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A SEiMKLASSKAL JUSTIFICATION FOR THE USE OF 
NON-SPREADING WAVEPACKEI-S IN DYNAMICS CALCULATiONS 

This manuscript considers the spreading or non-spreadin, 0 of wavepackets. On one hand molecular 
dynamics simulations have given useful results for many properties of bulk systems These simulations are 
based upon classical mechanics and would seem to indicate that some Iocahzed wavepacket description for 
the pat-tide wavefunctions must be applicable on the time scales of interest. Otherwise the use of classical 
mechanics wouhi appear to be inappropriate- 

On the other hand a simple estimate of the packet spreading for a one-dimensional argon atom for 
instance, indicates that the locahzed packet picture is applicable only for very short times For a rough 
estimate we use the web-known result for a free particle gaussian wavepacket [l]_ Taking the initial 
wavefunction to be 

X$(X, 0) = (2a/+~)“~ exp[ -a(_~ -x0)’ + ip,(x -x0)] _ 

At later times. $.(x, I) retains its gaussian form but Q in *he exponential is replaced by 

a, = a(1 + Saf/m)-’ 

and a new prefactor appears_ The width of the wavefunction (in position) is determined by the real part of 
a, which goes as 

Re a, = a(1 + 4a’r’/m’)-r = a(1 +&a*)-‘. 

In atomic units the mass of argon is = 72000 and one picosecond is =44X00 au_ Therefore p, E 4t’/m’ = 
1-L -The maximum value of Re aI (which wrresponds to the minimum width) as a function of a is obtained 
when a2 = l/8,. The conclusion is that an initiahy gaussian packet must spread over a width of at least 
q = (4 Re a,)-‘fi = 0.75 au on a picosecond time rcaIe 
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Certainly the potentials of interest in a liquid change considerably over this distance_ It is true that the 
free particle is not a very good model for a particle in a condensed medium_ However. the general point 
that packets do not remain localized for times of many picoseconds seems likely to be valid. The harmonic 
oscillator is a notable exception to the phenomena of packet spreading In this case the packet remains 

localized if the width of the packet matches that of the harmonic oscillator ground state. Even if its width 
differs from that of the ground state. the wavepacket refocuses once a period_ Recent numerical studies 
[2-4j on anharmonic potentials -indicate recurrences on the order of many vibrational periods. These 
studies also show relatively long stretches of time where the particle density is quite delocalized. 

This brings us back to the question. if the wavepackets become delocalized after relatively short periods 
of time. how can molecular dynamics studies (or any type of classical analysis) be meaningful? The answer 
we propose is that while a single localized wavepacket whose average position and momentum obey 
classical equations does not accurately approximate a quantum system. a set of Iocalized packets can. The 
diverggng of the trajectories executed by the average packet position and momentum accurately mimics the 
quantum delocalizatio~. This is essentially the heuristic justification that Heller [5] has recently proposed 
for a method he calls the frozen gaussian approximation- 

This method amounts to expanding a wavefunction in terms of a set of gaussians. and then propagating 

these gausstins with fmed shape according to the laws of classical mechanics. 
In this paper we provide a mathematic justification of this method_ The approximations involved in this 

derivation are the use of the semiclassical approximation for the Feynman propagator [6] and the 
stationary phase approximation for various integrations t-i]_ 

Suppose we propagate some initial wavefunction &,(r) forward in time 

+(r. t) = 
I 

dr, K(r, 6 :r)&,(r,). (4) 

where K( r_ b: I) is the Feynman propagator :6]- The set of gaussians 

S(‘:‘1-Pt;Y)=(Z~/~)“=exp[--y(r--,)liip,-(r--r,)l. (5) 

form an over complete set for any real y > 0 [S-lo]. in terms of these functions the resolution of :he 
ideniit- is 

6(r-rr’) = (2=)--V/dr,/dp, g(r; r,,p,r y)g*(r’z rl.pl: Y). (6) 

where S is the dimensionality of the vectors r. r,; r, and p,_ The constant h has bet:n set to unity for 
convenience_ inserting (6) into (4) twice yields 

xg*(r,: r2_p2; y)K(r,cz r)g(ci q.p,; y)g*(r,: c-PI: yMJr,)- (7) 

-&here dl the integrations have been explicitly written out for emphasis. At this point it is convenient to 

replace the quantum propagator by its semi&s&al approxin=tbn 

lc=(q_ri; I)= [I-aa’s/al;ar,l/(2~i).V]‘r-exp(iS) =A exp{iS), (8) 
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where S is the action for a classica! trajectory connecting ri and rr in time-z_ That is. 

‘S( rr,ri;lj= Ldt. 
I 
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where L. is the lagrangian. T- V_ ~‘S/ar,ar,l is the determinant of the seccnd derivative matrix_ 
Substitution from (5) and (8) into (7) produces 

$(r. r) = (2-,-22.(2y/r;)X~dr.~d~/dr./dr,~dp,~dr,/dp~A e*&(rO). 

where A is the prefactor in (8) and 

00) 

+= -_~(r-r=)‘+ip2-(r-r,)-y(r,-r2)2-ipL-(rf-rZ) 

+iS(r,.~;f)-y(~-r,)2+ip,-(ri-r,)-~(ro-r~)~-iipi-(ro-r,)_ (111 

We now alter the integration path associated with p, so that 

p, = q, - 2iyr,_ (12) 

This merely replaces the integration of each component of p, alon, 0 the real axis by an intqration along a 
parallel path that has been displaced from the real axis by 2-r times the value of the corresponding 
component of r,. Likewise we replacep, by 

pz = qr + 2iyr2 (13) 

and each component of q2 is integrated over th e entire real axis_ We now perform the r,. rzT ri and q 
mtegrations by stationary phase holding r,. q1 and q2 fixed. The resultin, = stationary phase conditions are 

a+/ap, = -4y(r, - ri) = 0, a+/&, = - 4y( r, - rr ) = 0, 

as/ari=i(P,+~as/a~)-2y(ri--,)=OI a+/ar, = - i( pr -&S/b,)-2y(r,-c)=O_ (14) 

Recall that XC/art. = 1; is the final momentum of the classical trajectory which begins at r; and ends at r,- at 
time I later_ Likewise aS/i3ri E -Pi is the initial momentum of this trajectory_ The resulting wavefunction 
after the stationary phase integgtions has the form 

+(r,. I) = (2~) -‘s(2y/#-/= 
--iD 

dr$= 
--li 

dq, J_~dp2~[(~s)J~v/~]“2 

~up[-y(r-RR,)Z+iP~~(r-R,)tiS(Ri_R,;i)-y(r,-Ri)’-iPi-(r,-RR,)]~o(r,), 

(13 

where Ri. R,, Pi and Pf are considered functions of q,_ q2 and I_ Eqs. (12)-(14) imply that they are the 
initial and final positions and momenta for a (complex) trajectory which obeys the conditions 

q, = Pi + 2iyR; (16) 

and 

qz=Ppr-2iyR,. (13 

In (15) D is the determinant made of second derivatives of 9 with rcspcct to r+ q-, r, and q 

I a2+ 
DC a2(ri. rr. r,. r-1 I I = (4yi)'" 

a2s/ari2 - 2yil a2s/a&- 
azS/&$ri a3/a$ - 2yil - 

0s; 



where I stands for M-dimensional identity matrix. These second derivatives are evaluated with r. re. q,, qz 
and c held constant; eqs. (12) and (13) must be employed to account for the rt and r-Z dependence of p, and 
Rzr and S is treated as a function of ri_ rr and r. If more than one trajectory satisfies conditions (16) and 
(17). the contributions of each of these should be summed. 

Eqs. (16) and (17) specify Pi. Ri. Pr and R, in terms of the integration variables qr and or [along with the 
condition that a cfassicui trajectory of duration t connect the phase space points ( Ri. Pi) and (R,. P,)]. The 
independent variables can be changed to Ri and Pi_ This chanSe of variables gives 

+(r. I) = (Zy/~)~~(l/2c;)‘-~/~ dG/= dRijr dPiJ~[<7c)g.V/D]“2 

~~p[--,(r-R,)‘L:P,-(~~R,)JilS(R- R I- f:~)-~(ro-R,)‘-iPj-(ro-Ri)~~,(ro). 

(19) 

where f is the jacobian of the transformation 

1 aq,/ilR; 

J= aq,/api I 
ltq2/i3Ri 

aqyapi (20) 

Eq. (19) can be rewritten as 

‘r jr_ I) = (2y/zyVr- j_LdRi j” dP,JAD-‘/‘g(rt R,. P:: y) 
--z 

xexp[iS(Ri. R,r r)]/_l_dr,g*(r,; Ri. P,: Y)+,-,(Q)- (21) 

R, and P, are considered functions of Ri. Pi and c_ 
Eq_ (21) is the main resuit of the paper. When I, - fi. then g(r, R,. Pr; y) - g(r. R,. Pi: y) and a little 

work reveals that (~Y/=).~~JAD -Ifl + (2~)--~_ In this case eq_ (21) is merely the expansion of +Q, in the 
over-complete set g(r; Ri. Pi; y)_ More generally eq_ (21) states that within the approximations employed 
the time evolution of +(r, r) is given by propagating the al-et-age position and momentum of each member 
of this over-complete set according to classical mechanics and holding its width fixed The resulting gaussian 
g(rz R,. PC; y) is muitiplied by the phase factor exp(iS ). the prefactor (2y/~)-~‘~.fAD-‘~ and the 
coefficient from the f = 0 expansion /dr, g*(rO; Ri_ Pi: y) &(rO)_ 

Since conditions (16) and (17) specify complex values of Pi and Ri. the contour of integration in (19) 
wanders over the complex plane_ However. in changin, 0 integration variables from q, and qz to Ri and Pi_ 
we have impiicitly deformed this contour so that the integration in (21) is over real values of Ri and Pi- 

A strict justification that this deformation of the integgtion path does not alter the value of the inteo,rl 
would require a detailed knowledge of the analytical structure of the potential energy function in order to 
prove that the dassical action S(R,. R,, I) is analytical throughout the region over which the contour is 
deformed_ It is also ncozsary to show that the integrand tends to zero rapidly enough at the ends on the 
contour. This can in fact be accomplished for specific poteniial functions such as a quadratic potential. 

The stationary phase approximation, however, assumes that only the behavior of the integrand near the 
stationary phase points is important_ As long as the variable transformations preserve the location of these 
points. the value of the integral is unaltered in this approximation_ 

Since 

a6 aq- a+ k a+ --=L-+-- and as aa- a+ aqr as 
aRi aRi aqi aRi aqr 

-=-_-+-.- 

api api aqi api aqr- w 



points that obey the wnditions a+/aqi = a+/aq,= 0, also obey the conditions a+fiRi = a+/aPi =.O. 
There still is the possibiiity of introducing additional stationary phase points where a+/aqi = a4;/aRi = 
&A3qi = 0 but a+/+, # O_ However these should occur at most for isolated values of r, and r since the 3N 
conditions &$/aqi = aqJIJRi = aqJaP, = 0 form an overdetermined set of equations for the 2N unknowns 
(Ri. Pi)_ As long as these conditions are satisfkd for vabs of r and r3 that at mos: constitute a set of 

measure zero. they will make no contribution to +(r, 2). 

3. Discus5on 

We have demonstrated in this paper that when a wavefunction is expanded in a complete set of gaussian 
wavepackets. the diverging or converging of the positions of the centers of these packets in phase space, as 
given by classical mechanics. accounts for the spreading or focusing of the original wavefunctions (within 
the semiclassical approximation for the propagator and the stationary phase approximation for the 
integgtions involved)_ The effects of quantum-mechanical changes in shape as the individual gaussians 
propagate in time totally cancel witbin these approximations and the frozen gaussian approximation is 
justified_ 

So far nothing has been said about the paraaeter y, which determines the width of the gaussian in 
positions and momentum space_ Since the set of gaussians is overwmplete for all values of y. this 
parameter is completely arbitrary from a formal point of view_ Howe\-er. its choice may ix important 
numerically, u-hen the continuous representation of the overcomplete set of gaussians is approximated by 
some finite discrete set The integrand in (19) is an oscillatory function of Ri and Pi_ If a very large value of 
y is chosen. then a wide range of Pi should contribute to the integral. This will include initial momenta 
corresponding to high-cnergy trajectories, where the intcgrand is likely to be oscillating mpidiy. since S 
contains the integral over the kinetic energy which involves the square of the momentum This could cause 
convergence problems_ Heller has studied the use of finite sets of gaussians [5,1 I]_ 

The classical propagator is exact for potentials that contain no higher than quadratic terms [6]_ In this 
cise the action is at most a quadratic function, and therefore the stationary phase approximation for the 
integrations is exact_ Consequently, the Frozen gaussian approximation is exact For potentials containing at 
most quadratic terms. such as the free particle and hamronic oscillator potentials_ We specifically used this 
fact to algebraically check our analysis for the harmonic oscillator (see appendix)_ Since ~semiclassical 
approximations are generally exact for this class of potentia!s. this result is not overly startling Howe\-er. 
the corollary that the quantum effects due to oscillations in the widths of the individual gaussians exactly 
and completely cancel is not an obvious result_ 

The results of this paper have been presented for the propagation of an initial wavefunction. The same 
arguments apply if the initial wavefunction &(ro) is replaced by a density operator fi_ In this case eq_ (21) 
takes the form 

p(r. r’; r) = (2y/i;)“‘~(1/2F)“/dRi~d~i~dR=~d~=~~~-x~~(rr R,. Pr; y) 

xexp[iS(R,. Ri: t)f/d&/dGg’(Q: Rt.Pii Y)Pa(G. 4) 

x&i,‘; R,,P,; y)g*(r': Rj',; Y)- w 

The matrix element /drJd4g*(r0; R;. Pi; y)po(~, &g(& R,, P,; y) involves integgtion over the varia- 
bles r0 and $_ The final positions and momenta, R, and Pr. respectively, are functions of Ri. Pi and L as 
above_ If p, is the canonical density function emeH./Tr emBH. then an appro- timation can be developed for 



/dr; jdr,gf(pO: Ri_ Pi: y)po (ro_ r:) g[r& R,_ P,; y) which is analogous to the one which is derived for jdq 
/dcg*(r,; r2. pl; y) K(r,_ ‘1.; r) g(ri; r,.p,; y) in this paper, since K = e”“. This correspondence between 
the real time propagator and the canonical density function is well known [6,7.1213]. and we do not work 
through the details here 

Quite a few years ago Lauder presented a series of papers [9.10] discussi ng continuous representations 
of quantum mechanics, of which the gaussian representation employed herein is a specific example_ in 
Khtuder’s work chusical mechanics is shtiivn to result from quantum mechanics in the limit that the basis 
vectors in the representations (the indiviciual gaussians in our continuous set) are maped into other basis 
vectors in the set. AS a consequence_ classical mechanics may be considered exact to the extend that 
gaussian functions of a specific widtb remain gaussian and retain the same Nidth as a function of time_ 
Klauder’s work has recently served as the motivation of a rigid wavepacket dynamics cafculation [lZ]_ Our 
result sugests that the situation is often much more favorable than Klaudefs analysis indicates_ since 
much of the effect of spreading and changing of shape of the basis vectors in fact cancels. 
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It must be admitted that the exactness of the wavepacket expansion (21) in terms of frozen gzussians for 
at most quadratic poteatials comes out as a bit of a surprise. That is why in this appendix it is shown how 
to recover from the expansion (21) Helier’s expressions (151 for propagation of initially gaussian wave- 
packets (I) for a harmonic osciliator and a free particle of mass m, which are exact in these cases. Basically 
there is shown a sketch of caIcuIations for a harmonic oscillator. However it is arranged in such a way that 
at any step a free particle case is recovered by taking the limit of harmonic oscillator frequecq w - 0. 

For a one+iimensional harmonic oscillator the formuia (21) can be recast in the following way 

where 

--y(~,-x~)~-ip~(x~ -xi) - ot(xO -Z)’ + ip(x, -Z) cw 
and x. xc, p,_ xi_ p; and x, are one-dimensional cquivzhznts of r, I?,. Pf. Ri, pi and r, respectively. whereas 
_?. jj are position and momentum of the initial wavepacket and Q is the width of the initial packet. 

Making use of formulae (8). (18) and (20) as well as the sbvious transformation 

xr = xi cos b’I -C ( pi/ma) sin or, pr = -xi mo sin ot + pi cos or_ (33 

it is found after a bit of work that 

A = (ma/Z+ sin fdz)‘/2, D = i(4y)3mc7Z/sin ccl, J =4iyz. 

where 

Z = cos of - fi(2y/mo f mo/2y) sin of. (27) 



Applying stationary phase integration (uhich is exaCt here since Q is quadratic and the prefactor is 
constant) to the variables xi, pi in the integral (24). the following equations for a stationary point are 
obtained 

a+/axj = (2~ eos 0r - inzu sin o~)(x - xc) + Zy(_r, -xi) = 0. 

a+/api = [ ( ~Y/KPZO) sin (;lr + ieos=r](x-xl)--(x0-_xi)=O, 
_ 

so. the stationary point is given by 

(28) 

x;=xe. pi = (mm/sin w:)(x -x0 cos 6zf)_ (28a) 

The second derivatives of 9. which are needed to obtain a prefacror for stationary phase integdrion. turn 
out to be 

az+/zx.: = -2y(l + co&d) + imti sin of cos WK. 

az+/i3pf = - (l/nto) sin or [ (2y/nto) sin wr + i cos or]. 

a2a/axiapi = a2b/apiaxi = [( -2~ cos LLII + into sin WI)/~G’] sin (4‘1 

and the menticned prefactor itself is given by 

(29j 

B= 
257 

(-p’+/a(xi. pi)l)‘r- 
= 2r[(4yimu) sin of] -“‘Z-“‘. (29aj 

At this point it is worthwhile to notice that if the product 

AJD-‘cB = (1/4y) (2zimu/sin tir jr” (30) 

is inserted into the wavepacket (24) the parameter y_ which characterizes a set of frozen gaussians. 
disappears as it should be. 

Inserting the stationary point (2Sa) into the phase (2) we get a new-phase 6 for integration over se 

q= -a(_~,-_~)ti~(_~,-_~)+(into/2sinol)[(x~+_,;O2)Cos~l-2_~~0]. (31) 

Making use of stationary phase integration with respect to the variable x,, in (241 the following stationary 
phase condition is found 

a$axo= --2a(x,--f)tip+( imu/sin 63t)(xe cos ~2 -x) = 0. (32) 

with the stationary point 

x0 = 
26r-C I i> -(imo/sin c’f)x 

2a - (imo/sin 111)cos of 

and the prefactor 

c= ( a;/:rJ’fl = Zrj2a -(imw/sin or) cos of]rE_ 

(32aj 

(32b) 

To recover Heller’s exact form for the wavepacket (24) we have to find the phase & at the stationary 
point (32a) as a function of x,. pr_ which are the eurrent position and momentum of the wavepacket. rather 
than i, 3 which are initial position and momentum respectively_ This can be done with help of the reverse 
transformation (26) which expresses _C. p in terms of xl. R_ Lf the stationary point (32a) and the 



abovementianed reversed transformation are inserted into (31), the phase 4 becomes a quadratic form of x. 
x, and pS- 

A systematic way to show that 6(x, I,, p,) has the proper form is to notice that 6 contains the classical 
action term iS(x,- Z(x,_ p,))_ So if this term is subtracted from six, xt. p,), the remaining part 

~~=~(x~x,.p,)-~is(x,.~(x,_P*)) (33) 

must have a simple quadratic form of the following shape 

f33a) 

And indeed if we try to fimd the coefficients of x1_ xr,, x1. p,x and pCx, in A& it is not difficult but rather 
cumbersome to show that they are a(t). -2a(r). a(r), i and -i respectivei,v- where 

mo f2a/fnca) cot wf f i 
a(r)=2 

I 2a cos ~*‘f 4 imo sin ~;*t 

cot OE -i- i(2a/mo) X1 cos tit -I- ij(2a/ntw) sin ~~11 
<34) 

and it is related to WeIIer’s (I&I) by the identity aH<r) = ia( 
Finally using eqs. (24). (30), (32b), (33) and <33a) the Hefler’s-type wavepacket for a harmonic oscillator, 

which is exact, is recovered- It reads 

+iStx,_f(x,.p,))-_~fcos~rtf2ia/nr~)sinoi]:. (35) 

In the imit of 63 -+ 0 tbis becomes identical with the Heller wavepacket for a free particle [IS]. which is also 
exact. 
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