx +

∫ T

0

dt

∫
Ω

δu(t,x)∇ ·
[
c2(x)∇q(t,x)

]
dx

−
∫ T

0

dt

∫
Ω

2c(x)δxs · ∇c(x)∇q(t,x) · ∇u(t,x)dx.

If relationship (7) is substituted into eqn. (3), then the traveltime shift δt − δt0 can be expressed

as

δt− δt0 =
1

Nr

∫ T

0

w(t)
∂u(t,xr)

∂t
δu(t,xr)dt−

1

Nr

∫ T

0

w(t)
∂u(t,xr)

∂t
δxs · ∇u(t,xr)dt. (11)

Then by adding up eqn. (10) and eqn. (11), using initial and boundary conditions in (8), and

assuming that the auxiliary field q(t,x) satisfies the following wave equation

∂2

∂t2
q(t,x)−∇ · [c2(x)∇q(t,x)] = 1

Nr
w(t)∂u(t,x)

∂t
δ(x− xr), x ∈ Ω,

q(T,x) = ∂q(T,x)/∂t = 0, x ∈ Ω,

n̂ · c2(x)∇q(t,x) = 0, x ∈ ∂Ω,

(12)
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we obtain the relationship for traveltime shift as

δt− δt0 =− δxs ·
1

Nr

∫ T

0

w(t)
∂u(t,xr)

∂t
∇u(t,xr)dt

− δxs ·
∫ T

0

dt

∫
Ω

2c(x)∇c(x)∇q(t,x) · ∇u(t,x)dx. (13)

Define the Fréchet derivative G = (Gt0 ,Gxs) with respect to the origin time t0 and hypocenter

location xs as

Gt0(x;xr,xs) = 1, (14)

Gxs(x;xr,xs) = (Gx, Gy, Gz) = − 1

Nr

∫ T

0

w(t)
∂u(t,xr)

∂t
∇u(t,xr)dt

−
∫ T

0

dt

∫
Ω

2c(x)∇c(x)∇q(t,x) · ∇u(t,x)dx,

(15)

we can obtain the following relationship which links the traveltime shift δt and the earthquake location

perturbation δm = (δt0, δxs) = (δt0, δx, δy, δz) as

δt = Gδm = Gt0δt0 + Gxs · δxs = Gt0δt0 +Gxδx+Gyδy +Gzδz. (16)

The relationship (16) is similar to Geiger’s method as shown in eqn. (1), except that we need to solve

two wave equations (4) and (12) to calculate the Fréchet derivatives in eqn. (15) instead of tracing the

ray path.

2.2 Inverse problem

For a particular seismic phase (such as direct P-wave or S-wave) generated by an event initially

assumed at m = (t0,xs), usually some time-shifts d = (δti)N×1 can be measured at N seismic

stations between the observed arrival times and the theoretical arrival times calculated in the known

velocity model c(x). If the observing errors e = (ei)N×1 are taken into account, we have a concise

matrix form for determining the earthquake location perturbation δm = (δt0, δxs) as

d = Gδm + e (17)

where G is an N ×4 sensitivity matrix with entries gij . Here, gij (j = 1, 2, 3, 4) are (Gt0 , Gx, Gy, Gz)

in eqn. (16) related to the i-th observation. The standard damped least-squares solution for equation



Acoustic wave-equation-based earthquake location 9

(17) with the minimum norm constraint is given by

δm = (GTG + λI)−1GT (d− e), (18)

where I is a 4 × 4 identity matrix; λ is a non-negative damping parameter specified prior to the

inversion to provide the intended weight of the minimum norm criterion. Once the earthquake location

perturbation δm is obtained, we can have an updated earthquake location m+δm. Usually, an iterative

procedure is needed to get an accuracy earthquake location. We call the whole process of calculating

the Fréchet derivatives in eqn. (16) and solving eqn. (18) to obtain the final earthquake location ‘the

acoustic wave-equation-based earthquake location’.

2.3 Discussion on the Fréchet derivative Gxs(x;xr,xs)

The traveltime derivative Gxs(x;xr,xs) in eqn. (15) with respect to the hypocenter position xs con-

sists of two terms G1
xs

and G2
xs

as

G1
xs

= − 1

Nr

∫ T

0

w(t)
∂u(t,xr)

∂t
∇u(t,xr)dt (19)

and

G2
xs

= −
∫ T

0

dt

∫
Ω

2c(x)∇c(x)∇q(t,x) · ∇u(t,x)dx. (20)

Generally speaking, G1
xs

mainly accounts for the influence caused by the geometrical mislocation of

the hypocenter (zeroth-order influence), while G2
xs

considers the impact of the spatial variation of the

velocity model (first-order influence). For example, if the hypocenter moves closer to the receiver, G1
xs

indicates that the traveltime should be reduced. But even if the hypocenter is closer to the receiver, it is

possible that the considered seismic phase may pass through a region with a lower velocity structure.

In this case, G2
xs

suggests an increase in traveltime. Specifically, we consider a homogeneous model

with constant velocity c. Assuming that an impulsive source f(t) = δ(t− t0) is exerted at the source,

the wavefield recorded at xr has an analytical form as u(t,xr) = δ(t−t0−|xr−xs|/c)/(4π|xr−xs|),

and the first term in eqn. (15) is simplified to G1
xs

= −(xr − xs)/(c|xr − xs|) and the second term

G2
xs

vanishes. G1
xs

is the same as the derivative of arrival time with respect to the hypocenter location

as shown in eqn. (1), which is derived in the framework of ray theory (Geiger 1910; Engdahl &
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Lee 1976; Thurber 2014). That is to say, G1
xs

can be roughly considered as the Fréchet derivatives

described in Geiger’s method for a homogeneous model; and the other term G2
xs

additionally takes

into account the velocity variation, which could be helpful for earthquake location in complex media.

Sensitivity or Fréchet kernels defined as the volumetric densities of the Fréchet derivative are

widely used in tomographic studies of volumetric material properties (e.g. Dahlen et al. 2000; Tromp

et al. 2005; Fichtner & Trampert 2011; Tong et al. 2014a). They have direct physical meanings in

interpreting the finite-frequency effects of propagating seismic waves. Based on G2
xs

in eqn. (20), we

can also introduce sensitivity or Fréchet kernel for earthquake location as

Kxs = (Kx, Ky, Kz) = −
∫ T

0

2c(x)∇c(x)∇q(t,x) · ∇u(t,x)dt. (21)

The velocity model c(x) and its spatial variation ∇c(x), the distribution of the hypocenter xs and

receiver xr, and the considered seismic phase together determine the sensitivity kernel (21) in earth-

quake location inversion. Note that the Fréchet kernel for earthquake location is simply multiplying

∇c(x) to the volumetric sensitivity kernel for c(x) in tomographic inversions (Tong et al. 2014d).

2.4 2-D forward modeling and 3-D inversion

It is known that seismic tomography based on the simulation of full wavefield is computationally

expensive (e.g. Chen et al. 2007; Tape et al. 2009; Zhu et al. 2012; Tong et al. 2014d). Since two

wave equations need be solved to obtain the Fréchet derivative, the acoustic wave-equation-based

earthquake location method developed in this study is also computationally demanding, especially

when 3-D spatial geometry is considered. To reduce the computational cost, following the approxi-

mation technique used in wave-equation-based traveltime seismic tomography (Tong et al. 2014c,d),

we suggest to restrict the simulation of wavefield in a 2-D vertical plane passing through the hypocen-

ter and receiver. The horizontal direction from the hypocenter to receiver is defined as r. The an-

gle between r and the x-axis is θ. Within the 2-D vertical plane, the traveltime Fréchet derivative

with respect to the hypocenter location xs has two components Gxs = (Gr, Gz). To invert for 3-

D earthquake location, we can further project the component Gr onto two horizontal directions as

(Gx, Gy) = (Gr cos θ,Gr sin θ). In this senario, the linearized relationship between traveltime pertur-



Acoustic wave-equation-based earthquake location 11

bation and earthquake location perturbation shown in eqn. (16) can be modified into

δt = Gδm = Gt0δt0 + Gxsδxs = Gt0δt0 + cos θGrδx+ sin θGrδy +Gzδz. (22)

Eqn. (22) only requires the simulation of full wakefield in a 2-D vertical plane but can be used to

invert for 3-D earthquake location. This 2.5-D strategy is computationally more efficient compared to

the one based on 3-D forward modeling.

3 NUMERICAL EXAMPLES

We test the performances of the acoustic wave-equation-based earthquake location method with four

synthetic numerical examples.

3.1 The 2-layer model

We first consider a 2-layer velocity model (Fig. 2a). For demonstration purpose, only 2-D geometries

are considered in this and the next proof-of-concept examples. The implementation of the proposed

earthquake location method in 3-D geometries is very similar. As an attempt to fully demonstrate

the performances of the new earthquake location method, three different cases are discussed: (1)

The initial hypocenter location is in the top layer, but the true location is in the bottom layer; (2)

Both initial and actual hypocenter locations are in the bottom layer; (3) The initial location is in the

bottom layer, while the true location is in the top layer (Fig. 2a). The origin time is not perturbed but

iteratively updated in this example. 10 seismic stations with an equal spacing of 1.0 km are employed

at the surface to record seismograms generated at the initial, iteratively updated and actual earthquake

locations. In this study, only the first P-wave arrivals are used to locate the earthquakes and all the

synthetic seismograms are generated with a Ricker wavelet point source f(t − t0) in eqn. (4) which

has an analytical form of

f(t− t0) = A
[
1− 2π2f 2

0 (t− t0)2
]

exp
[
−π2f 2

0 (t− t0)2
]
. (23)

f0 is the dominant frequency chosen as f0 = 1.0 Hz here and A is the normalization factor. A high-

order finite-difference method is adopted to simulate the full wavefields (Tong et al. 2014c).
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Initial 1st 2nd 3rd 4th Target

x (km) 4.0 2.7580 1.5262 1.0579 1.0049 1.0

z (km) 1.5 2.3941 2.9817 3.0219 3.0092 3.0

t0 (sec) 0.0 0.1877 0.0855 0.0054 -0.0010 0.0

Table 1. The earthquake location throughout the iteration corresponding to the first case in Fig. 2a.

Initial 1st 2nd 3rd 4th Target

x (km) 3.0 4.4208 4.9359 4.9942 4.9998 5.0

z (km) 5.0 3.8777 3.5672 3.5155 3.5034 3.5

t0 (sec) 0.0 0.0082 -0.0010 -0.0023 -5.4325e-04 0.0

Table 2. The same as Table 1 but for the second case in Fig. 2a.

Fig. 2a and Tables 1-3 show the iteratively updated earthquake locations. The corresponding trav-

eltime residuals of the first P-arrivals at each station are shown in Figs. 2b-d. We can observe that the

acoustic wave-equation-based earthquake location method can accurately locate the three earthquakes

after about 4 iterations, showing the validity of this new technique. To examine the effect of velocity

variation on earthquake location, we calculate and show one Fréchet kernel Kxs example in Fig. 3.

Since the velocity model has no lateral variation, the horizontal component of G2
xs

is zero. Mean-

while, the vertical component of G2
xs

reflects the influence of the velocity discontinuity on locating

the depth of the earthquake.

Initial 1st 2nd 3rd 4th Target

x (km) 9.0 6.3286 5.9958 5.9958 6.0001 6.0

z (km) 4.0 1.2215 0.9834 1.0027 0.9999 1.0

t0 (sec) 0.0 0.3433 7.8780e-06 3.2683e-04 -7.0075e-05 0.0

Table 3. The same as Table 1 but for the third case in Fig. 2a.
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Figure 2. (a) The three different cases of earthquake location. The blue stars are the initial locations of the

three earthquakes, the red stars are the ‘true’ locations, and the black empty stars denote the iteratively updated

locations. (b)-(d) The P-wave traveltime residuals calculated at each station with iteratively updated earthquake

locations. The blue, brown, purple, black, and red stars connected with dashed curves are the traveltime residu-

als calculated at the initial, 1st, 2nd, 3rd, 4th and 5th locations, respectively. (b), (c), and (d) are corresponding

to the 1st, 2nd, and 3rd cases discussed in the main text, respectively.
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Figure 3. The (a) horizontal and (b) vertical component of the Fréchet kernel Kxs in eqn. (21) corresponding

to the earthquake in the bottom layer (blue star) and the receiver on the surface (black inverse triangle).

3.2 Inversion with seismic data of different frequencies

As discussed previously, the acoustic wave-equation-based earthquake location method naturally

takes into account the finite-frequency effects of the seismic waves. In the second example, we ex-

plore the influence of different frequency contents of seismic waves on the accuracy of earthquake

location in a 3-layer velocity model with lateral variation (Fig. 4). The hypocenter is actually located

in the top layer but initially assumed to be near the bottom of the middle layer (Fig. 4). We use the

first P-waves at dominant frequencies f0 = 5.0 Hz and f0 = 1.0 Hz to locate this earthquake sep-

arately. Fig. 4 shows the iteratively updated hypocenter locations and the corresponding root mean

square (RMS) of the first P-wave traveltime residuals. Tables 4 and 5 quantitatively demonstrate the

earthquake location throughout the iteration for using the high-frequency and low-frequency data,

respectively. Generally speaking, using both high- and low-frequency seismic data can accurately lo-

cate the earthquake with the acoustic wave-equation-based earthquake location method. But a closer

examination reveals that higher-frequency seismic data can locate the earthquake more precisely. For
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Initial 1st 2nd 3rd 4th 6th 8th 10th 12th Target

x (km) 7.0 1.8716 1.3824 1.8383 2.3166 2.8744 2.9873 2.9986 2.9998 3.0

z (km) 5.8 6.6524 5.5040 4.5522 3.5872 2.1526 1.8362 1.8039 1.8004 1.8

t0 (sec) 0.0 -0.5104 -0.6791 -0.4908 -0.2866 -0.0404 -0.0052 -0.00057 -0.00006 0.0

Table 4. The earthquake locations throughout the iteration by inverting the high-frequency (f0=5.0 Hz) data.

Initial 1st 2nd 3rd 4th 6th 8th 10th 12th Target

x (km) 7.0 2.7790 2.1191 2.4261 2.7018 2.9063 2.9809 2.9963 2.9991 3.0

z (km) 5.8 7.0784 5.4980 4.4896 3.6197 2.4361 1.9562 1.8368 1.8089 1.8

t0 (sec) 0.0 -0.5391 -0.7878 -0.5512 -0.3682 -0.1414 -0.0390 -0.0090 -0.0021 0.0

Table 5. The same as Table 4 but with low-frequency (f0 = 1.0 Hz) data.

example, after 12 iterations the RMS of the first P-wave traveltime residuals is in the order of 10−4

sec (Fig. 4c) and 10−3 sec (Fig. 4d) for the high- and low-frequency cases, respectively. Tables 4 and

5 also indicate that high-frequency data can find a closer earthquake location to the ‘true’ location

after same number of iterations. Fig. 5 displays the sensitivity kernels for the horizontal location and

depth, which are corresponding to a single source-receiver pair. The obvious observation is that the

high-frequency data has a smaller influence zone (sensitivity kernel with nontrivial value) than the

low-frequency data does. That is to say, different frequency components of the same seismic phase

may have slightly different arriving times if the velocity model has spatial variation. This also sug-

gests that we need to consider both the finite-frequency effects of the propagating seismic waves and

the velocity variation for accurate earthquake locations as the proposed acoustic wave-equation-based

technique does.

3.3 Earthquake location with the 2.5-D approach

Previous numerical examples have verified the concept of acoustic wave-equation-based earthquake

location in 2-D geometries. In Section 2, we also proposed to use a 2.5-D approach to locate earth-

quakes in 3-D space with 2-D forward modelings to reduce the computational cost. The third example



16 Ping Tong, Dinghui Yang, Qinya Liu, Xu Yang, and Jerry Harris

0

2

4

6

8

10

D
e

p
th

 (
k
m

)

0 2 4 6 8 10

Distance (km)

(a)

f0=5.0 Hz

10−5

10−4

10−3

10−2

10−1

100

101

T
im

e
 (

s
e

c
)

0 2 4 6 8 10 12

Iteration

(b)

0 2 4 6 8 10

Distance (km)

(c)

f0=1.0 Hz

4.2

4.5

4.8

5.1

5.4

5.7

V
p

 (
k
m

/s
)

10−5

10−4

10−3

10−2

10−1

100

101

0 2 4 6 8 10 12

Iteration

(d)

Figure 4. The iteratively updated earthquake location (a, c) and the root mean square of the first P-wave

traveltime residuals (b, d). The purple, black empty, and red stars are the initial, intermediate, and ‘targeted’

hypocenter locations. (a)-(b) are obtained with the high-frequency (f0 = 5.0 Hz) data, while (c)-(d) are the

results of the low-frequency (f0 = 1.0 Hz) data.

is designed to test this 2.5-D approach in an extreme case. The considered velocity model consists

of the crust and the mantle, containing an undulated Moho and a subduction zone with a thin low

velocity layer atop a fast velocity layer (Fig. 6). The central part of the Moho has a maximum eleva-

tion of 10.0 km from the flat position at the depth of 30.0 km. Comparing to the surrounding mantle,

the velocities of the fast and slow velocity layers of the subduction zone are perturbed by +4% and

−6%, respectively. The initial hypocenter location of the earthquake is in the high velocity layer of

the subduction zone, about 115 km away from the ‘true’ location in the above low velocity zone (Fig.

6). The origin time of the earthquake is also delayed by 5.0 sec from the ‘actual’ origin time. Three

arrays of and a total of 21 seismic stations on the surface are used to record seismograms (Fig. 6). The

dominant frequency of all the seismograms is f0 = 0.2 Hz. Fig. 6 displays the iteratively relocated

hypocenter locations (Figs. 6a-c) and the corresponding root mean square values of the first P-wave
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Figure 5. The (a, c) horizontal and (b, d) vertical components of the Fréchet kernel G2
xs

in eqn. (21) calcu-

lated at the initial earthquake location near the the bottom of the middle layer. (a)-(b) are the high-frequency

sensitivity kernels, and (c)-(d) are the low-frequency kernels.

traveltime residuals (Fig. 6d). Meanwhile, Table 6 quantitatively demonstrates the initial, updated,

and target earthquake locations. The hypocenter location and origin time errors at the 20-th iteration

are less than 0.06 km and 0.005 sec, respectively. The errors are mainly caused by the comparatively

large grid interval (1.0 km) used in the forward modeling scheme, the numerical wave-equation solver

itself, and the resolving ability of the relatively low frequency (f0 = 0.2 Hz) data. All the results of

this example indicate that the 2.5-D version of the acoustic wave-equation-based earthquake location

method can accurately locate the earthquake even though the initial location is far away from the

‘true’ location.
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Figure 6. (a)-(c) Three different planar views of the velocity model and the spatial distributions of the initial,

actual, and iteratively updated earthquake locations. The purple, white, and red stars represent the initial, itera-

tively updated, and the ‘targeted’ hypocenter locations, respectively. The black inverse triangles are the seismic

stations. (d) The root mean square of the traveltime residuals of the first P-arrivals throughout the iteration.

Initial 1st 2nd 3rd 6th 10th 15th 19th 20th Target

x (km) 60. 119.37 140.05 142.75 141.50 140.44 140.08 140.01 140.01 140.

y (km) 60. 108.10 135.51 141.36 141.42 140.40 140.07 140.02 140.02 140.

z (km) 90. 138.83 129.31 122.72 114.90 111.19 110.19 110.05 110.05 110.

t0 (sec) 5. 3.8370 -1.2160 -1.4014 -0.5466 -0.1441 -0.0240 -0.0063 -0.0050 0.

Table 6. The iteratively updated earthquake location obtained by using the 2.5-D approach in a crust-over-

mantle model with an undulated Moho and a subduction zone (Fig. 6).
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3.4 Influence of inaccurate velocity model

The accuracy of earthquake location relies on how well we know the velocity model. Since the ‘exact’

velocity model is always not available, we should bear in mind that earthquake locations are usually

obtained by using approximate velocity models in real applications. All the previous examples reveal

that the acoustic wave-equation-based earthquake location method has excellent performance in locat-

ing earthquakes if the known velocity models are exactly the ones in which the data are generated. To

investigate our technique for locating real earthquakes, in the fourth example we test the performance

of the 2.5-D version of the proposed method when only an approximate model is provided.

For a direct comparison purpose, we relocate the earthquake discussed in the third example again.

All the parameters are the same except that the velocity structure for generating synthetic seismograms

is simplified into a 2-layer model with a flat Moho at the depth of 30.0 km (Fig. 7). Note that the data

generated at the ‘true’ earthquake location is still calculated in the ‘true’ velocity model as that of Figs.

6a-c. The iteratively updated earthquake locations relocated in the simple 2-layer velocity model are

shown in Fig. 7 and Table 7. After 20 iterations, the inverted earthquake location is close the ‘actual’

location but there is still an obvious gap between them (Fig. 7). Table 7 reveals that the final spatial

location error is about 10.0 km, though it is much smaller than the initial location error of 115.0

km. Specifically, the earthquake depth is 7.73 km deeper than the real depth and the origin time t0

is advanced by 0.48 sec in contrast to initially being delayed by 5.0 sec. Comparing the ‘true’ and

‘approximate’ velocity models suggests that the velocity model used for earthquake location does

not account for the crustal low velocity structure below 30.0 km and the low velocity layer of the

subducting slab. The failure of considering these low velocity structures makes the earthquake deeper

and further. This example indicates that relocating earthquakes in approximate velocity models is

likely to obtain approximate earthquake locations with the acoustic wave-equation-based earthquake

location method.
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Figure 7. The same as Fig. 6 but a simple and approximate crust-over-mantle model with a flat Moho is used

for earthquake location. In (a)-(c), the black stars are the 20-th hypocenter location which is considered to be

the final result of the acoustic wave-equation-based earthquake location.

Initial 1st 2nd 3rd 6th 10th 15th 19th 20th Target

x (km) 60. 119.17 142.47 147.02 147.23 146.29 145.69 145.45 145.42 140.

y (km) 60. 113.71 138.13 144.05 145.07 144.11 143.49 143.25 143.20 140.

z (km) 90. 140.24 134.54 130.00 124.68 121.05 118.76 117.89 117.73 110.

t0 (sec) 5. 3.3118 -1.5483 -1.8007 -1.2837 -0.8616 -0.5964 -0.4948 -0.4772 0.

Table 7. The same as Table 6 but the results are obtained in a simple crust-over-mantle model (Fig. 7).
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4 REAL DATA APPLICATION

The main purpose of developing the acoustic wave-equation-based earthquake location method is to

use it to locate earthquakes in real applications. Liu et al. (2004) proposed a moment tensor inversion

procedure based upon spectral-element simulations and obtained focal mechanisms, depths, and mo-

ment magnitudes of three southern California earthquakes including the 2004 ML 5.4 Big Bear event

(Fig 8a). They claimed that their inversion results are generally in good agreement with estimates

based upon traditional body-wave and surface-wave inversions (Liu et al. 2004). In this study, we also

choose the 2004 Big Bear earthquake as the test event to further explore our new 2.5-D earthquake

location method.

We download broadband seismic data from Southern California Seismic Network (http://scsn.org).

Only the first P-waves recorded at the 10 nearest seismic stations are used to locate the 2004 Big Bear

earthquake. All the 10 seismic stations are at epicentral distances less than 45 km (Fig. 8a). The earth-

quake location is conducted in a 1-D layered model, which is separated by discontinuities at the depths

of 5.5 km, 16.0 km and 29.2 km (Tong et al. 2014d). The P-wave velocities in the four layers are 5.5

km/s, 6.3 km/s, 6.7 km/s and 7.8 km/s, respectively. The dominant frequency of the source time func-

tion (23) is chosen as f0 = 1.0 Hz. As a result, the nontrivial part of each synthetic seismogram lasts

for nearly 2.0 sec (twice the dominant period). To be consistent, two-second time windows starting

at the picked onset times of the P-arrivals (from the SCSN catalog) are used to isolate the portions of

the data for earthquake location. A Butterworth filter between 0.1 Hz and 1.3 Hz is then applied to the

windowed seismograms. For effectively measuring the cross-correlation traveltime residuals between

the synthetics and observed data, all the 2-D waveforms are converted to 3-D seismograms using the

conversion formula derived in Miksat et al. (2008). We relocate the Big Bear earthquake starting from

its SCSN catalog location. Similar to Liu et al. (2004), the origin time of the earthquake is fixed and

only the hypocenter location is updated in this test.

Table 8 contains the iteratively inverted hypocenter locations and the corresponding RMS values

of the first P-wave traveltime residuals. We can observe that the lateral location (Longitude, Lati-

tude) of the Big Bear earthquake has very small variations but the depth becomes deeper by more

than 5.0 km throughout a total of 14 iterations. The RMS value of the traveltime residuals is reduced
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from 0.33 sec to 0.15 sec with a minimum value of 0.13 sec at the first iteration. Although the RMS

value reaches a minimum after a single iteration, we do not stop the relocation procedure because

the earthquake location still varies significantly in the following iterations. After 14 iterations, we

almost obtain a stable solution and consider it as the final earthquake location of the Big Bear event.

Using three different inversion schemes including the spectral-element moment tensor inversion, Liu

et al. (2004) concluded that the depth of the 2004 Big Bear earthquake is about 6.4 ± 0.2 km. The

depth obtained by the acoustic wave-equation-based earthquake location method is 6.35 km (Table

8), consistent with the result based upon the spectral-element moment tensor inversion. Fig. 9 shows

the results of waveform fitting at two representative stations. We can observe that the synthetic wave-

forms generated at the final earthquake location have smaller phase shifts from the recorded data than

the ones corresponding to the initial location do. This implies that we have obtained a more accurate

location for the Big Bear earthquake. In addition, we can investigate the relationship between earth-

quake occurrence and seismic velocity providing that the earthquake is accurately located. Tong et al.

(2014d) mapped the seismic velocity structures of the 1992 Landers earthquake area and the 2004

Big Bear earthquake is actually in the investigated region (Fig 8a). A vertical view of the P-wave

velocity model recovered by Tong et al. (2014d) which passes through the 2004 Big Bear earthquake

and the 1992 Landers earthquake is shown in Fig. 8b. We can observe that the Big Bear earthquake

is initially located in a high Vp anomaly close to the surface but its final location is in a transition

zone between high Vp and low Vp structures. The inverted earthquake location with the acoustic

wave-equation-based method is in agreement with the statement that many large crustal earthquakes

occurred in regions with significant seismic property variations (Tong et al. 2014d). The tomographic

evidence also indicates the validity of the newly proposed earthquake location method.

5 DISCUSSION AND CONCLUSIONS

The full wavefield simulation honors the finite-frequency effects of the propagating seismic waves and

accurately captures the inteions between seismic waves and complex (such as strongly heterogeneous)

structures. These advantages prompted us to derive the acoustic wave-equation-based earthquake lo-

cation method. Considering that the full 3-D seismic numerical modeling is always computationally
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Iteration Longitude (◦) Latitude (◦) Depth (km) RMS (sec)

0 -116.8480 34.3097 1.230 0.33226

1 -116.8511 34.3109 5.547 0.13173

2 -116.8524 34.3110 5.753 0.13474

3 -116.8527 34.3111 5.938 0.13878

4 -116.8529 34.3112 6.077 0.14226

5 -116.8530 34.3112 6.175 0.14489

6 -116.8530 34.3113 6.241 0.14676

7 -116.8530 34.3113 6.283 0.14802

8 -116.8531 34.3113 6.310 0.14883

9 -116.8531 34.3113 6.327 0.14934

10 -116.8531 34.3113 6.338 0.14966

11 -116.8531 34.3113 6.344 0.14985

12 -116.8531 34.3113 6.348 0.14997

13 -116.8531 34.3113 6.350 0.15004

14 -116.8531 34.3113 6.351 0.15008

Table 8. The iteratively updated hypocenter location of the 2004 Big Bear earthquake and the corresponding

RMS value of the first P-wave traveltime residuals. The initial earthquake location is obtained from the SCSN

catalog.

demanding or even prohibitive, a 2.5-D version of this method is designed to lessen the computation

burden. From the synthetic examples in Section 3, we generally learn three points. (1) The newly pro-

posed method can precisely locate earthquake location if high-quality data and exact velocity model

are ideally available. (2) High frequency data has better resolving ability than low frequency data. (3)

If only an approximate velocity model is known, the acoustic wave-equation-based method probably

find a location which is not but around its actual location. Furthermore, the validity of the acous-

tic wave-equation-based earthquake location method in real applications is verified by applying it to



24 Ping Tong, Dinghui Yang, Qinya Liu, Xu Yang, and Jerry Harris

−117˚36' −117˚00' −116˚24' −115˚48'

33˚00'

33˚30'

34˚00'

34˚30'

35˚00'
Mojave Desert

S
alton T

rough

(a)

Big Bear
A

B

San Andreas Fault

San Jacinto FaultElsinore Fault

H
elendale Fault

Landers

0

10

20D
e
p
th

 (
km

)

0 20 40 60 80

Distance (km)

LandersBig Bear

HF

Vp (%)

A B

(b)

−6 % −3 % 0 % 3 % 6 %

Figure 8. (a) The tectonic conditions and surface topography around the 2004 Big Bear earthquake (red star)

area. The inverted blue stars are 10 seismic stations. Seismic data recorded by these stations are used to locate

the Big Bear earthquake. The empty black star represents the 1992 Mw 7.3 Landers earthquake. The grey

curves are active faults. Profile AB crosses the epicenters of the 2004 Big Bear earthquake and the 1992 Landers

earthquake. (b) P-wave velocity structure along Profile AB in (a) down to the depth of 20 km. The Vp structure

is recovered by Tong et al. (2014d). The white and red stars denote the initial and final locations of the Big Bear

event, respectively. Blue and red colors indicate high and low velocity structures as shown in the color bar.

relocate the 2004 Big Bear earthquake and comparing the result with the ones generated by other

techniques such as the spectral-element moment tensor inversion of Liu et al. (2004).

The results of this study suggest that the 2.5-D version of the acoustic wave-equation-based earth-

quake location method can be independently used to locate earthquakes with computational efficiency



Acoustic wave-equation-based earthquake location 25

−8

0

8

A
m

p
lit

u
d

e
 (

m
m

/s
e

c
)

0 4 8 12 16 20

SVD, HHZ
FEB 22, 2003

(a)

−0.03

0.00

0.03

0 4 8 12 16 20

HLN, HLZ

FEB 22, 2003
(b)

−1.2

−0.6

0.0

0.6

1.2

N
o

rm
a

liz
e

d
 A

m
p

lit
u

d
e

5.5 6.0 6.5 7.0 7.5 8.0 8.5

Time (sec)

(c) SVD

−1.2

−0.6

0.0

0.6

1.2

6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5

Time (sec)

(d) HLN

Figure 9. (a)-(b) Two vertical components of the raw data generated by the Big Bear earthquake and recorded

at seismic stations SVD and HLN, respectively. The blue dashed boxes are the two-second time windows for

selecting the portions of the data for earthquake location. The time windows begin at the onset times of the

first P-arrivals. (c) The black curve is the filtered data after applying a Butterworth filter between 0.1 Hz and

1.3 Hz to the windowed seismogram in (a). The blue dashed and red curves are synthetic waveforms that are

generated at the initial and final locations, respectively. The phase shifts of the synthetic waveforms from the

observed data change from 0.17 sec to −0.07 sec throughout the iterations. (d) The same as (c) but for seismic

station HLN. Initially, the synthetic P-wave (blue dashed curve) is 0.65 sec delayed from the observed data

(black curve). After 14 iterations, the delay is reduced to 0.23 sec.

and accuracy. However, it still needs more computational resources than Geiger’s method does. As

discussed in Section 2, the main advantage of the acoustic wave-equation-based technique is that

it can accurately calculate the Fréchet derivatives, especially in complex velocity models. Since the

earthquake location is iteratively updated, in future studies we can first use Geiger’s method to get

an initial location and then adopt the acoustic wave-equation-based method to refine the location.

The combination of these two methods should reduce the computation cost. Furthermore, the velocity

model is a key component in earthquake location. The extent to which we know the velocity model

determines how accurately we can locate the earthquake. For a sole earthquake location inversion, the

error in velocity model may trade-off with the inverted results. Therefore, a simultaneous inversion for

velocity model and earthquake location may be necessary for obtaining a more accurate earthquake

location. In addition, the 2.5-D approach suggests using 2-D forward modeling for 3-D hypocenter
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location. If the velocity model is very complex and the off-plane effects cannot be ignored, we can

resort to the acoustic wave-equation-based earthquake location method based upon 3-D forward mod-

eling. For the sake of conciseness, we put no emphasis on location uncertainty in this study. Readers

can refer to Thurber (2014) for a thorough discussion on how to analyze the precision and accuracy

of earthquake location.

In conclusion, the proposed acoustic wave-equation-based earthquake location method provides

a new efficient way for accurately locating earthquakes especially when complex velocity models are

present. We expect that it can be used in seismic tomography studies with passive data, earthquake

source parameters (such as centroid-moment tensor) inversion (Kim et al. 2011), microseismic mon-

itoring in the process of hydraulic fracturing, nuclear explosion monitoring, and many other fields.

For the next stage, this acoustic wave-equation-based earthquake location technique can be further

developed to take advantage of the full waveform content instead of using only the cross-correlation

traveltime information as in the current study.
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