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Abstract. Polynomial preserving recovery (PPR) was first proposed and ana-

lyzed in [Z. Zhang and A. Naga, SIAM J. Sci. Comput., 26 (2005), 1192-1213],
with intensive following applications on elliptic problems. In this paper, we

generalize the study of PPR to high-frequency wave propagation. Specifically,
we establish the supercloseness between finite element solution and its interpo-

lation with explicit dependence on the frequency of wavefield, and then prove

the superconvergence of PPR for high-frequency solutions to wave equation
based on the supercloseness. We also present several numerical examples of

PPR for both low-frequency and high-frequency wave propagation in order to

confirm the theoretical results of superconvergence analysis.

1. Introduction

Superconvergence has been one of the important research topics in the com-
munity of finite element methods; see [36] and references therein. In general, it
can be classified into two categories: natural superconvergence (e.g. [8,13,14]) and
postprocessing superconvergence (e.g. [20, 30, 31, 39, 44–47]). One of the major
postprocessing techniques is gradient recovery methods, which are able to provide
asymptotically exact a posteriori error estimators [1, 2, 7, 30, 45–47], anisotropical
mesh adaption [18,19,22], and enhancement of eigenvalue approximation [21,32,40].
A famous example of gradient recovery methods is the Superconvergent Patch Re-
covery (SPR) proposed by Zienkiewicz and Zhu [46], also known as Z-Z estimator,
which has become a standard tool in many commercial Finite Element softwares
such as ANSYS, Abaqus, and LS-DYNA. An important alternative is the polyno-
mial preserving recovery (PPR) proposed by Zhang and Naga [44], which improved
the performance of SPR on chevron pattern uniform mesh. It has also been imple-
mented by commercial Finite Element software COMSOL Multiphysics as a super-
convergence tool. Nevertheless, studies of both SPR and PPR have been mostly
focused on elliptic problems.

Study on superconvergence of second order hyperbolic equations can be traced
back to [15] where Dougalis and Serbin proved finite element solution was super-
convergent to a special quasi-interpolation of exact solution in one-dimension. Lat-
er on, Lin et al. investigated an interpolated finite element solution for bilinear
element and showed it has superconvergence [28]. Analogous to [28], Shi and Li
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studied the superconvergence for a nonlinear second order hyperbolic equation with
nonlinear boundary conditions [34]. Recent works include [37], where Wang et al.
showed the superconvergence of mixed finite element solution to full discrete wave
equations. In [3], Baccouch justified that the local discontinuous Galerkin solu-
tion superconverges at Radau points on Cartesian grids. In [12], Cockburn et al.
used hybridizable discontinuous Galerkin methods to solve wave equation and got
a uniform-in-time superconvergence result.

In this paper, we generalize the polynomial preserving recovery (PPR) technique
to study high-frequency wave propagation, governed by a second order hyperbolic
equation. First, we establish the supercloseness between finite element solution
and its interpolation with explicit dependence on wave frequency. Our main tool
is the superconvergence of interpolation solution of linear element [5, 9, 42] and
quadratic element [23] in the weak sense. Generalizing PPR from elliptic equations
to hyperbolic equations leads to a difficulty that the superconvergence arguments
for elliptic problems, relying on maximal norm of higher order weak derivative, do
not hold for hyperbolic equations due to the loss of maximal principle [5, 9, 23,42].
To overcome the difficulty, we need to put more restrictions on the mesh in order to
compensate the loss of order of errors caused by solution regularities. Specifically,
we require the mesh to satisfy Condition (α), i.e. any two adjacent triangles form
an O(h1+α) parallelogram, with a more detailed explanation given in Section 2. We
also remark that this mesh restriction is just for theoretical purpose, but not for
numerical simulations as shown by our later examples in Section 5.

The superconvergence of PPR for wave equation follows the standard procedure
in [1] that decomposes the error into two parts. The first part can be bounded by the
aforementioned supercloseness results thanking to the boundedness of PPR gradient
recovery operator. The second part is usually bounded by consistency of gradient
recovery operator. However, such type of error estimate, e.g. in [30, 31, 44], is not
sharp for hyperbolic problems since it involves with the infinity Sobolev norm. In
fact, we use the polynomial preserving property of PPR and scaled Bramble-Hilbert
Lemma to establish a sharp bound that only involves with the L2 Sobolev norm.
We remark that the sharp bound actually works for any arbitrary order of element,
although we only consider linear element and quadratic element in this paper.

The rest of the paper is organized as follows. Section 2 introduces preliminaries
on wave equation and the finite element approximation. In Section 3, we analyze
the supercloseness between finite element solution and its interpolation, and give
explicit dependence of the estimate on wave frequency. Section 4 is devoted to
the proof of superconvergence of PPR. We present several numerical examples to
confirm our theoretical results in Section 5, and make conclusive remarks in Section
6.

2. Wave equation and finite element approximation

We shall consider the following linear wave equation

∂2u

∂t2
(x, t)−∇ · (Σ(x)∇u(x, t)) = f(x, t), (x, t) ∈ Ω× (0, T ],(2.1a)

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ],(2.1b)

u(x, 0) = u0(x), x ∈ Ω,(2.1c)

∂u

∂t
(x, 0) = q0(x), x ∈ Ω,(2.1d)
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with the following WKB initial conditions, for k � 1,

u0(x) = A0(x)eikS0(x),(2.2a)

q0(x) =kB0(x)eikS0(x).(2.2b)

Here Ω is a bounded polygonal domain with Lipschitz boundary ∂Ω in R2, f,A0, B0,
S0 are given functions, and Σ(x) is a 2×2 symmetric positive definite matrix valued
function. k � 1 indicates the wave is of high-frequency.

Computing high-frequency wave propagation (2.1)-(2.2) is an important prob-
lem arising in many applications including electromagnetic radiation and scattering,
seismic and acoustic waves traveling. There coexists two scales when k � 1 in (2.2):
The large length scale is determined by the characteristic size of Ω, while the smal-
l length scale comes from the wavelength at the order of O(k−1). The disparity
between the two length scales makes direct numerical computations extremely chal-
lenging, which motivates us to study the polynomial preserving recovery method
for (2.1)-(2.2).
Notations. We use C to denote a generic positive constant which may be different
at different occurrences. For a sake of simplicity, we use x . y to mean that x ≤ Cy
for some constants C independent of mesh size and frequency of wavefield. For a
subdomain A of Ω, denote W k,p(A) as the Sobolev space with norm ‖ · ‖k,p,A and
seminorm | · |k,p,A. We also denote Hk(A) = W k,2(A). These are the standard
notations for Sobolev spaces and their associate norms in [6, 11].

Following the same notations in [4, 29], for v : [0, T ]→ H Lebesgue measurable,
we define the following norms

(2.3) ‖v‖L2(0,T ;Wk,p(Ω)) =

(∫ T

0

‖v(·, t)‖2k,p,Ωdt

)1/2

,

and

(2.4) ‖v‖L∞(0,T ;Wk,p(Ω)) = ess sup
0≤t≤T

‖v(·, t)‖k,p,Ω.

In addition, we define

(2.5) Lq(0, T ;W k,p(Ω)) = {v : [0, T ]→W k,p(Ω) : ‖v‖Lq(0,T ;Wk,p(Ω)) <∞},

where q = 2,∞.
For wave equation (2.1), the following regularity estimate was provided in [17].

Theorem 2.1. Assume u0 ∈ Hm+1(Ω), q0 ∈ Hm(Ω), and d`f
dt`
∈ L2(0, T ;Hm−`(Ω)).

Then

(2.6)
d`u

dt`
∈ L∞(0, T ;Hm+1−`(Ω), (` = 0, . . . ,m+ 1),

and we have the following estimate

ess sup
0≤t≤T

m+1∑
`=0

∥∥∥∥d`udt`
∥∥∥∥
Hm+1−`(Ω)

≤C

(
m∑
`=0

∥∥∥∥d`fdt`
∥∥∥∥
L2(0,T ;Hm−`(Ω))

+ ‖u0‖m+1,Ω + ‖q0‖m,Ω

)
.

(2.7)
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In particular, for wave equation (2.1) with WKB initial conditions (2.2), Theo-
rem 2.1 implies the following regularity estimate with explicit dependence on k.

Theorem 2.2. Assume the same condition as in Theorem 2.1 holds. Let u be
solution of wave equation (2.1a) - (2.1b) with the following WKB initial conditions
(2.2a)-(2.2b). Then we have

(2.8)

∥∥∥∥d`udt`
∥∥∥∥
L∞(0,T ;Hm+1−`(Ω))

≤ Ckm+1,

where C is a number independent of k.

Define the sesquilinear form a(·, ·) as

(2.9) a(u, v) =

∫
Ω

∇u · Σ∇vdx, ∀u, v ∈ H1(Ω),

where v is the complex conjugate of v. Then one can see that a(·, ·) is a continuous
and coercive bilinear form defined on H1

0 (Ω). In addition, we define the norm

(2.10) ‖ · ‖a,Ω =
√
a(·, ·),

which can be easily verified to be equivalent to | · |1,Ω on H1
0 (Ω).

The weak formulation of (2.1) is to find u ∈ L2(0, T ;H1
0 (Ω)) with ∂2u

∂t2 ∈ L
2(0, T ;H−1(Ω))

such that

(2.11) (
∂2

∂t2
u(·, t), v) + a(u(·, t), v) = (f(·, t), v), ∀v ∈ H1

0 (Ω), t ∈ (0, T ],

and

u(x, 0) = u0, x ∈ Ω,(2.12)

∂u

∂t
(x, 0) = q0, x ∈ Ω.(2.13)

The existence and uniqueness of the solution to (2.11)–(2.13) were established
in [29] for f ∈ L2(0, T ;H−1(Ω)) and u0, q0 ∈ H1

0 (Ω).
Let Th be a conforming triangulation of the domain Ω, and consists of triangles

T with diameter hT ≤ h. Furthermore, we assume Th is shape-regular in the sense
of [11]. The triangulation Th is called to satisfy Condition (α) if there exists α > 0
such that any two adjacent triangles form an O(h1+α) parallelogram, which means
for any two adjacent triangles (sharing a common edge), the lengths of any two
opposite edges differ only by O(h1+α).

Define the continuous finite element space of order r as

Sh,r =
{
v ∈ C(Ω̄) : v|T ∈ Pr(T ),∀T ∈ Th

}
⊂ H1(Ω),

where Pr(T ) is the space of polynomials of degree less than or equal to r over T .

The set of nodal point in Sh,r is denote byNh. Also, we denote Sh,r0 = Sh,r∩H1
0 (Ω),

and Irhu to be the standard Lagrange interpolation of polynomial of order r in the
finite element space Sh,r. Then the continuous-time Galerkin approximation to

(2.11)–(2.13) reads as, to find uh ∈ L2(0, T ;Sh,r0 ) such that,

(2.14)
(∂2uh
∂t2

(·, t), v
)

+ a(uh(·, t), v) = (f(·, t), v),
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for any v ∈ Sh,r0 and t ∈ (0, T ] with

uh(·, 0) = Irhu0,(2.15)

∂uh
∂t

(·, 0) = Irhq0.(2.16)

For the approximation (2.14)-(2.16), one can have the following error estimate
[4, 16].

Theorem 2.3. Let uh be the solution of (2.14)-(2.16). Suppose u ∈ L∞(0, T ;Hr+1(Ω))
and ∂u

∂t ∈ L
2(0, T ;Hr+1(Ω)), then we have

‖u− uh‖L∞(0,T ;L2(Ω)) + h‖u− uh‖L∞(0,T ;H1(Ω))

.hr+1

(
‖u‖L∞(0,T ;Hr+1(Ω)) +

∥∥∥∂u
∂t

∥∥∥
L2(0,T ;Hr+1(Ω))

)
.(hk)r+1 + k(hk)r+1

.k(hk)r+1,

(2.17)

where the last inequality is due to k � 1.

Remark 2.4. The H1-semi error in Theorem 2.3 consists of two parts: the first term
k(hk)r can be regarded as interpolation error of u

‖∇u−∇Irhu‖0,Ω ≤ hr|u|r+1,Ω ≤ hrkr+1,

while the second term k2(hk)r is due to the interpolation error of ∂u
∂t ,

‖∇∂u
∂t
−∇Irh

∂u

∂t
‖0,Ω ≤ hr|

∂u

∂t
|r+1,Ω ≤ hrkr+2.

This is different from finite element approximation of Helmholtz equation [26,27,38].

Remark 2.5. Theorem 2.3 indicates the mesh size h should be of O(k−3) to give an
accurate approximation to high-frequency propagation by linear element, but this
estimate may not be sharp, as shown later by our numerical results in Section 5.

3. Supercloseness of finite element solution

In this section, we establish the supercloseness between finite element solution
and the interpolation of the exact solution for both linear element and quadratic
element.

Lemma 3.1. Assume Th satisfies Condition (α). Let Στ be a piecewise constant
matrix function defined on Th, whose elements Στij satisfy

(3.1) Στij . 1, |Στij − Στ ′ij | ≤ hα, i = 1, 2; j = 1, 2.

Here τ and τ ′ are a pair of triangles sharing a common edge. In addition, suppose

u ∈ H1
0 (Ω) ∩H2+r(Ω), then for any vh ∈ Sh,r0 ,

(3.2) |
∑
τ∈Th

∫
τ

∇(u− Irhu) · Στ∇vh| . hr+α‖u‖r+2,Ω|v|1,Ω,

where r = 1, 2.

Proof. For the linear element case, the proof is similar to Lemma 2.1 in [42]. For
the quadratic element case, one can prove it by modifying the proof of Theorem
4.3 in [23]. �
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Remark 3.2. It is worth mentioning that the mesh condition is more restrictive
than that in [5,9,42] for linear element, due to the lack of |u|2,∞ estimate for wave
equation. Note that this restriction is technique and just for theoretical purpose. In
fact, numerical experiments in Section 5 indicate that one can still get results of su-
perconvergence under general Delaunay meshes which do not satisfy the Condition
(α).

We define the constant matrix function Στ in term of the diffusion coefficient
matrix Σ in (2.1a) as follows

(3.3) Στij =
1

|τ |

∫
τ

Σijdx,

for i, j = 1, 2. We assume Σ is smooth enough so that the condition (3.1) in Lemma
3.1 holds and the following inequality is also true,

(3.4) |Σ− Στ | . h, ∀τ ∈ Th.

Subtracting (2.11) from (2.14) implies that, for any v ∈ Sh,r0 ,

(3.5) (
∂2

∂t2
uh −

∂2

∂t2
u, v) + a(uh − u, v) = 0,

and one can prove the following supercloseness result.

Theorem 3.3. Let u be exact solution to the wave equation (2.11) and uh be
solution of the semi-discrete Galerkin finite element approximation (2.14). As-
sume the mesh Th satisfies Condition(α), and u ∈ L∞(0, T ;Hr+2(Ω)), ∂u

∂t ∈
L2(0, T ;Hr+2(Ω)), and ∂2u

∂t2 ∈ L
2(0, T ;Hr+1(Ω)), then we have

(3.6) ‖uh(·, t)− Irhu(·, t)‖1,Ω ≤ Chr+min(1,α)kr+3,

where C is a constant independent of k and h.

Proof. Denote η = uh − Irhu and ξ = u− Irhu, then (3.5) implies that

(3.7) (
∂2

∂t2
η, v) + a(η, v) = (

∂2

∂t2
ξ, v) + a(ξ, v),

for any v ∈ Sr,h0 . Taking v = ∂η
∂t brings

(3.8) (
∂2

∂t2
η,
∂η

∂t
) + a(η,

∂η

∂t
) = (

∂2

∂t2
ξ,
∂η

∂t
) + a(ξ,

∂η

∂t
),

which can be rewritten as

(3.9)
1

2

∂

∂t
(
∂η

∂t
,
∂η

∂t
) +

1

2

∂

∂t
a(η, η) = (

∂2

∂t2
ξ,
∂η

∂t
) + a(ξ,

∂η

∂t
).
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Integrating (3.9) with respect to t from 0 to s produces

1

2

∥∥∥ ∂
∂t
η(·, s)

∥∥∥2

0,Ω
+

1

2
a(η(·, s), η(·, s))

=

∫ s

0

(
∂2

∂t2
ξ(·, t), ∂η(·, t)

∂t
)dt+

∫ s

0

a(ξ(·, t), ∂η(·, t)
∂t

)dt

=

∫ s

0

(
∂2

∂t2
ξ(·, t), ∂η(·, t)

∂t
)dt+ a(ξ(·, s), η(·, s))−

∫ s

0

a(
∂ξ(·, t)
∂t

, η(·, t))dt

=

∫ s

0

(
∂2

∂t2
ξ(·, t), ∂η(·, t)

∂t
)dt+

∑
τ∈Th

∫
τ

∇ξ(·, t) · Στ∇η(·, t)

−
∑
τ∈Th

∫
τ

∇ξ(·, t) · (Στ − Σ)∇η(·, t)−
∫ s

0

(∑
τ∈Th

∫
τ

∇∂ξ(·, t)
∂t

· Στ∇η(·, t)

)
dt

+

∫ s

0

(∑
τ∈Th

∫
τ

∇∂ξ(·, t)
∂t

· (Στ − Σ)∇η(·, t)

)
dt

=:I1 + I2 + I3 + I4 + I5,

where we have used the fact η(·, 0) = ∂η
∂t (·, 0) = 0, i.e. (2.15) and (2.16).

We first estimate I1. By Hölder’s inequality and Cauchy’s inequality, one has

I1 ≤
∫ s

0

∥∥∥ ∂2

∂t2
ξ(·, t)

∥∥∥
0,Ω

∥∥∥ ∂
∂t
η(·, t)

∥∥∥
0,Ω
dt

≤ C
∫ s

0

∥∥∥ ∂2

∂t2
ξ(·, t)

∥∥∥2

0,Ω
dt+

∫ s

0

∥∥∥ ∂
∂t
η(·, t)

∥∥∥2

0,Ω
dt

≤ Ch2r+2
∥∥∥ ∂2

∂t2
u
∥∥∥2

L2(0,T ;Hr+1(Ω))
+

∫ s

0

∥∥∥ ∂
∂t
η(·, t)

∥∥∥2

0,Ω
dt,

(3.10)

where we have used the standard L2 norm error estimation of finite element inter-
polation Irhu [6, 11]. Lemma 3.1 implies that
(3.11)

I2 ≤ Chr+α‖u(·, s)‖r+2,Ω|η(·, s)|1,Ω ≤ Ch2r+2α‖u(·, s)‖2r+2,Ω +
1

8
‖η(·, s)‖2a,Ω.

I3 is estimated by

I3 ≤
∑
τ∈Th

∫
τ

|∇ξ(·, t)||(Στ − Σ)||∇ξ(·, s)|

≤ h|ξ(·, s)|1,Ω|η(·, s)|1,Ω
≤ Chr+1‖u‖r+1,Ω|η(·, s)|1,Ω

≤ Ch2r+2‖u(·, s)‖2r+1,Ω +
1

8
‖η(·, s)‖2a,Ω,

(3.12)

where the third inequality comes from the standard H1 interpolation error estimate
[6, 11]. For I4, Lemma 3.1 implies

I4 ≤
∫ s

0

hr+α‖∂u
∂t

(·, s)‖r+2,Ω|η(·, s)|1,Ωdt

≤Ch2r+2α‖∂u
∂t
‖2L2(0,T ;Hr+2(Ω)) +

∫ s

0

‖η(·, t)‖2a,Ωdt.
(3.13)
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Similarly, we can get the following estimate of I5

I5 ≤
∫ s

0

Chr+1‖∂u
∂t

(·, s)‖r+1,Ω|η(·, s)|1,Ωdt

≤Ch2r+2‖∂u
∂t
‖2L2(0,T ;Hr+1(Ω)) +

∫ s

0

‖η(·, t)‖2a,Ωdt.
(3.14)

Combining the error estimates (3.10) – (3.14) gives

1

2
‖ ∂
∂t
η(·, s)‖20,Ω +

1

8
‖η(·, s)‖2a,Ω

≤Ch2r+2‖∂
2u

∂t2
‖2L2(0,T ;Hr+1(Ω)) + Ch2r+2α‖∂u

∂t
‖2L2(0,T ;Hr+2(Ω))+

Ch2r+2α‖u(·, s)‖2r+2,Ω + Ch2r+2‖u(·, s)‖2r+1,Ω+

Ch2r+2‖∂
2u

∂t2
‖2L2(0,T ;Hr+1(Ω)) +

∫ s

0

‖ ∂
∂t
η(·, t)‖20,Ωdt+

2

∫ s

0

‖η(·, t)‖2a,Ωdt,

(3.15)

and thus Gronwall’s inequality [17] produces

‖ ∂
∂t
η(·, s)‖20,Ω + ‖η(·, s)‖2a,Ω

≤Ch2r+2‖∂
2u

∂t2
‖2L2(0,T ;Hr+1(Ω)) + Ch2r+2‖∂u

∂t
‖2L2(0,T ;Hr+1(Ω))+

Ch2r+2α‖∂u
∂t
‖2L2(0,T ;Hr+2(Ω)) + Ch2r+2α‖u(·, s)‖2r+2,Ω+

Ch2r+2‖u(·, s)‖2r+1,Ω.

In particular, we have, for any 0 ≤ s ≤ T ,

|η(·, s)|1,Ω ≤ C
(
hr+min(1,α)kr+3 + hr+min(1,α)kr+1

)
≤ Chr+min(1,α)kr+3,

where we have used the fact that k � 1 in the last inequality. Replacing s by t
completes our proof. �

Remark 3.4. Using the standard argument instead of superconvergence argument
will give the following error estimate for ‖∇uh −∇Irhu‖0,Ω,

(3.16) ‖∇uh −∇Irhu‖0,Ω. hrkr+2.

Remark 3.5. Numerical examples later in Section 5 indicate that ‖∇uh−∇Irhu‖0,Ω .
h2 and ‖∇uh − ∇Irhu‖0,Ω . k3, which means the error estimates (3.6) and (3.16)
are not sharp with respect to k and h respectively.

4. Superconvergence of Polynomial Preserving Recovery

In this section, we analyze the superconvergence of polynomial preserving recov-
ery (PPR) for wave equation (2.1). Denote the PPR gradient recovery operator by
Gh, then Gh is a linear operator from Sh,r to Sh,r×Sh,r. Given a function uh ∈ Srh,
it suffices to define (Ghuh)(z) for all z ∈ Nh. Let z ∈ Nh be a vertex and Kz be a
patch of elements around z which is defined in [31,44]. Select all nodes in Nh ∩Kz
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as sampling points and fit a polynomial pz ∈ Pk+1(Kz) in the least squares sense
at those sampling points, i.e.

(4.1) pz = arg min
p∈Pk+1(Kz)

∑
z̃∈Nh∩Kz

(uh − p)2(z̃).

Then the recovered gradient at z is defined as

(Ghuh)(z) = ∇pz(z).

For linear element, all nodes in Nh are vertices and hence Ghuh is well defined.
However, Nh may contain edge nodes or interior nodes for higher order elements.
If z is an edge node which lies on an edge between two vertices z1 and z2, we define

(Ghuh)(z) = β∇pz1(z) + (1− β)∇pz2(z)

where β is determined by the ratio of distances of z to z1 and z2. If z is an interior
node which lies in a triangle formed by three vertices z1, z2, and z3, we define

(Ghuh)(z) =

3∑
j=1

βj∇pzj (z),

where βj is the barycentric coordinate of z.

Remark 4.1. It was proved in [30] that certain rank condition and geometric con-
dition guarantee the uniqueness of pz in (4.1).

Remark 4.2. In order to avoid numerical instability, a discrete least squares fitting
process is carried out on a reference patch ωz .

For the PPR gradient recovery operator Gh, [30, 31, 44] proved that Gh has the
following properties:

(i) Gh preserves polynomials of degree r + 1.
(ii) ‖Ghv‖0,τ . |v|1,Kτ ,∀τ ∈ Th, where Kτ :=

⋃
{Kz : z is a vertex of τ}.

(iii) ‖∇u−Ghu‖0,∞,Kz ≤ Chr+1|u|r+2,∞,Kz .

Note that in Property (iii), ‖∇u−Ghu‖0,∞,Kz is bounded by the W r+2,∞ norm of
the exact solution u. However, such regularity is not available for wave equation
(2.1). In the following, we shall prove a sharp type error estimate analogous to
property (iii).

According to Property (i) of Gh, we can prove the following lemma.

Lemma 4.3. Let Gh : Sh,r → Sh,r × Sh,r be the PPR gradient recovery operator.
Given u ∈ Hr+2(Ω), then

(4.2) ‖GhIrhu−∇u‖0,τ . hr+1‖u‖r+2,Kτ ,

for any τ ∈ Th.

Proof. Notice that

‖GhIrhu−∇u‖0,τ ≤ ‖GhIrhu−GhIrhIr+1
h u‖0,τ + ‖GhIrhIr+1

h u−∇u‖0,τ
= ‖GhIrhu−GhIrhIr+1

h u‖0,τ + ‖GhIr+1
h u−∇u‖0,τ

:= I1 + I2,

(4.3)
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where we have used the fact that GhI
r
hI
r+1
h u = GhI

r+1
h u since we only use nodal

points in the recovery operator Gh. We begin with the estimate of I2. According
to Property (i), we have GhI

r
hv = ∇v for any v ∈ Pr+1(Kτ ), which implies that

I2 =‖Gh(Ir+1
h u− v)−∇(u− v)‖0,τ

≤‖Gh(Ir+1
h u− v)‖0,τ + ‖∇(u− v)‖0,τ

.‖∇(Ir+1
h u− v)‖0,Kτ + ‖∇(u− v)‖0,τ

.‖∇(Ir+1
h u− u)‖0,Kτ + ‖∇(u− v)‖0,Kτ + ‖∇(u− v)‖0,τ

.‖∇(Ir+1
h u− u)‖0,Kτ + ‖∇(u− v)‖0,Kτ .

(4.4)

Standard approximation theory of finite element [6, 11] implies

(4.5) ‖∇(Ir+1
h u− u)‖0,Kτ . hr+1‖u‖r+2,Kτ .

Let F (u) = inf
v∈Pr+1(Kτ )

‖∇(u − v)‖0,Kτ , then it is easy to see F (v) = 0 for any

v ∈ Pr+1(Kτ ). By Bramble-Hilbert lemma, one has

(4.6) ‖∇(u− v)‖0,Kτ ≤ hr+1‖u‖r+2,Kτ .

Now, we turn to estimate I1. The boundedness of Gh implies

(4.7) I1 = ‖GhIrhu−GhIrhIr+1
h u‖0,τ . ‖∇(Irhu− IrhIr+1

h u)‖0,Kτ .

Notice that Ir+1
h v = v and hence Irhv = IrhI

r+1
h v for all v ∈ Pr+1(Kτ ). Define F̃ =

‖∇(Irhu−IrhI
r+1
h u)‖0,Kτ . Then it is easy to see that F̃ (v) = 0 for any v ∈ Pr+1(Kτ ).

Again Bramble-Hilbert lemma suggests that

(4.8) ‖∇(Irhu− IrhIr+1
h u)‖0,Kτ . hr+1‖u‖r+2,Kτ .

Combining the estimates (4.3)-(4.8) completes the proof of (4.2). �

Remark 4.4. We prove (4.2) for arbitrary order of Lagrange elements, although we
will only consider the case of linear element and quadratic element.

Lemma 4.3 gives the following error estimate on the whole domain.

Lemma 4.5. Given u ∈ Hr+2(Ω), we have

(4.9) ‖GhIrhu−∇u‖0,Ω . hr+1‖u‖r+2,Ω.

Proof. Notice that

‖GhIrhu−∇u‖20,Ω =
∑
τ∈Th

‖GhIrhu−∇u‖20,τ

.
∑
τ∈Th

h2r+2‖u‖2r+2,Kτ

. h2r+2‖u‖2r+2,Ω,

where we have used Lemma 4.3 in the derivation of the the first inequality. Taking
square root on both side gives (4.9). �

Now we are ready to present our main superconvergence result.
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Theorem 4.6. Let u be exact solution to the wave equation (2.11) -(2.13) and
uh be solution of the semi-discrete Galerkin finite element approximation (2.14)-
(2.16). Suppose the mesh Th satisfies Condition(α). In addition assume u ∈
L∞(0, T ;Hr+2(Ω)), ∂u

∂t ∈ L2(0, T ;Hr+2(Ω)), and ∂2u
∂t2 ∈ L2(0, T ;Hr+1(Ω)), then

for any t ∈ (0, T ], we have

(4.10) ‖Ghuh(·, t)−∇u(·, t)‖0,Ω ≤ C(hr+min(1,α)kr+3 + hr+1kr+1),

where C is a constant independent of k and h.

Proof. We give the proof as in [1, 44]. Decompose ‖Ghuh(·, t)−∇u(·, t)‖0,Ω in the
following way:

‖Ghuh(·, t)−∇u(·, t)‖0,Ω
=‖Ghuh(·, t)−GhIrhuh(·, t) +GhI

r
huh(·, t)−∇u(·, t)‖0,Ω

≤‖Ghuh(·, t)−GhIrhuh(·, t)‖0,Ω + ‖GhIrhuh(·, t)−∇u(·, t)‖0,Ω
:=I1 + I2.

(4.11)

According to Theorem 3.3, I1 is bounded by
(
hr+min(1,α)kr+3 + hr+min(1,α)kr+1

)
.

Lemma 4.5 implies that

I2 ≤‖GhIrhu(·, t)−∇u(·, t)‖0,Ω
≤Chr+1‖u(·, t)‖r+2,Ω

≤Chr+1‖u‖L∞(0,T ;Hr+2(Ω))

≤Chr+1kk+2.

Our proof is completed by combining the bound of I1 and I2. �

Remark 4.7. We decompose ‖Ghuh − ∇u‖0,Ω into two parts ‖Ghuh − GhIrhu‖0,Ω
and ‖GhIrhu − ∇u‖0,Ω. However, ‖Ghuh − GhI

r
hu‖0,Ω . ‖∇uh − ∇Irhu‖0,Ω. As

indicated in Remark 3.5, the error estimate (3.6) is not sharp with respect to k and
hence the error estimate (4.10) is not sharp with respect to k.

5. Numerical Experiment

In the section, we present several numerical examples including both low and
high frequencies to illustrate the superconvergence theory established in previous
sections. In all the following numerical examples, we take time step as approxi-
mately a quarter of the space size, i.e., δt ≈ 0.25h.

5.1. Numerical results for linear element. In this subsection, we consider Σ
to be an identity matrix I2×2 in (2.1), with the following initial conditions,

u(x, 0) = sin(πx1) sin(πx2), x ∈ Ω,

∂u

∂t
(x, 0) = − sin(πx1) sin(πx2), x ∈ Ω,

and f is chosen to fit the exact solution u(x, t) = e−t sin(πx1) sin(πx2) and Ω =
[0, 1]× [0, 1].

In order to obtain superconvergence results of linear element, we consider an un-
conditionally stable second order accurate time discretization. Let N be a positive
integer and define the time step as

(5.1) δt =
T

N
, tn = nδt, n = 0, 1, · · · , N.
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For any function w, the value of w at time tn is denoted by wn. We also introduce
the following notation

wn+1/2 =
wn+1 + wn

2
, wn,1/4 =

wn+1 + 2wn + wn−1

4
,

∂tw
n+1/2 =

wn+1 − wn

δt
, ∂tw

n =
wn+1 − wn−1

2δt
,

∂ttw
n =

wn+1 − 2wn + wn−1

δt2
.

(5.2)

We consider the following full discrete Galerkin approximation [16] of linear element,
i.e., to find a sequence {unh}Nn=1 ∈ Sh,1 such that

(5.3) (∂ttu
n
h, vh) + a(u

n,1/4
h , vh) = (fn,1/4, vh), ∀vh ∈ Sh,1.

Note the above scheme needs initial conditions of two time steps. As in [41], we
consider Taylor expansion of u at t = 0,

u(x, δt) = u(x, 0) + δt
∂u

∂t
(x, 0) +

δt2

2

∂2u

∂t2
(x, 0) +

δt3

6

∂3u

∂t3
(x, 0) +O(δt4),

and replace the higher derivatives of t by derivatives of x using (2.1), which yields
the following initial conditions,

u0
h = I1

hu0,

u1
h = I1

hu
0
h + δtI1

hq0 +
δt2

2
I1
h(∆u0 + I1

hf(x, 0)) +
δt3

6
I1
h(∆q0 +

∂f

∂t
(x, 0)),

with u0 and q0 given in (2.2).
Table 1 shows the numerical errors at the final computational time T = 1 on

regular pattern uniform mesh. As we expected, ‖∇u − ∇uh‖0,Ω decays at the
optimal rate of O(h). ‖∇uh − ∇I1

hu‖0,Ω and ‖∇uh − Ghuh‖0,Ω both converge at
the superconvergence rate of O(h2), which is consistent with our theoretical results
in Theorem 3.3 and 4.6, respectively. We test on chevron pattern uniform mesh
and its numerical errors are displayed in Table 2, which is similar to regular pattern
uniform mesh.

Next, we turn to Criss-cross pattern uniform mesh and we list its numerical
errors in Table 3. Different from the previous two types of uniform meshes, this
mesh pattern doesn’t satisfy Condition (α) and thus there is no supercloseness
between the gradient of finite element solution and the gradient of interpolation
of exact solution; see the fifth column of Table 3. However, even in this case,
our results still show the superconvergent of gradient at the rate of O(h2); see the
seventh column of Table 3. In fact, we also tested Union-Jack pattern uniform
mesh, but did not present the numerical results here due to the similarity to the
results by using Criss-cross pattern uniform mesh.

At the end, we consider unstructured meshes. We start from an initial mesh
generated by EasyMesh [33] followed by four levels of uniform refinement. Table 4
shows the supercloseness and superconvergence of recovered gradient.

5.2. Numerical results for quadratic element. In this subsection, we consider
(2.1) with Σ = I2×2 that has a traveling wave solution as in [10]. The domain is
chosen as Ω = [0, 2]× [0, 2], and the initial conditions and boundary conditions are
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Table 1. Numerical results of linear element case on regular pat-
tern uniform mesh.

Dof ‖∇u−∇uh‖0,Ω order ‖∇uh −∇I1
hu‖0,Ω order ‖∇uh −Ghuh‖0,Ω order

289 8.009e-02 – 3.052e-03 – 1.738e-02 –
1089 4.010e-02 0.52 7.712e-04 1.04 4.585e-03 1.00
4225 2.006e-02 0.51 1.960e-04 1.01 1.174e-03 1.00
16641 1.003e-02 0.51 4.950e-05 1.00 2.968e-04 1.00
66049 5.014e-03 0.50 1.244e-05 1.00 7.459e-05 1.00

Table 2. Numerical results of linear element on chevron pattern
uniform mesh.

Dof ‖∇u−∇uh‖0,Ω order ‖∇uh −∇I1
hu‖0,Ω order ‖∇uh −Ghuh‖0,Ω order

289 8.019e-02 – 5.709e-03 – 1.224e-02 –
1089 4.019e-02 0.52 3.664e-03 0.33 3.170e-03 1.02
4225 2.007e-02 0.51 5.708e-04 1.37 8.084e-04 1.01
16641 1.003e-02 0.51 1.348e-04 1.05 2.038e-04 1.01
66049 5.014e-03 0.50 1.642e-05 1.53 5.114e-05 1.00

Table 3. Numerical results of linear element on Criss-cross pat-
tern uniform mesh.

Dof ‖∇u−∇uh‖0,Ω order ‖∇uh −∇I1
hu‖0,Ω order ‖∇uh −Ghuh‖0,Ω order

545 6.238e-02 – 6.471e-02 – 8.723e-03 –
2113 3.735e-02 0.38 2.135e-02 0.82 1.361e-03 1.37
8321 2.275e-02 0.36 1.542e-02 0.24 3.380e-04 1.02
33025 1.427e-02 0.34 1.089e-02 0.25 8.180e-05 1.03
131585 7.877e-03 0.43 6.239e-03 0.40 2.006e-05 1.02

Table 4. Numerical results of linear element on Delaunay mesh.

Dof ‖∇u−∇uh‖0,Ω order ‖∇uh −∇I1
hu‖0,Ω order ‖∇uh −Ghuh‖0,Ω order

513 4.567e-02 – 7.868e-03 – 7.587e-03 –
1969 2.266e-02 0.52 2.137e-03 0.97 2.122e-03 0.95
7713 1.131e-02 0.51 5.686e-04 0.97 5.782e-04 0.95
30529 5.651e-03 0.50 1.486e-04 0.98 1.529e-04 0.97
121473 2.825e-03 0.50 3.904e-05 0.97 4.030e-05 0.97

given by the exact solution

u(x, t) = cos(
√

2πt+ πx1) cos(πx2).

To get superconvergence of quadratic element, one needs higher order time dis-
cretization, and thus we choose the fourth order time discretization used in [10,35]
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which can be reformulated into a predictor-corrector form. The second-order pre-
dictor step is

(5.4) (
u?h − 2unh + un−1

h

δt2
, wh) = −(∇unh,∇wh), wh ∈ Srh;

and the corrector step is

vh =
u?h − 2unh + un−1

h

δt2
,(5.5)

(un+1
h , wh) = (u?h, wh)− δt4

12
(∇vh,∇wh), wh ∈ Srh.(5.6)

In the following, we compute the numerical error at time T = 1. Table 5 lists
the numerical results for quadratic element on regular pattern uniform mesh. Con-
sistent with Theorem 3.3 and 4.6, the convergence rate of O(h3) is observed for
‖∇uh −∇I2

hu‖0,Ω and ‖∇uh −Ghuh‖0,Ω.
Table 6 shows the convergence of numerical errors for quadratic element on the

same Delaunay mesh as in Example 1, from which one can clearly observe desired
supercloseness results and superconvergence results.

Table 5. Numerical results of quadratic element on regular pat-
tern mesh.

Dof ‖∇u−∇uh‖0,Ω order ‖∇uh −∇I1
hu‖0,Ω order ‖∇uh −Ghuh‖0,Ω order

1089 6.697e-02 – 8.972e-03 – 1.370e-02 –
4225 1.686e-02 1.04 1.155e-03 1.55 1.191e-03 1.84
16641 4.220e-03 1.02 1.467e-04 1.52 1.136e-04 1.73
66049 1.055e-03 1.01 1.598e-05 1.62 1.188e-05 1.65
263169 2.639e-04 1.01 2.334e-06 1.40 1.340e-06 1.58

Table 6. Numerical results of quadratic element on Delaunay mesh.

Dof ‖∇u−∇uh‖0,Ω order ‖∇uh −∇I1
hu‖0,Ω order ‖∇uh −Ghuh‖0,Ω order

1969 2.408e-02 – 2.347e-03 – 3.480e-03 –
7713 6.033e-03 1.03 4.043e-04 1.31 3.365e-04 1.74
30529 1.509e-03 1.01 7.084e-05 1.28 3.493e-05 1.66
121473 3.775e-04 1.01 1.247e-05 1.26 4.005e-06 1.57
484609 9.439e-05 1.00 2.195e-06 1.26 5.148e-07 1.49

5.3. Numerical results for high-frequency wave propagation. In this sub-
section, we consider (2.1) with Σ = I2×2, and the high-frequency WKB initial
conditions, {

u0(x) = A0(x)eikS0(x),
∂tu0(x) = kB0(x)eikS0(x).

We chose f,A0, B0, S0 to fit the exact solution,

(5.7) u = exp (−100((x+ t)2 + y2)) exp (ik(−x+ cos(2y) + 5t)).
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Figure 1. Plot of high frequency wave when wave number k = 64
when mesh size h = 2−10.

We compute the numerical solution to (2.1) at time t = 1. The computational
domain is [−1.5, 0.5]× [−1, 1]. The mesh Th is obtained by first dividing the compu-
tation domain Ω into N ×N squares and then dividing every square into two right
triangles. Let uh be the linear finite element solution on a mesh Th at time T = 1.
The number of degree of freedom is (N + 1)2 and mesh size is h = 2

N . Here we take

N = 2j with j = 6, 7, 8, 9, 10. Note that in this case α = 1. In the following, we
compute for both low-frequency and high-frequency wave. Specifically, we choose
k = 2j , with j = 0, 1, 2, 3, 4, 5, 6, 7.

Table 7. Results of high frequency wave when k = 64.

Dof ‖∇u−∇uh‖0,Ω order ‖∇uh −∇I1
hu‖0,Ω order ‖∇uh −Ghuh‖0,Ω order

4225 2.599e+01 – 2.556e+01 – 1.390e+01 –
16641 7.874e+00 0.87 7.425e+00 0.90 6.661e+00 0.54
66049 2.433e+00 0.85 2.013e+00 0.95 2.154e+00 0.82
263169 8.593e-01 0.75 5.139e-01 0.99 5.773e-01 0.95
1050625 3.682e-01 0.61 1.286e-01 1.00 1.459e-01 0.99

At initial time t = 0, the wave packet is localized at the point (0, 0). At t = 1, the
wave packet propagates to the point (−1, 0). As one can observe from (5.7), there
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Figure 2. Plot of high frequency wave when wave number k = 128
when mesh size h = 2−10.
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Figure 3. Plot of
‖∇u − ∇uh‖0,Ω with
respect to h.
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hu‖0,Ω with
respect to h.
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Figure 5. Plot of
‖∇u − Ghuh‖0,Ω with
respect to h.
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Figure 6. Plot of
‖∇u − ∇uh‖0,Ω with
respect to k.
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Figure 7. Plot of
‖∇uh − ∇I1

hu‖0,Ω with
respect to k.
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Figure 8. Plot of
‖∇u − Ghuh‖0,Ω with
respect to k.

would be high-frequency oscillations in the solutions of large k. To illustrate this,
we graph the real and imaginary part of the exact solutions on the small domain
[−1.25, 0.75]× [−0.25, 0.25] for k = 64 and k = 128, see Fig 1 (a)(c) and Fig 2(a)(c).
We also plot the real and imaginary part of numerical solutions on the finest mesh
Th with h = 2−10 for k = 64 and k = 128. One can see that the numerical solutions
match well with the exact solutions.

Figure 3 plots H1-semi error of finite element solution for different numbers of
degree of freedoms. For low frequency wave (k = 1, 2, 4, 8, 16), it shows optimal
convergence rate. For high frequency wave (k = 32, 64, 128), it requires the mesh
size small enough to converge optimally at the rate of O(h).

Figure 4 shows the supercloseness between finite element solution and the inter-
polation of exact solution. Similar to H1-semi error of finite element solution, it
shows the order of O(h2) supercloseness results for both cases of low-frequency and
high-frequency waves. Figure 5 shows the numerical error of recovered gradient, in
which the order of O(h2) superconvergent rate can be observed. Table 7 gives the
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numerical results for the case k = 64, in which one can notice that the errors of
recovered gradient are smaller than the errors of gradient of finite element solution
even in coarse meshes.

To see clearly the dependence of errors on k, we plot the above three errors with
respect to k on the same mesh Th, see Figs 6 - 8. It shows that ‖∇u − ∇uh‖0,Ω
depends on k2 while ‖∇uh−∇I1

hu‖0,Ω and ‖Ghuh−∇u‖0,Ω depend on k3. It means
our error estimates may not be sharp with respect to k as we comment in Remark
2.5, 3.5 and 4.7.

6. Conclusion

In this paper, we generalized the polynomial preserving recovery (PPR) method
to compute wave propagation of high-frequency. Specifically, we analyzed the su-
percloseness of finite element solution and interpolation solution with explicit de-
pendence on wave frequency k, and proved the superconvergence of PPR for wave
equation. Numerical results were given in both low frequency and high frequency
to confirm our theoretic results, which indicated the sharpness of theoretical results
with respect to h. The purpose of PPR is not only to improve the gradient approx-
imation but also to serve as an asymptotically exact a posteriori error estimator
for wave propagation. One may notice that, Theorem 4.6 implies that one needs
at least a mesh size of order o(k) to have an accurate approximation which might
be still computationally expensive in high dimensional cases. In future, we plan
to relax this mesh-size restriction by including high-frequency elements (e.g. high-
frequency plane waves or complex Gaussian functions) in the finite element method
as in the tailored finite point method and frozen Gaussian approximation [24,43].
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