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The contribution of this paper contains two parts: first, we prove a supercloseness result for the partially
penalized immersed finite element (PPIFE) methods in [T. Lin, Y. Lin, and X. Zhang, SIAM J. Numer.
Anal., 53 (2015), 1121–1144]; then based on the supercloseness result, we show that the gradient recov-
ery method proposed in our previous work [H. Guo and X. Yang, J. Comput. Phys., 338 (2017), 606-619
] can be applied to the PPIFE methods and the recovered gradient converges to the exact gradient with
a superconvergent rate O(h1.5). Hence, the gradient recovery method provides an asymptotically exact
a posteriori error estimator for the PPIFE methods. Several numerical examples are presented to verify
our theoretical results.

Keywords: superconvergence, interface problem, immersed finite element, supercloseness, gradient re-
covery.

1. Introduction

Recently there has been of great interest in developing finite element method for interface problems
where the discontinuous coefficients appear naturally due to the background consisting of rather differ-
ent materials; see, e.g.,(Bastian & Engwer, 2009; Babuška, 1970; Barrett & Elliott, 1987; Bramble &
King, 1996; Cai & Zhang, 2009; Chen & Dai, 2002; Chen & Zou, 1998; Gong et al., 0708; Hansbo &
Hansbo, 2002; Hou & Liu, 2005; Hou et al., 2004; Huang et al., 2017; Li, 1998; Li et al., 2004, 2003;
Li & Ito, 2006; Lin et al., 2015; Xu, 1982). It is well known that classical finite element method works
for interface problems provided that the mesh is aligned with the interface (Babuška, 1970; Bramble
& King, 1996; Chen & Zou, 1998; Xu, 1982). Such requirement may be a heavy burden especial-
ly when the interface involves complex geometry and therefore it is difficult and time-consuming to
generate a body-fitted mesh. To release the restriction, Li proposed an immersed finite element (IFE)
method for the two-point boundary value problem (Li, 1998). This idea was further generalized into
two-dimensional cases by Li, Lin, and Wu who constructed a nonconforming IFE method for interface
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problems (Li et al., 2003). The main idea of IFE is to solve interface problems on the Cartesian mesh
(uniform mesh) by modifying basis functions near the interface.

The optimal approximation capability of IFE space was justified in (Li et al., 2004). However, there
is no proof for the optimal convergence of the classical IFE method in the two-dimensional setting, see
(Lin et al., 2015), even though plentiful numerical experiments showed optimal convergence for elliptic
equations. Interested readers are referred to (Chou et al., 2010; He et al., 2012; Kwak et al., 2010)
for the progress of theoretical results. Moreover, numerical test results demonstrated that classic IFE
method (Ji et al., 2014) achieves only the first order convergence in the L∞ norm. In fact, the error
function |u− uh| has relatively larger values over interfaces due to the discontinuities of both trial and
test functions. To eliminate this disadvantage, the authors of (Ji et al., 2014) added a correction term
into the bilinear form of the classic IFE method and (Hou & Liu, 2005; Hou et al., 2013, 2004) proposed
a new IFE formulation in the framework of the Petrov-Galerkin method, where the test function may
not be the trial function. However, the theoretical foundation of their methods is not fully established.
Alternatively, Lin, Lin, and Zhang (Lin et al., 2015) proposed PPIFE methods to penalize the inter-
element discontinuity. Thanks to the added penalty term, the authors proved the coercivity of the bilinear
form and showed the optimal convergence in the energy norm.

Superconvergence is an active research topic in the finite element community and its theory for s-
mooth problems is well established, see, e.g., (Babuška & Strouboulis, 2001; Bank & Xu, 2003; Chen,
2001; Chen & Xu, 2007; Lakhany et al., 2000; Guo & Zhang, 2015; Guo et al., 2017; Lin & Yan,
1996; Naga & Zhang, 2004, 2005; Wahlbin, 1995; Wu & Zhang, 2007; Xu & Zhang, 2004; Zhang &
Naga, 2005; Zienkiewicz & Zhu, 1992a,b; Zhu & Lin, 1989), and references therein. On the other
hand, however, the superconvergence phenomena for interface problems is not yet well understood due
to discontinuing of the coefficient crossing the interface. In (Wei et al., 2014), a supercloseness result
between the linear finite element solution and the linear interpolation of the exact solution is proved for
a two-dimensional interface problem with a body-fitted mesh. Recently, the first two authors proposed
an improved polynomial preserving recovery (IPPR) for interface problem and proved the superconver-
gence on both mildly unstructured mesh and adaptively refined mesh (Guo & Yang, 2016a). For IFE
method, Chou et al. introduced two special interpolation formula to recover flux more accurately for the
one-dimensional linear and quadratic IFE elements (Chou, 2012; Chou & Attanayake, 2017). In (Cao
et al., 2015), Cao et al. investigated nodal superconvergence phenomena using generalized orthogonal
polynomial in the one-dimensional setting. For the two-dimensional case, the first two authors proposed
a new gradient recovery technique (Guo & Yang, 2017) for symmetric and consistent IFE method (Ji
et al., 2014) and Petrov-Galerkin IFE method (Hou & Liu, 2005; Hou et al., 2013, 2004) and numerical-
ly verified its superconvergence. In addition, (Guo & Yang, 2017) numerically showed supercloseness
results for both symmetric and consistent IFE method and Petrov-Galerkin IFE method.

The main goal of this work is to establish a complete superconvergence theory for the PPIFE method
(Lin et al., 2015). Our analysis relies on the following three key observations: 1) the solution is piece-
wise smooth on each sub-domain despite of its low global regularity; 2) the basis functions on non-
interface elements are just basis functions for the standard linear finite element method; 3) the number
of interface elements is roughly O(h−1). The above three observations motivate us to divide elements
into the following three disjoint types: interior elements, exterior elements, and interface elements. We
can obtain the supercloseness using well-known results in (Bank & Xu, 2003; Chen & Xu, 2007; Xu
& Zhang, 2004) on the interior and exterior elements, respectively. In addition, the trace inequalities
for the IFE functions in (Lin et al., 2015) and the third observation enables us to establish O(h1.5) su-
percloseness result for interface elements. Our supercloseness result reduces to the standard one as in
(Bank & Xu, 2003; Chen & Xu, 2007; Xu & Zhang, 2004) when the discontinuity disappears. It is
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consistent with the fact that the IFE methods become the standard linear finite element method when
the discontinuity disappears. Furthermore, we show that the gradient recovery method in (Guo & Yang,
2017) can also be applied to the PPIFE methods. The recovered gradient is proven to be superconver-
gent to the exact gradient of the interface problem, and therefore, it provides an asymptotically exact a
posterior error estimator for PPIFE methods.

The rest of the paper is organized as follows. In Section 2, we introduce the model interface prob-
lem and the PPIFE methods. In Section 3, we first establish the supercloseness between gradients of the
PPIFE solution and the exact solution to the interface problem, and then based on the supercloseness,
we prove that the recovered gradient using the method in (Guo & Yang, 2017) is superconvergent to the
exact gradient, and hence provides an asymptotically exact a posteriori error estimator for PPIFE meth-
ods. In Section 4, we present some numerical experiments to support our theoretical results. Finally, we
make some conclusive remarks in Section 5.

2. Preliminary

In this section, we shall introduce the elliptic interface problem, and its discrete form using the PPIFE
methods(Lin et al., 2015).

2.1 Elliptic interface problem

Let Ω be a bounded polygonal domain with Lipschitz boundary ∂Ω in R2. A C2-curve Γ divides
Ω into two disjoint subdomains Ω− and Ω+, which is typically characterized by zero level set of
some level set function φ (Osher & Fedkiw, 2003; Sethian, 1996), with Ω− = {z ∈ Ω |φ(z) < 0} and
Ω+ = {z ∈Ω |φ(z)> 0}. We shall consider the following elliptic interface problem

−∇ · (β (z)∇u(z)) = f (z), z in Ω \Γ , (2.1)
u = 0, z on ∂Ω , (2.2)

where the diffusion coefficient β (z)> β0 is a piecewise smooth function, i.e.

β (z) =
{

β−(z) if z ∈Ω−,
β+(z) if z ∈Ω+,

(2.3)

which has a finite jump of function values across the interface Γ . At the interface Γ , one has the
following homogeneous jump conditions

[u]Γ = u+−u− = 0, (2.4)

[βun]Γ = β
+u+n −β

−u−n = 0, (2.5)

where un denotes the normal flux ∇u ·n with n as the unit outer normal vector of the interface Γ .
In this paper, we use the standard notations for Sobolev spaces and their associate norms given in

(Brenner & Scott, 2008; Ciarlet, 2002; Evans, 2010). For a subdomain A of Ω , let Pm(A) be the space
of polynomials of degree less than or equal to m in A and nm be the dimension of Pm(A) which equals
to 1

2 (m+ 1)(m+ 2). W k,p(A) denotes the Sobolev space with norm ‖ · ‖k,p,A and seminorm | · |k,p,A.
When p = 2, W k,2(A) is simply denoted by Hk(A) and the subscript p is omitted in its associate norm
and seminorm. As in (Wei et al., 2014), denote W k,p(Ω− ∪Ω+) as the function space consisting of
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piecewise Sobolev function w such that w|Ω− ∈W k,p(Ω−) and w|Ω+ ∈W k,p(Ω+). For the function
space W k,p(Ω−∪Ω+), define norm as

‖w‖k,p,Ω−∪Ω+ =
(
‖w‖p

k,p,Ω− +‖w‖k,p,Ω+

)1/p
,

and seminorm as

|w|k,p,Ω−∪Ω+ =
(
|w|pk,p,Ω− + |w|k,p,Ω+

)1/p
.

We assume that Th is a shape regular triangulation of Ω with h = max
T∈T

diam(T )h, and that h is small

enough so that the interface Γ never crosses any edge of Th more than once. The elements of Th can
be divided into two categories: regular elements and interface elements. We call an element T interface
element if the interface Γ passes the interior of T ; otherwise, we call it regular element. If Γ passes two
vertices of an element T , we treat the element T as a regular element. Let T i

h and T r
h denote the set of

all interface elements and regular elements, respectively.
Let Nh and E̊h denote the set of all vertices and interior edges of Th, respectively. We can divide E̊h

into two categories: interface edge E̊ i
h and regular edge E̊ r

h , which are defined by

E̊ i
h = {e ∈ E̊h : e̊∩Γ 6= /0}, , E̊ r

h = E̊h \ E̊ i
h. (2.6)

For any interior edge e, there exist two triangles Te,1 and Te,2 such that Te,1∩Te,2 = e. Denote ne as the
unit normal of e pointing from T1 to T2, and define

{u}= 1
2
(
u|Te,1 +u|Te,2

)
, (2.7)

[u] = u|Te,1 −u|Te,2 . (2.8)

When no confusion arises the subscript e can be dropped. We also introduce two special function spaces
Xh and Xh,0 as

Xh :=
{

v ∈ L2(Ω) : v|T ∈ H1(T ) , v is continuous at Nh and across E̊ r
h

}
, (2.9)

Xh,0 = {v ∈ Xh : v(z) = 0 for all z ∈Nh∩∂Ω} . (2.10)

We define a bilinear form ah : Xh,0×Xh,0→ R as

ah(v,w) = ∑
T∈Th

∫
T

β∇v ·∇wdx− ∑
e∈E̊ i

h

∫
e
{β∇v ·ne} [w]ds+

ε ∑
e∈E̊ i

h

∫
e
{β∇w ·ne} [v]ds+ ∑

e∈E̊ i
h

∫
e

σ0
e

|e| [v][w]ds,
(2.11)

where the parameter σ0
e is positive and the parameter ε can be arbitrary. Usually, ε takes the value −1,

0, or 1. It is easy to see that ah is symmetric if ε =−1 and it is nonsymmetric otherwise.
The general variational form (Lin et al., 2015) of (2.1)– (2.5) is to find uh ∈ Xh,0 such that

ah(u,v) = ( f ,v), ∀v ∈ Xh,0. (2.12)



SUPERCONVERGENCE ANALYSIS OF PPIFE METHODS 5 of 21

z1

z2z3

z4

z5

T−

T+n

FIG. 1. Typical example of interface element.

2.2 Partially penalized immersed finite element method

The key idea of partially penalized immersed finite element (PPIFE) methods (Lin et al., 2015) is
to modify basis functions in interface elements to satisfy jump conditions (2.4) and (2.5). Consider
a typical interface element T as in Figure 1, and let z4 and z5 be the intersection points between the
interface Γ and edges of the element. Connecting the line segment z4z5 forms an approximation of
interface Γ in the element T , denoted by Γh|T . Then the element T is split into two parts: T− and T+.
We construct the following piecewise linear function on the interface element T

φ(z) =
{

φ+ = a++b+x+ c+y, z = (x,y) ∈ T+,
φ− = a−+b−x+ c−y, z = (x,y) ∈ T−, (2.13)

where the coefficients are determined by the following linear system

φ(z1) =V1, φ(z2) =V2, φ(z3) =V3, (2.14)

φ
+(z4) = φ

−(z4), φ
+(z5) = φ

−(z5), β
+

∂nφ
+ = β

−
∂nφ

−, (2.15)

with Vi being the nodal variables. The immersed finite element space Vh (Li et al., 2003) is defined as

Vh :=
{

v ∈ L2(Ω) : v|T ∈Vh(T ) and v is continuous on Nh,
}
, (2.16)

Vh,0 = {v ∈Vh : v(z) = 0 for all z ∈Nh∩∂Ω} , (2.17)

where

Vh(T ) :=
{
{v|v ∈ P1(T )} , if T ∈T r

h ;
{v|v is defined by (2.13)− (2.15)} , if T ∈T i

h .
(2.18)

A function in Vh(T ) is called a linear IFE function on T when T is an interface element. For the
linear IFE function, traditional trace inequality (Brenner & Scott, 2008; Ciarlet, 2002) fails. In (Lin
et al., 2015), Lin et al. established the following trace inequality:
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LEMMA 2.1 Let T be an arbitrary interface element and e be an edge of T . Then there exists a constant
C independent of the interface location and mesh size h such that the following inequality holds:

‖β∇v ·ne‖0,e 6Ch1/2|T |−1/2‖
√

β∇v‖0,T . (2.19)

for every linear IFE function v on T .

It is obvious that Vh (resp. Vh,0) is a subspace of Xh (resp. Xh,0). The PPIFE methods for (2.1)– (2.5)
read as finding uh ∈Vh,0 such that

ah(uh,vh) = ( f ,vh), ∀vh ∈Vh,0. (2.20)

The energy norm ‖ · ‖h is defined as

‖vh‖h =

 ∑
T∈Th

∫
T

β∇vh ·∇vhdx+ ∑
e∈E̊ i

h

∫
e

σ0
e

|e| [vh]
2ds

1/2

. (2.21)

The following coercivity has been proved in (Lin et al., 2015):

LEMMA 2.2 There exists a constant C > 0 such that

C‖vh‖2
h 6 ah(vh,vh), ∀vh ∈Vh,0, (2.22)

is true for ε = 1 unconditionally and is true for ε = 0 or ε = −1 under the condition that σ0
e is large

enough.

Based on the above coercivity, Lin et al. proved the following optimal convergence result:

THEOREM 2.1 Assume that the exact solution u to the interface problem (2.1)– (2.5) is in H3(Ω−∪Ω+)
and uh is the solution to (2.20) on a Cartesian mesh Th. Then there exists a constant C such that

‖u−uh‖h 6Ch‖u‖3,Ω−∪Ω+ . (2.23)

REMARK 2.1 As remarked in (Lin et al., 2015), when the exact solution belongs to W 2,∞(Ω− ∪Ω+),
the IFE solution uh of (2.20) on a Cartesian mesh Th has error estimation in the following form

‖u−uh‖h 6C
(

h‖u‖2,Ω−∪Ω+ +h1.5‖u‖2,∞,Ω−∪Ω+

)
. (2.24)

Note that the above error estimation is also an optimal one since the leading (first) term is of O(h).

3. Superconvergence Analysis

In this section, we first present a superconvergence analysis for the PPIFE method on shape regular
meshes. Then we show that the gradient recovery method introduced in (Guo & Yang, 2017) is applica-
ble and prove that the recovered gradient is superconvergent to the exact gradient.

3.1 Supercloseness result

From now on, we suppose Th is a shape regular triangular mesh although Th is usually Cartesian mesh
in the literature of IFE methods. Let h = max

T∈Th
diam(T ). The set of regular element T r

h can be further
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decomposed into the following two disjoint parts:

T −
h :=

{
T ∈T r

h |T has all three vertices in Ω−
}
,

T +
h :=

{
T ∈T r

h |T has all three vertices in Ω+
}
.

(3.1)

DEFINITION 3.1 1. Two adjacent triangles are called to form an O(h1+α) approximate parallelogram
if the lengths of any two opposite edges differ only by O(h1+α).

2. The triangulation Th is called to satisfy Condition (σ ,α) if there exist a partition Th,1 ∪Th,2
of Th and positive constants α and σ such that every two adjacent triangles in Th,1 form an O(h1+α)
parallelogram and

∑
T∈Th,2

|T |= O(hσ ).

REMARK 3.1 It is obvious that Cartesian mesh satisfies Condition (σ ,α) with σ = ∞ and α = 1.

Suppose Th satisfies Condition (σ ,α). Then we can prove the following supercloseness result:

THEOREM 3.2 Suppose the triangulation Th satisfies Condition (σ ,α). Let u be the solution of the
interface problem (2.1)– (2.5) and uI be the interpolation of u in the IFE space Vh,0. If u ∈ H1(Ω)∩
H3(Ω−∪Ω+)∩W 2,∞(Ω−∪Ω+), then for all vh ∈Vh,0

ah(u−uI ,vh)6C
(

h1+ρ(‖u‖3,Ω+∪Ω− +‖u‖2,∞,Ω+∪Ω−)+Ch1.5‖u‖2,∞,Ω+∪Ω−
)
‖vh‖h. (3.2)

where C is a constant independent of interface location and h and ρ = min(α, σ

2 ,
1
2 ).

Proof. Notice that

ah(u−uI ,vh)

= ∑
T∈Th

∫
T

β∇(u−uI) ·∇vhdx− ∑
e∈E̊ i

h

∫
e
{β∇(u−uI) ·ne} [vh]ds+

ε ∑
e∈E̊ i

h

∫
e
{β∇vh ·ne} [u−uI ]ds+ ∑

e∈E̊ i
h

∫
e

σ0
e

|e| [u−uI ][vh]ds

= ∑
T∈T +

h

∫
T

β∇(u−uI) ·∇vhdx+ ∑
T∈T −h

∫
T

β∇(u−uI) ·∇vhdx

∑
T∈T i

h

∫
T

β∇(u−uI) ·∇vhdx− ∑
e∈E̊ i

h

∫
e
{β∇(u−uI) ·ne} [vh]ds+

ε ∑
e∈E̊ i

h

∫
e
{β∇vh ·ne} [u−uI ]ds+ ∑

e∈E̊ i
h

∫
e

σ0
e

|e| [u−uI ][vh]ds

=I1 + I2 + I3 + I4 + I5 + I6.

(3.3)

Since Th satisfies Condition (σ ,α), it follows that T +
h and T −

h also satisfy the Condition (σ ,α) .
Using the fact that the IFE functions becoming standard linear functions on regular elements, we have
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the following estimates for I1 and I2, whose proof can be found in (Xu & Zhang, 2004):

|I1|6Ch1+ρ(‖u‖3,Ω+ +‖u‖2,∞,Ω+)|vh|h, (3.4)

|I2|6Ch1+ρ(‖u‖3,Ω− +‖u‖2,∞,Ω−)|vh|h, (3.5)

where C is a constant independent of the location of the interface and mesh size h and ρ = min(α, σ

2 ,
1
2 ).

Now we proceed to estimate I3. By the Cauchy-Schwartz inequality, we have

I3 = ∑
T∈T i

h

∫
T

β∇(u−uI) ·∇vhdx

6

 ∑
T∈T i

h

‖β 1/2
∇(u−uI)‖2

0,T

1/2 ∑
T∈T i

h

‖β 1/2
∇vh‖2

0,T

1/2

6

 ∑
T∈T i

h

max(β−,β+)‖∇(u−uI)‖2
0,T

1/2 ∑
T∈T i

h

‖β 1/2
∇vh‖2

0,T

1/2

6C

 ∑
T∈T i

h

h2‖u‖2
2,T−∪T+

1/2 ∑
T∈T i

h

‖β 1/2
∇vh‖2

0,T

1/2

6C

 ∑
T∈T i

h

h4‖u‖2
2,∞,T−∪T+

1/2 ∑
T∈T i

h

‖β 1/2
∇vh‖2

0,T

1/2

6Ch2‖u‖2,∞,Ω−∪Ω+

 ∑
T∈T i

h

1

1/2 ∑
T∈T i

h

‖β 1/2
∇vh‖2

0,T

1/2

6Ch3/2‖u‖2,∞,Ω−∪Ω+

 ∑
T∈T i

h

‖β 1/2
∇vh‖2

0,T

1/2

6Ch3/2‖u‖2,∞,Ω−∪Ω+‖vh‖h,

(3.6)

where we have used optimal approximation capability of IFE space (Li et al., 2004, 2003) and the fact
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that ∑T∈T i
h

1≈ O(h−1). Then we estimate I4. Cauchy-Schwartz inequality implies that

I4 = ∑
e∈E̊ i

h

∫
e
{β∇(u−uI) ·ne} [vh]ds

6

∑
e∈E̊ i

h

∫
e

|e|
σ0

e
{β∇(u−uI) ·ne}2 ds

1/2∑
e∈E̊ i

h

∫
e

σ0
e

|e| [vh]
2ds

1/2

6Ch1/2

∑
e∈E̊ i

h

∫
e
{β∇(u−uI) ·ne}2 ds

1/2∑
e∈E̊ i

h

∫
e

σ0
e

|e| [vh]
2ds

1/2

6Ch2‖u‖2,∞,Ω−∪Ω+

 ∑
T∈T i

h

1

1/2∑
e∈E̊ i

h

∫
e

σ0
e

|e| [vh]
2ds

1/2

6Ch3/2‖u‖2,∞,Ω−∪Ω+‖vh‖h,

(3.7)

where we have used (4.19) in (Lin et al., 2015). To bound I5, we use the standard trace inequality
(Brenner & Scott, 2008; Ciarlet, 2002), since (u− uI)|Ti is a function in H1(Ti), and consider only the
trace of u−uI , for which we have

‖[u−uI ]‖0,e 6‖(u−uI)|Te,1‖0,e +‖(u−uI)|Te,2‖0,e

6Ch−1/2 (‖u−uI‖0,Te,1 +h‖∇(u−uI)‖0,Te,1

)
+

Ch−1/2 (‖u−uI‖0,Te,2 +h‖∇(u−uI)‖0,Te,2

)
6Ch3/2

(
‖u‖2,T−e,1∪T+

e,1
+‖u‖2,T−e,2∪T+

e,1

)
6Ch3/2‖u‖2,∞,Ω−∪Ω+ .

(3.8)

Also, the trace inequality for IFE function (2.19) implies that

‖{β∇vh ·ne}‖0,e 6 ‖
{

β∇vh|Te,1 ·ne
}
‖0,e +‖

{
β∇vh|Te,2 ·ne

}
‖0,e

6Ch−1/2
(
‖
√

β∇vh‖0,Te,1 +‖
√

β∇vh‖0,Te,2

)
.

(3.9)
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Hence, we get

I5 =

∣∣∣∣∣∣ε ∑
e∈E̊ i

h

∫
e
{β∇vh ·ne} [u−uI ]ds

∣∣∣∣∣∣
6

∑
e∈E̊ i

h

‖{β∇vh ·ne}‖2
0,e

1/2∑
e∈E̊ i

h

‖[u−uI ]‖2
0,e

1/2

6C

∑
e∈E̊ i

h

h−1
(
‖
√

β∇vh‖0,Te,1 +‖
√

β∇vh‖0,Te,2

)2

1/2∑
e∈E̊ i

h

h5‖u‖2
2,∞,Ω−∪Ω+

1/2

6Ch2‖u‖2,∞,Ω−∪Ω+

 ∑
T∈T i

h

‖
√

β∇vh‖2
0,T

1/2 ∑
T∈T i

h

1

1/2

6Ch3/2‖u‖2,∞,Ω−∪Ω+‖vh‖h,

(3.10)

where we have also used the fact ∑T∈T i
h

1 ≈ O(h−1). For I6, by the Cauchy-Schwartz inequality and
(3.8), we have

I6 = ∑
e∈E̊ i

h

∫
e

σ0
e

|e| [u−uI ][vh]ds

6

∑
e∈E̊ i

h

∫
e

σ0
e

|e| [u−uI ]
2ds

1/2∑
e∈E̊ i

h

∫
e

σ0
e

|e| [vh]
2ds

1/2

6Ch−1/2

∑
e∈E̊ i

h

‖[u−uI ]‖2
0,e

1/2

‖vh‖h

6Ch2‖u‖2,∞,Ω−∪Ω+

 ∑
T∈T i

h

1

1/2

‖vh‖h

6Ch3/2‖u‖2,∞,Ω−∪Ω+‖vh‖h,

(3.11)

where we have also used the fact ∑T∈T i
h

1 ≈ O(h−1). Summarizing the bounds for Ii (i = 1,2, · · · ,6)
together gives (3.2). �

REMARK 3.2 When the discontinuity disappears, E̊ i
h will become empty. In that case, Ii (i = 3, 4, 5, 6)

will become zero and we can reproduce the standard supercloseness result (Xu & Zhang, 2004).

REMARK 3.3 Here we only discuss the triangle element. For the bilinear PPIFE methods, we can prove
similar supercloseness results by adapting the integral identities in (Lin et al., 1991; Lin & Yan, 1996),
the trace inequalities for bilinear IFE functions (Lin et al., 2015), and the same techniques that we used
here to deal with the interface part.
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Based on the supercloseness results, we can prove the following theorem:

THEOREM 3.3 Assume the same hypothesis in Theorem 3.2 and let uh be the IFE solution of discrete
variational problem (2.20) ; then

‖uh−uI‖h 6C
(

h1+ρ(‖u‖3,Ω+∪Ω− +‖u‖2,∞,Ω+∪Ω−)+Ch3/2‖u‖2,∞,Ω+∪Ω−
)
, (3.12)

where ρ = min(α, σ

2 ,
1
2 ).

Proof. Since Vh,0 is a subset of Xh,0, it follows that

ah(u−uh,vh) = 0, ∀vh ∈Vh,0. (3.13)

Then we have
ah(uh−uI ,vh) = ah(u−uI ,vh), ∀vh ∈Vh,0. (3.14)

Taking vh = uh−uI and using Theorem 3.2 and Lemma 2.2, we prove (3.12). �

REMARK 3.4 Similarly as Remark 3.2, when the discontinuity disappears, (3.12) will reduce to the
standard supercloseness result (Xu & Zhang, 2004).

3.2 Superconvergence results

In this subsection, using the supercloseness results, we show that the recovered gradient of the PPIFE
solution is superconvergent to the exact gradient.

To define the gradient recovery operator introduced (Guo & Yang, 2017), we first generate a local
body-fitted mesh T̂h, by adding some new vertices into Nh (Guo & Yang, 2017; Li et al., 2003). Here
the body-fitted mesh means that the triangulation T̂h is aligned with the interface, assuming that Ŝh is
the C0 linear finite element space defined on T̂h.

Let N̂h denote all vertices in T̂h, and one has Nh ⊂ N̂h. For any z ∈ N̂h, let T̂z denote the set of all
triangles in T̂h having z as their vertex and define

(Ehv)(z) =
1

|T̂z|
∑

T̂∈T̂z

vT̂ (z), (3.15)

with |T̂z| being the cardinality of T̂z and vT̂ = v|T̂ . We can define Ehv on Ω by standard linear finite
element interpolation in Ŝh after obtaining the values (Ehv)(z) at all vertices.

Let Γh be the approximated interface by connecting the intersection points of edges with Γ . We can
category the triangulation T̂h into the following two disjoint sets:

T̂ −
h :=

{
T ∈Th| all three vertices of T are in Ω−

}
, (3.16)

T̂ +
h :=

{
T ∈Th| all three vertices of T are in Ω+

}
. (3.17)

Let Ω
−
h = ∪T∈T̂ −h

T and Ω
+
h = ∪T∈T̂ +

h
T . Suppose Ŝ−h and Ŝ+h are the continuous linear finite element

spaces defined on T̂ −
h and T̂ +

h , respectively.
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Denote the PPR gradient recovery operator on Ŝ−h by G−h (Zhang & Naga, 2005). Note that G−h v−h
is a finite element vector-valued function in Ŝ−h × Ŝ−h for any given finite element function v−h ∈ Ŝ−h . To
define the recovered gradient G−h v−h , it suffices to define G−h v−h at every nodal point. Let N̂ −

h denote
the set of all nodal point of T̂ −

h . For any vertex z ∈ N̂ −
h , let K̂ −

z be a patch of elements in T̂ −
h around

z. The readers are referred to (Zhang & Naga, 2005; Naga & Zhang, 2004; Guo et al., 2016) for the
construction of the local patch of elements K̂ −

z . Select all nodes in N̂ −
h ∩ K̂ −

z as sampling points and
fit a polynomial pz ∈ Pk+1(K̂

−
z ) in the least square sense at those sampling points, i.e.

pz = arg min
p∈Pk+1(K̂

−
z )

∑
z̃∈N̂ −

h ∩K̂
−

z

(uh− p)2(z̃). (3.18)

Then the recovered gradient at z is defined as

(G−h uh)(z) = ∇pz(z).

The gradient recovery operator G−h is a bounded operator in the sense of

‖G−h v−h ‖0,Ω 6C|v−|0,Ω− , (3.19)

with C being a constant independent of the mesh size h and the solution u.
Similarly, we can define the PPR gradient recovery operator G+

h from Ŝ+h to Ŝ+h × Ŝ+h . Then, for any
uh ∈ Vh, let GI

h : Ŝh→ (Ŝ−h ∪ Ŝ+h )× (Ŝ−h ∪ Ŝ+h ) be the improved polynomial preserving recovery (IPPR)
operator proposed in (Guo & Yang, 2016a) which is defined as following.

(GI
huh)(z) =

{
(G−h uh)(z) if z ∈Ω

−
h ,

(G+
h uh)(z) if z ∈Ω

+
h .

(3.20)

Then the recovered gradient of PPIFE solution uh is defined as

Rhuh = GI
h(Ehvh). (3.21)

The linear boundedness and consistency of the gradient recovery operator Rh are showed in (Guo
& Yang, 2017). The previous established supercloseness result enables us to prove the following main
superconvergence result:

THEOREM 3.4 Assume the same hypothesis in Theorem 3.2 and let uh be the IFE solution of discrete
variational problem (2.20) ; then

‖∇u−Rhuh‖0,Ω 6C
(

h1+ρ(‖u‖3,Ω+∪Ω− +‖u‖2,∞,Ω+∪Ω−)+Ch1.5‖u‖2,∞,Ω+∪Ω−
)
. (3.22)

Proof. We decompose ∇u−Rhuh as (∇u−RhuI)− (RhuI−Rhuh). Then the triangle inequality implies
that

‖∇u−Rhuh‖0,Ω 6 ‖∇u−RhuI‖0,Ω +‖RhuI−Rhuh‖0,Ω := I1 + I2. (3.23)

According to Theorem 3.7 in (Guo & Yang, 2017), we have

I1 . h2‖u‖3,Ω−∪Ω+ . (3.24)
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Using definition (3.21), we obtain that

I2 =‖GhEh(uI−uh)‖0,Ω

.‖G−h Eh(uI−uh)‖0,Ω−h
+‖G+

h Eh(uI−uh)‖0,Ω+
h

.‖∇Eh(uI−uh)‖0,Ω−h
+‖∇Eh(uI−uh)‖0,Ω+

h

.‖∇Eh(uI−uh)‖0,Ω

.‖∇(uI−uh)‖0,Ω

.h1+ρ(‖u‖3,Ω+∪Ω− +‖u‖2,∞,Ω+∪Ω−)+Ch3/2‖u‖2,∞,Ω+∪Ω−

(3.25)

where we have used the boundedness property of G±h in the second inequality, Corollary 3.4 of (Guo &
Yang, 2017) in the fourth inequality, and Theorem 3.3 in the last inequality. Combining (3.23)-(3.25)
completes the proof of (3.22). �

The gradient recovery operator Rh naturally provides an a posteriori error estimators for the PPIFE
method. We define a local a posteriori error estimator on element T ∈Th as

ηT =


‖β 1/2(Rhuh−∇uh)‖0,T , if T ∈T r

h ,(
∑

T̂⊂T,T̂∈T̂h

‖β 1/2(Rhuh−∇uh)‖2
0,T̂

) 1
2

, if T ∈T i
h ,

(3.26)

and the corresponding global error estimator as

ηh =

(
∑

T∈Th

η
2
T

)1/2

. (3.27)

With the above superconvergence result, we are ready to prove the asymptotic exactness of error
estimators based on the recovery operator Rh.

THEOREM 3.5 Assume the same hypothesis in Theorem 3.2 and let uh be the IFE solution of discrete
variational problem (2.20). Further assume that there is a constant C(u)> 0 such that

‖∇(u−uh)‖0,Ω >C(u)h. (3.28)

Then it holds that ∣∣∣∣ ηh

‖β 1/2∇(u−uh)‖0,Ω
−1
∣∣∣∣6Chρ . (3.29)

Proof. By the Triangle inequality, Theorem 3.4, and (3.28), we have∣∣∣∣ ηh

‖β 1/2∇(u−uh)‖0,Ω
−1
∣∣∣∣6 ‖β 1/2(Rhuh−∇uh)‖0,Ω

‖β 1/2∇(u−uh)‖0,Ω
6

Ch1+ρ
(
‖u‖3,Ω+∪Ω− +‖u‖2,∞,Ω+∪Ω−

)
min(β+,β−)c(u)h

6Chρ .

�

REMARK 3.5 Assumption 3.28 is reasonable on general shape regular meshes by the lower bounds of
the approximation error by piecewise polynomials (Lin et al., 2014).

REMARK 3.6 Theorem 3.5 implies that (3.26) (or (3.27)) is an asymptotically exact a posteriori error
estimator for PPIFE methods.
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4. Numerical Examples

In the section, the previously established supercloseness and superconvergence theory are demonstrated
by three numerical examples. The first two are benchmark problems for testing numerical methods
for linear interface problem. For that two examples, the computational domain are chosen as Ω =
[−1,1]× [−1,1]. The uniform triangulation of Ω is obtained by dividing Ω into N2 sub-squares and
then dividing each sub-square into two right triangles. The resulting uniform mesh size is h = 1/N. The
last example is a nonlinear interface problem. We test the examples using three different PPIFE methods
(Lin et al., 2015): the symmetric PPIFE method (SPPIFEM), incomplete PPIFE method (IPPIFEM),
and non-symmetric PPIFE method (NPPIFEM), which are corresponding to ε =−1, ε = 0, and ε = 1,
respectively. We choose the penalty parameter σ0

e =
√

max(β−,β+) for SPPIFEM and IPPIFEM and
σ0

e = 1 for NPPIFEM. For convenience, we shall adopt the following error norms in all the examples:

De := ‖∇(u−uh)‖0,Ω , Die := ‖∇uI−∇uh‖0,Ω , Dre := ‖∇u−Rhuh‖0,Ω . (4.1)

Example 4.1. In this example, we consider the elliptic interface problem (2.1) with a circular inter-
face of radius r0 =

π

6 as studied in (Li et al., 2003). The exact solution is

u(z) =


r3

β− if z ∈Ω−,
r3

β+ +
(

1
β− − 1

β+

)
r3

0 if z ∈Ω+,

where r =
√

x2 + y2.
We use two typical jump ratios: β−/β+ = 1/10 and β−/β+ = 1/1000. Tables 1-6 report numerical

results. For De, all three partially penalized finite element methods converge with the optimal rate O(h)
for both differential jump ratios. As for Die and Dre, O(h1.5) order of convergence can be clearly
observed for all cases, which support our Theorems 3.3 and 3.4.

We also test the case with jump ratio β−/β+ = 1/1000000. The numerical result for SPPIFEM is
listed in Table 7. The supercloseness result and superconvergent rate can be also observed in Table 7.

Table 1. SPPIFEM for Example 4.1 with β+ = 10,β− = 1.
h De order Die order Dre order

1/16 7.20e-02 – 3.64e-03 – 1.91e-02 –
1/32 3.62e-02 0.99 1.34e-03 1.44 5.10e-03 1.91
1/64 1.81e-02 1.00 4.64e-04 1.53 1.68e-03 1.60

1/128 9.07e-03 1.00 1.58e-04 1.56 5.24e-04 1.68
1/256 4.53e-03 1.00 5.76e-05 1.45 1.71e-04 1.62
1/512 2.27e-03 1.00 2.00e-05 1.53 5.87e-05 1.54
1/1024 1.13e-03 1.00 7.07e-06 1.50 1.94e-05 1.60

Example 4.2. In this example, we consider the interface problem (2.1) with a cardioid interface as
in (Hou & Liu, 2005). The interface curve Γ is the zero level of the function

φ(x,y) = (3(x2 + y2)− x)2− x2− y2,

as shown Figure 2. We choose the exact solution u(x,y) = φ(x,y)/β (x,y), where

β (x,y) =
{

xy+3 if (x,y) ∈Ω−,
100 if (x,y) ∈Ω+.
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Table 2. IPPIFEM for Example 4.1 with β+ = 10,β− = 1.
h De order Die order Dre order

1/16 7.20e-02 – 3.61e-03 – 1.90e-02 –
1/32 3.62e-02 0.99 1.22e-03 1.57 5.01e-03 1.92
1/64 1.81e-02 1.00 3.98e-04 1.62 1.63e-03 1.62
1/128 9.07e-03 1.00 1.38e-04 1.53 5.07e-04 1.68
1/256 4.53e-03 1.00 4.94e-05 1.48 1.64e-04 1.63
1/512 2.27e-03 1.00 1.72e-05 1.52 5.58e-05 1.55

1/1024 1.13e-03 1.00 6.05e-06 1.51 1.83e-05 1.61

Table 3. NPPIFEM for Example 4.1 with β+ = 10,β− = 1.
h De order Die order Dre order

1/16 7.20e-02 – 3.90e-03 – 1.89e-02 –
1/32 3.62e-02 0.99 1.29e-03 1.59 4.97e-03 1.93
1/64 1.81e-02 1.00 4.18e-04 1.63 1.59e-03 1.64
1/128 9.07e-03 1.00 1.44e-04 1.53 4.97e-04 1.68
1/256 4.53e-03 1.00 5.17e-05 1.48 1.60e-04 1.64
1/512 2.27e-03 1.00 1.80e-05 1.52 5.43e-05 1.56

1/1024 1.13e-03 1.00 6.34e-06 1.51 1.77e-05 1.61

Table 4. SPPIFEM for Example 4.1 with β+ = 1000,β− = 1.
h De order Die order Dre order

1/16 2.47e-02 – 4.60e-03 – 1.33e-02 –
1/32 1.31e-02 0.91 1.78e-03 1.37 3.62e-03 1.88
1/64 6.56e-03 1.00 6.44e-04 1.47 1.36e-03 1.42
1/128 3.31e-03 0.99 2.17e-04 1.57 4.60e-04 1.56
1/256 1.65e-03 1.01 7.70e-05 1.49 1.38e-04 1.73
1/512 8.23e-04 1.00 2.72e-05 1.50 4.71e-05 1.55

1/1024 4.12e-04 1.00 9.60e-06 1.50 1.59e-05 1.57

Table 5. IPPIFEM for Example 4.1 with β+ = 1000,β− = 1.
h De order Die order Dre order

1/16 2.54e-02 – 8.58e-03 – 1.50e-02 –
1/32 1.35e-02 0.91 3.86e-03 1.15 4.99e-03 1.58
1/64 6.65e-03 1.02 1.29e-03 1.58 1.79e-03 1.48
1/128 3.33e-03 1.00 4.36e-04 1.57 5.46e-04 1.72
1/256 1.65e-03 1.01 1.55e-04 1.50 1.83e-04 1.58
1/512 8.25e-04 1.00 5.60e-05 1.47 6.61e-05 1.46

1/1024 4.12e-04 1.00 2.01e-05 1.48 2.38e-05 1.48

Note that the interface is not Lipschitz-continuous and has a singular point at the origin. Tables 8-10
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Table 6. NPPIFEM for Example 4.1 with β+ = 1000,β− = 1.
h De order Die order Dre order

1/16 2.56e-02 – 9.39e-03 – 1.55e-02 –
1/32 1.36e-02 0.91 4.29e-03 1.13 5.34e-03 1.54
1/64 6.67e-03 1.03 1.41e-03 1.61 1.88e-03 1.50

1/128 3.34e-03 1.00 4.84e-04 1.54 5.65e-04 1.74
1/256 1.65e-03 1.01 1.72e-04 1.49 1.95e-04 1.53
1/512 8.25e-04 1.00 6.30e-05 1.45 7.23e-05 1.43
1/1024 4.12e-04 1.00 2.29e-05 1.46 2.67e-05 1.44

Table 7. SPPIFEM for Example 4.1 with β+ = 1000000,β− = 1.
Dof De order Die order Dre order
1/16 3.80e-02 – 2.84e-02 – 3.83e-02 –
1/32 2.03e-02 0.91 1.01e-02 1.49 1.12e-02 1.78
1/64 1.04e-02 0.97 3.51e-03 1.52 4.56e-03 1.29

1/128 5.26e-03 0.98 1.08e-03 1.70 2.29e-03 1.00
1/256 2.65e-03 0.99 3.52e-04 1.62 5.09e-04 2.17
1/512 1.33e-03 0.99 1.32e-04 1.42 1.73e-04 1.56
1/1024 6.65e-04 1.00 4.57e-05 1.52 5.93e-05 1.55

display the numerical data. We observe the same supercloseness and superconvergence phenomena as
predicted by our theory.

Table 8. SPPIFEM for Example 4.2 .
h De order Die order Dre order

1/16 5.77e-02 – 5.71e-03 – 2.48e-02 –
1/32 3.03e-02 0.93 2.39e-03 1.26 7.88e-03 1.66
1/64 1.51e-02 1.01 8.55e-04 1.48 2.27e-03 1.80

1/128 7.43e-03 1.02 3.07e-04 1.48 7.10e-04 1.68
1/256 3.71e-03 1.00 1.13e-04 1.45 2.36e-04 1.59
1/512 1.86e-03 1.00 3.94e-05 1.52 8.84e-05 1.41
1/1024 9.32e-04 1.00 1.39e-05 1.50 3.08e-05 1.52

Example 4.3. In this example, we consider the following nonlinear interface problem

−∇ · (β (z)∇u(z))+ sin(u(z)) = f (z), z in Ω \Γ ,

with homogeneous jump conditions (2.4) and (2.5) where Ω = [−2,2]×[−2,2]\ [−0.5,0.5]×[−0.5,0.5].
The interface curve Γ is circle centered at origin with radius r0 = π/3. The exact solution is

u(z) =


log(r)

β− , if z ∈Ω−,
log(r)

β+ +
(

1
β− − 1

β+

)
log(r0), if z ∈Ω+,
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FIG. 2. Shape of interface for Example 4.2

Table 9. IPPIFEM for Example 4.2.
h De order Die order Dre order

1/16 5.77e-02 – 6.45e-03 – 2.46e-02 –
1/32 3.03e-02 0.93 2.67e-03 1.27 7.63e-03 1.69
1/64 1.51e-02 1.01 9.68e-04 1.46 2.25e-03 1.76
1/128 7.43e-03 1.02 3.55e-04 1.45 6.98e-04 1.69
1/256 3.71e-03 1.00 1.25e-04 1.51 2.30e-04 1.60
1/512 1.86e-03 1.00 4.39e-05 1.51 8.51e-05 1.43

1/1024 9.32e-04 1.00 1.54e-05 1.51 2.95e-05 1.53

Table 10. NPPIFEM for Example 4.2.
h De order Die order Dre order

1/16 5.78e-02 – 7.96e-03 – 2.47e-02 –
1/32 3.03e-02 0.93 3.12e-03 1.35 7.58e-03 1.70
1/64 1.51e-02 1.01 1.17e-03 1.41 2.29e-03 1.72
1/128 7.43e-03 1.02 4.35e-04 1.43 7.16e-04 1.68
1/256 3.71e-03 1.00 1.51e-04 1.53 2.35e-04 1.61
1/512 1.86e-03 1.00 5.31e-05 1.50 8.62e-05 1.45

1/1024 9.32e-04 1.00 1.87e-05 1.51 3.00e-05 1.52

where r = |z|=
√

x2 + y2. The right hand side function f and boundary condition are obtained from the
exact solution.

The nonlinear interface problem is solved by the PPIFE method with Newton’s iteration on a series
of uniform meshes. The coarsest mesh is depicted in Fig 3 and the finer meshes are obtained by the
uniform refinement. Numerical results are reported in Tables 11-13. We observe the same superconver-
gence and supercloseness phenomena as linear problems.



18 of 21 H. GUO ET AL.

FIG. 3. Initial non body-fitted mesh for Example 4.3

Table 11. SPPIFEM for Example 4.3 with β+ = 1000,β− = 1.
h De order Die order Dre order

1/8 1.69e-01 – 2.55e-02 – 6.44e-02 –
1/16 8.53e-02 0.99 8.54e-03 1.58 1.60e-02 2.01
1/32 4.19e-02 1.03 3.03e-03 1.49 6.13e-03 1.38
1/64 2.09e-02 1.00 1.05e-03 1.53 2.17e-03 1.50

1/128 1.04e-02 1.01 3.70e-04 1.51 6.69e-04 1.70
1/256 5.17e-03 1.00 1.28e-04 1.54 2.34e-04 1.51
1/512 2.58e-03 1.00 4.46e-05 1.52 7.90e-05 1.57

Table 12. IPPIFEM for Example 4.3 with β+ = 1000,β− = 1.
h De order Die order Dre order

1/8 1.75e-01 – 5.15e-02 – 7.52e-02 –
1/16 8.71e-02 1.00 1.90e-02 1.44 2.32e-02 1.70
1/32 4.23e-02 1.04 6.15e-03 1.63 8.27e-03 1.49
1/64 2.10e-02 1.01 1.97e-03 1.64 2.49e-03 1.73

1/128 1.04e-02 1.01 6.85e-04 1.52 8.61e-04 1.53
1/256 5.17e-03 1.01 2.42e-04 1.50 3.17e-04 1.44
1/512 2.58e-03 1.00 8.77e-05 1.47 1.14e-04 1.47

5. Conclusion

In this paper, we study the superconvergence theory for partially penalized immersed finite element
(PPIFE) methods. Specifically, we obtain supercloseness results analogous to standard linear finite
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Table 13. NPPIFEM for Example 4.3 with β+ = 1000,β− = 1..
h De order Die order Dre order

1/8 1.77e-01 – 6.03e-02 – 8.06e-02 –
1/16 8.78e-02 1.01 2.23e-02 1.44 2.55e-02 1.66
1/32 4.24e-02 1.05 6.89e-03 1.69 8.73e-03 1.55
1/64 2.10e-02 1.01 2.25e-03 1.62 2.63e-03 1.73
1/128 1.04e-02 1.02 7.84e-04 1.52 9.28e-04 1.50
1/256 5.17e-03 1.01 2.80e-04 1.49 3.47e-04 1.42
1/512 2.58e-03 1.00 1.02e-04 1.45 1.29e-04 1.43

element method. Due to the existence of the interface, we can only prove a supercloseness result of
order O(h1.5). We also notice that the supercloseness result will reduce to the well-known one for the
standard linear element when the discontinuity disappears. These results provide us a fundamental tool
to prove the O(h1.5) superconvergence of recovered gradient by using the gradient recovery operator
proposed in (Guo & Yang, 2017). We present three numerical examples to support our theoretical
results.
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