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A justification is given for ithe use of noa-spreading or frozen g; ian packets in dy ics calculations. In this work an
initial wavefunction or quantum density operator is expanded in a complete set of grussian wavepackets. It is demonstrated
that the time evoiution of this wavepacket expansion for the quantum wavefunction or dens*ty is correctly given within the
approximat:ons employed by the classical propagation of the average position and momentum of each gaussian packet. holding
the shape of these individual gaussians fixed. The semiclassical approximation is employed for the quantum propagator and the
stationary phase approximation for certain integrals is atilized in this derivation. This analysis demonstrates that the divergence
of the classical trajectorics associated with the individual gaussian packets accounts {or the changes in shape of the quanium
wavefunction or density. as has been suggested on intuitive grounds by Heller. The method should be exact for quadmatic
potentials, and this is verified by explicitly applying it for the harmonic oscillator example.

1. Introduction

This manuscript considers the spreading or non-spreading of wavepackets. On one hand molecular
dynamics simulations have given useful results for many properties of bulk systems. These simulations are
based upon classical mechanics and would seem to indicate that some localized wavepacket description for
the particle wavefunctions must be applicable on the time scales of interest. Otherwise the use of classical
mechanics wouli appear to be inappropriate.

On the other hand, a simple estimate of the packet spreading for a one-dimensional argon atom. for
instance, indicates that the localized packet picture is applicable only for very short times. For a rough
estimate we use the well-known result for a free particle gaussian wavepacket [1}. Taking the inital
wavefunction to be

$(x, 0) = (2a/=)""" exp| —alx — xo)* +ipo(x — xo)] - (1)
At later times. ¥ (x, 1) retains its gaussian form but « in the exponential is replaced by

«,= a(l + 2iat/m) " )
and a new prefactor appears. The width of the wavefunction (in position) is determined by the real part of
a, which goes as

Re a,=a(1 +4allz/m2)_l =a(l +B,a2)_‘. (3)

In atomic units the mass of argon is = 72000 and one picosecond is = 46000 au. Therefore 8, = 41> /m?> =
1.1. The maximum value of Re a, (which corresponds to the minimum width) as a function of « is obtained
when a®> = 1/8,. The conclusion is that an initially gaussian packet must spread over a width of at least
o,=(4 Re a,)~ /> = 0.75 au on a picosecond time scale.
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Certainly the potentials of interest in a liquid change considerably over this distance. It is true that the
free particle is not a very good model for a particle in a condensed medium. However, the general point
that packets do not remain localized for times of many picoseconds seems likely to be valid. The harmonic
oscillator is a notable exception to the phenomena of packet spreading. In this case the packet remains
localized if the width of the packet matches that of the harmonic oscillator ground state. Even if its width
differs from that of the ground state, the wavepacket refocuses once a period. Recent numerical studies
[2-4] on anharmonic potentials indicate recurrences on the order of many vibrational periods. These
studies also show relatively long stretches of time where the particle density is Jquite delocalized.

This brings us back to the question, if the wavepackets become delocalized after relatively short periods
of time, how can molecular dynamics studies (or any type of classical analysis) be meaningful? The answer
we propose is that while a single localized wavepacket whose average position and momentum obey
classical equations does not accurately approximate a quantum system. a set of localized packets can. The
diverging of the trajectories executed by the average packet position and momentum accurately mimics the
quantum delocalizatior. This is essentially the heuristic justification that Heller {5] has recently proposed
for a method he calls the frozen gaussian approximation.

This method amounts to expanding a wavefunction in terms of a set of gaussians. and then propagaung
these gaussians with fixed shape according to the laws of classical mechanics.

In this paper we provide a mathematic justification of this method. The approximations involved in this
derivation are the use of the semiclassical approximation for the Feynman propagator [6] and the
stationarv phase approximation for various integrations {7].

2. Theory
Suppose we propagate some initial wavefunction Py(r) forward in time
$(r )= [dn K(r. % :0)%0(n). @
where K(r. 7, £) is the Feynman propagator {6). The set of gaussians

s(rin.pyi v) = (2v/z)  exp] —v(r—n) +ip, (r—n)l. (5)

form an over complete set for any real y > 0 [8-10]. In terms of these functions the resolution of the
ideniity is

S(r—r)=(2= _"fdr,fdpl g(r;n.p:y)eg*(rin.pyY). (6)

where N is the dimensionality of the vectors r. r;: r; and p,. The constant & has be:n set to unity for
convenience. Inserting (6) into (4) twice yields

o(r.e)=(2=)7" f_ wxdro f::dri f_:drr _idrx f_idpx f_xxdrz f:cdpz g(rir.p23v)

X g*(r:m.pa: Y)K(nr: 1)g(nin. py: v) 2 (i ni. Prs Y)¥o(R). (7

where all the integrations have been explicitly written out for emphasis. At this point it is convenient to
replace the quantum propagator by its semiclassical approximation

K(n.n: )= [1- 9% 0ran/(2=) "] exp(iS } = 4 exp(iS}. (8)
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where S is the action for a classical trajectory connecting r; and r, in time.z. That is.
‘S(r,,ri;l)=det. . (9)

where L is the lagrangian, T — V. [0°S/0r0r| is the determinant of the second derivative matrix.
Substitution from (5) and (8) into (7) produces

W(r.0)=(2=) ¥ Q@v/=)" [dr.fan fdr [dr [dp, fdr [dp, 4 e*¢o(n). (10)
where A is the prefactor in (8) and
o=—v(r—n) +ip,(r—n)—v(r—n) —ip:(n—n)
+iS(r.r: ) —y(n—r) +ip,(n—n)—v(n—n) —ip,(n—n)- (1)
We now alter the integration path associated with p, so that
Py =q, — 2iyn. 12)

This merely replaces the integration of each component of p, along the real axis by an integration along a
parallel path that has been displaced from the real axis by 2y times the value of the comresponding
component of r,. Likewise we replace p. by

Pp>=qg,+ 2y - (13)

and each component of g, is integrated over the entire real axis. We now perform the r,. ;. r; and
int=grations by stationary phase holding r,. ¢, and g, fixed. The resulting stationary phase conditions are

3s/9r, = —4y(r,—r,)=0. 8o/0r,= —4dy(r.—r)=0.
3s/9r,=i(p, +3S/3r) —2y(r,—n)=0. 3¢/3r=—i(p,—3S/3r)—2y(r—r)=0. (14)

Recall that 3S,/9r, = i% is the final momentum of the classical trajectory which begins at r; and ends at r; at
time ¢ later. Likewise 3S/dr, = — P, is the initial momentum of this trajectory. The resulting wavefunction
after the stationary phase integrations has the form

Un.0=@0) " @y=)" [ anf” aa, [ ag. a[@=)* 0]
Xexp[ —y(r— Rr)2 +iP(r—R)+iS(R,. R t)—v(r,— Ri): —iP(r— Ri)] Yol(n)-
(15)

where R;. R,. P, and P, are considered functions of g,. g, and 7. Egs. (12)—(14) imply that they are the
initial and final positions and momenta for a (complex) trajectory which obeys the conditions

q, =P, +2iyR; (16)
and _
q> =P —2iYR,. : a7)
In (15) D is the determinant made of second derivatives of ¢ with respect to ;. 1, i and r»
33S/09r2 —2yil 3°S/oror
3% /arar, %S ar2 — 2vit|”

3%

3(r.r.n.n)

(18;

R EI o
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where I stands for N-dimensional identity matrix. These second derivatives are evaluated with r, iy, ¢, ¢~
and 7 held constant; egs. (12) and (13) must be emploved to account for the r; and r, dependence of p, and
P-- and S is treated as a function of r,. r; and r. If more than one trajectory satisfies conditions (16) and
(17). the contributions of each of these should be summed.

Eqgs. (16) and (17) specify P.. R,, P;and R In terms of the integration variables g; and g, [along with the
condition that a classical trajectory of duration 7 connect the phase space points (R;. P;) and (R. P)]. The
independent variables can be changed to R; and P,. This change of variables gives
/2

2(r.0)=Qv/=) (/2= [ danf” dr.[” dPJIal2=)"/D]
- - —

xexp| —y(r— R +iP-(r— R} +iS(R,. R 1) —¥(r,— R,) — iP5y — R ) o).

(19)
where J is the jacobian of the transformation
“foavor. savor |~ |5 3y aw) -2 {5E 55 5| eo
Eg. (19) can be rewritten as
cir)=0y/=)"[" dR, [~ dPIAD Vig(r: R, Pz )
x exp[iS(R;. R: ')]f::dro 8* (3 R;. P v)do(n)- (21)

R, and F; are considered functions of R;. P, and r.

Eq. (21) is the main result of the paper. When ¢, — r;. then g(r; R,. P;; y)— g{r: R,. P;: v) and a little
work reveals that (2y/=)*2JAD ~'/? — (2=)"". In this case eq. (21) is merely the expansion of ¥, in the
overcomplete set g(r; R,, P;; v). More generally eq. (21) states that within the approximations employed
the time evolution of ¥(r, r) is given by propagating the average position and momentum of each member
of this overcomplete set according to classical mechanics and holding its width fixed. The resulting gaussian
g(r- R,. P;: v) is multiplied by the phase factor exp(iS}). the prefactor (2v/=) /4D~ "> and the
coefficient from the r = 0 expansion [dr; g*(rp: R;. P,z v) Yoln)-

Since conditions (16) and (17) specify complex values of P, and R;. the contour of integration in (19)
wanders over the complex plane. However, in changing integration variables from ¢, and ¢. to R; and P,.
we have impiicitly deformed this contour so that the integration in (21) is over real values of R; and P;.

A strict justification that this deformaiion of the integration path does not alter the value of the integral
would require a detailed knowledge of the analytical structure of the potential energy function in order to
prove that the classical action S(R;. R,, 1) is analytical throughout the region over which the contour is
deformed. It is also necessary to show that the integrand tends to zero rapidly enough at the ends on the
contour. This can in fact be accomplished for specific potential functions such as a quadratic potential.

The statiorary phase approximation, however, assumes that only the behavior of the integrand near the
stationary phase points is important. As long as the variable transformations preserve the location of these
points. the value of the integral is unaltered in this approximation.

Since

do 3q; 3o , 3g Jo 3¢ 8q; 3o | 9g( 39
= = P Phitc L S o} —_ A T -t 2
3R, 3R, 9g, T 3R, 3g, "% 3P, " 3P, 3g, ' 3P, 92, (22)
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points that obey the conditions 3¢/3g; = 3¢/dq,=0, also obey the conditions 3¢/3R; = 3o/IF; =0.
There still is the possibiiity of introducing additional stationary phase points where 3¢/dq; = 3g./9R; =
3g./3q. = 0 but 33/39, + 0. However these should occur at most for isolated values of r, and r since the 3N
conditions 3¢/3q, = 3q,/0R; = 3q,/9P,= 0 form an overdetermined set of equations for the 2N unknowns
(R;. P.). As long as these conditions are satisfied for values of r and r; that at most constitute a set of
measure zero, they will make no contribution to (r, 7).

3. Discussion

We have demonstrated in this paper that when a wavefunction is expanded in a complete set of gaussian
wavepackets. the diverging or converging of the positions of the centers of these packets in phase space, as
given by classical mechanics, accounts for the spreading or focusing of the original wavefunctions (within
the semiclassical approximation for the propagator and the stationary phase approximation for the
integrations involved). The effects of quantum-mechanical changes in shape as the individual gaussians
propagate in time totally cancel within these approximations and the frozen gaussian approximation is
justified. :

So far nothing has been said about the parameter y, which determines the width of the gaussian in
positions and momentum space. Since the set of gaussians is overcomplete for all values of y, this
parameter is completely arbitrary from a formal point of view. However. its choice may be important
numerically, when the continuous representation of the overcomplete set of gaussians is approximated by
some finite discrete set. The integrand in (19) is an oscillatory function of R; and P,. If a very large value of
v is chosen, then a wide range of P, should contribute to the integral. This will include initial momenta
corresponding to high-energy trajectories, where the integrand is likely to be oscillating rapidiy. since S
contains the integral over the kinetic energy which involves the square of the momentum. This could cause
convergence problems. Heller has studied the use of finite sets of gaussians [5,11].

‘The classical propagator is exact for potentials that contain no higher than quadratic terms [6] In this
cise the action is at most a quadratic function, and therefore the stationary phase approximation for the
integrations is exact. Consequently, the frozen gaussian approximation is exact for potentials containing at
most quadratic terms, such as the free particle and harmonic oscillator potentials. We specifically used this
fact to algebraically check our analysis for the harmonic oscillator (see appendix). Since semiclassical
approximations are generally exact for this class of potentials, this result is not overly starthng However.
the corollary that the quantum effects due to oscillations in the widths of the individual gaussians exactly
and completely cancel is not an obvious result.

The results of this paper have been presented for the propagation of an initial wavefunction. The same
arguments apply if the initial wavefunction ¢,(r,) 1s replaced by a density operator p. In this case eq. (21)
takes the form

p(r.r:1)=Qv/=)"(1/2=)" [dR, [aP.[dR, [a P.IAD g(r: R(. Pz Y)

x exp[iS(R,. R;: 1)] fars [drg*(r: R;. Pii ¥)po(ro. )

xg(r5; R, Pa; v) g*(r': Ry. B3 Y)- 7 (23)

The matrix elemeni fdr, jdq,g (rs: R;. P; Y)oolr- 13)8(r5: R,, P,; v) involves integration over the varia-
bles r, and #5. The final positions and momenta. R, and F,, respecuvely, are functions of R;, P,and ¢, as
above. If p, is the canonical density function e "#¥/Tr e ¥, then an approximation can be de\eloped for
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jar; [arg*(r: R,. P: ¥)p, (1. 15) g{r;. R, P,: y) which is analogous 0 the one which is derived for fdr
jdr.g*(r; 1. Pa; ¥) K(rp. ris 1) g(riz . Py ) in this paper, since K = €. This correspondence between
the real time propagator and the canonical density function is well known [6,7.12.13]. and we do not work
through the details here.

Quite a few years ago Klauder presented a series of papers [9,10] discussing continuous representations
of quantum mechanics, of which the gaussian representation employed herein is a specific example. In
Klauder’s work classical mechanics is shown to result from quantum mechanics in the limit that the basis
vectors in the representations {(the individual gaussians in our continuous set) are maped into other basis
vectors in the set. As a consequence, classical mechanics may be considered exact to the extend that
gaussian functions of a specific width remain gaussian and retain the same width as a function of time.
Klauder’s work has recently served as the motivation of a rigid wavepacket dynamics calculation {14]. Our
result suggests that the situation is often much more favorable than Klauder’s analysis indicates, since
much of the effect of spreading and changing of shape of the basis vectors in fact cancels.
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Appendix

It must be admitted that the exactness of the wavepacket expansion (21) in terms of frozen grussians for
at most quadratic potentials comes out as 2 bit of a surprise. That is why in this appendix it is shown how
to recover from the expansion (21) Heller's expressions [15] for propagation of initially gaussian wave-
packets (1) for a harmonic osciliator and a free particle of mass m, which are exact in these cases. Basically
there is shown a sketch of calculations for a harmonic oscillator. However it is arranged in such a way that
at any step a free particle case is recovered by taking the limit of harmonic oscillator frequency w — 0.

For a one-dimensional harmonic oscillator the formuia (21) can be recast in the following way

o (1) = v/m)2a/x) [~ dx,f” dp,[ dxoJaD 7 e, (24)
where
6= —y(x—x,) +ip(x—x;)+(imw/2 sin mt)[xf + X7 cos wf — Zx,xi]
—v{xe— xi)z —ipilxo—x;) —a(xo— i)2 +ip{xo—X) (25)

and x. x,. p;. X;. p; and x, are one-dimensional equivzlents of r, R,. F;. R,, £; and r, respectively, whereas
X, p are position and momentum of the initial wavepacket and «a is the width of the initial packet.
Making use of formulae (8), (18) and (20) as well as the obvious transformation

Xe=x; cos t +{ p,/mw) sin w1, Pe= —Xx; ma Sin &l + p, COS wI. (26)
it is found after a bit of work that

A={(mo/2zisin ). D=i@y) ’mwZ/sinet, J=4iyZ.
where

Z = cos wt — 2i(2v/me + mw/27) sin of. (27)
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Applying stationary phase integration (which is exact here since ¢ is quadratic and the prefactor is
constant) to the variables x;, p; in ;he integral {(24), the following cquaiions for a stationary point are
obtained

9¢/0x; = (2y cos wr — ime sin wt ){x — x, ) + 2y(xo — x;) = 0.
35/9p; = [(2v/me) sin wr +icos wr]{(x — x;) —(xg— x;)=0. (28)

so. the stationary poimt is given by
x;=xg. p;={(me/sin w)(x— x4 cos er). (28a)

The second derivatives of ¢. which are needed to obtain a prefac:or for stationary phase integration, turn
out to be

3’¢/ex? = ~2v(1 + cos®wr) + ime sin «f cOs wi.
3%6/ep? = —(1/me) sin wr[(2y/mw) sin wr + i cos wr].
3%6/3x.9p, = 8°6/3p.8x;, = [(— 2y cos wI + ime sin wr)/me] sin «r (29

and the menticned prefactor itself is given by

2=
(-R%/3(x,. p)"”

At this point it is worthwhile to notice that if the product

=2=z{(4yimw) sin wr} "V Z-12, (29a)

AID™'?B = (1/4vy) (2zime/sin wt)'? (30)

is inserted into the wavepacket (24) the parameter y. which characterizes a set of frozen gaussians,
disappears as it should be.
Inserting the stationary point (28a) into the phase (2) we get a new phase & for integration over x,,

&= —a(xo— %) +ip(xo— %) +(imw/2 sin wr)[(x* + x3) cos er — 2xx,]. (31)

Making use of stationary phase integration with respect to the variable x, in (24) the following stationary
phase condition is found

36/9xq = —2a(xy—x) +ip +(imw/sin wt)(xy cos wz — x) =0. (32)
with the stationary point

2ax +1p —(imw/sin wt)x (322)
2a — (imw/sin oI )cos wf ' )

Xo =
and the prefactor

12
C= (—.—.'2'?—,) =2z[2a —(imw/sin wr) cos wr]'/>. (32b)
979 /0xg

To recover Heller’s exact form for the wavepacket (24) we have to find the phase & at the stationary
point (32a) as a function of x,, p,. which are the current position and momentum of the wavepacket, rather
than x, p which are initial position and momentum respectively. This can be done with help of the reverse
transformation (26) which expresses %. p in terms of x,, p,. If the stationarv noint (32a) and the
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abovementioned reversed transformation are inseried into (31), the phase & becomes a quadraiic form of x,
x, and p,. _ : - ~ :

A systematic way to show that $(x, x,. p,) has the proper form is to notice that ¢ contains the classical
action term 1 5{x,. ®{x,.. p.))- So if this term is subtracted from &(x, x,. p,). the remaining part

Aé:%(x,x,.p‘)-—iS(X,,SE(x,.P,)) . (33)
must have a simple quadratic form of the following shape »
A= —al)(x—x,) +iplx—x,). (33a)

And indeed if we try to find the coefficients of x2. xx,, x2. p,x and p,x, in A it is not difficult but rather
cumbersome to show that they are a(z), —2a(z). a{z). i and —i respectively. where

2a €os wit + imae sin wit
cos «r + i[(2a/mw) sin wr]

mw (2a/me) cotwe+1i
2 coter+i(2a/mw)

afz)=

% (34)

and it is related to Heller’s ay,(7) by the identity a;,(r) =ia(r).
Finally using eqgs. (24), (30}, (32b). (33) and (33a) the Heller's-type wavepacket for a harmonic osciiiator,
which is exact, is recovered. It reads

v(x, 1) = as=)""* exp{ —a{r){(x— x‘)2 +ip{x—x,)
+iS(x,. (x,. p,)) — iinfcos wr + (2ia/me) sin wr] } - {35)

In the imit of « — 0 this becomes identical with the Heller wavepacket for a free particle [15]. which is also
exact.
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