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Abstract. We study a class of Poisson manifolds for which intersections of
certain group orbits give partitions into regular Poisson submanifolds. Examples
are the varieties L of Lagrangian subalgebras of reductive quadratic Lie algebras
with Poisson structures defined by Lagrangian splittings. In the special case of
g ⊕ g, where g is a complex semi-simple Lie algebra, we explicitly compute the
ranks of the Poisson structures on L defined by arbitrary Lagrangian splittings
of g ⊕ g. Such Lagrangian splittings have been classified by Delorme, and they
contain the Belavin-Drinfeld splittings as special cases.

1. Introduction

Lie theory provides a rich class of examples of Poisson manifolds/varieties. In

this paper, we study a class of Poisson manifolds of the form (D/Q,Πu,u′), where

D is an even dimensional connected real or complex Lie group whose Lie algebra d

is quadratic, i.e. d is equipped with a nondegenerate invariant symmetric bilinear

form 〈 , 〉; the closed subgroup Q of D corresponds to a subalgebra q of d that is

coisotropic with respect to 〈 , 〉, and (u, u′) is a pair of complementary subalgebras

of d that are maximal isotropic with respect to 〈 , 〉. Lie subalgebras of d that are

maximal isotropic with respect to 〈 , 〉 will be called Lagrangian, and we will refer

to d = u + u′ as a Lagrangian splitting. The Poisson structure Πu,u′ is obtained

from the r-matrix

ru,u′ =
1

2

n∑

i=1

ξi ∧ xi ∈ ∧2d,

where {x1, . . . , xn} and {ξ1, . . . , ξn} are pairs of dual bases of u and u′ with respect

to 〈 , 〉. Precise definition of Πu,u′ is given in § 2.2.

Let U and U ′ be the subgroups of D with Lie algebras u and u′ respectively. Our

first main result, see Theorem 2.7 and Proposition 2.13, is that when

(1.1) [q, q] ⊂ q⊥,

all intersections of U and U ′-orbits in D/Q are regular Poisson submanifolds. In

fact, if N(u) and N(u′) denote the normalizers of u and u′ in D respectively, we also

show that all intersections of N(u) and N(u′)-orbits in D/Q are regular Poisson

submanifolds. Note that the condition (1.1) is an intrinsic property of a coisotropic

subalgebra q of (d, 〈 , 〉) and does not depend on the Lagrangian splitting d = u+u′.
1
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Once this condition is verified for a given q, the above result provides “regular”

partitions for the Poisson structures Πu,u′ on D/Q defined by any splitting d = u+u′.

Our second main result shows that the condition (1.1) is satisfied when d is

reductive and q is the normalizer subalgebra in d of any Lagrangian subalgebra

of (d, 〈 , 〉). In fact, we show in Proposition 3.3 that in this case [q, q] = q⊥. Let

L(d, 〈 , 〉) be the variety of Lagrangian subalgebras of (d, 〈 , 〉). Then since all the

D-orbits in L(d, 〈 , 〉) are of the form D/N(l), where N(l) is the normalizer subgroup

in D of an l ∈ L(d, 〈 , 〉), every Lagrangian splitting d = u + u′ defines a Poisson

structure Πu,u′ on L(d, 〈 , 〉) for which every non-empty intersection of an N(u)-orbit

and an N(u′)-orbit is a regular Poisson submanifold.

In § 4, we take the special case when d = g ⊕ g for a complex semi-simple Lie

algebra g and

〈(x1, x2), (y1, y2)〉 =� x1, y1 � − � x2, y2 �, x1, x2, y1, y2 ∈ g,

where � ., . � is a nondegenerate invariant symmetric bilinear form on g whose

restriction to a compact real form of g is negative definite. Lagrangian splittings of

(g⊕ g, 〈 , 〉) have been classified by Delorme [4]. In particular, one has the Belavin-

Drinfeld splittings g ⊕ g = gdiag + l, where gdiag is the diagonal of g ⊕ g. For any

l ∈ L(g⊕g), N(l)-orbits in L(g⊕g) can be described by using results in [14]. Using

further results in [14], we will compute the rank of the Poisson structure Πl1,l2 in

L(g⊕g) for an arbitrary Lagrangian splitting g⊕g = l1+ l2. This result extends the

dimension formulas for symplectic leaves in the second author’s classification [21]

of symplectic leaves of Belavin–Drinfeld Poisson structures on complex reductive

Lie groups. On the other hand it generalizes the rank formulas of S. Evens and the

first author for the standard Poisson structure on L(g ⊕ g).

As it has been shown in [7, 8], all real and complex semi-simple symmetric spaces

as well as certain of their compactifications can be embedded into suitable varieties

of Lagrangian subalgebras. Out results show that all such spaces carry Poisson

structures and natural partitions into regular Poisson subvarieties.

All manifolds and vector spaces in this paper, unless otherwise stated, are as-

sumed to be either complex or real.

A submanifold N of a Poisson manifold (M,π) will be called a complete Poisson

submanifold if it is closed under all Hamiltonian flows or equivalently it is a union

of symplectic leaves of π of the same dimension as N .
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2. The Poisson spaces D/Q

Recall that a quadratic Lie algebra is a pair (d, 〈 , 〉), where d is a Lie algebra

and 〈 , 〉 is an invariant symmetric nondegenerate bilinear form on d. Throughout

this section, we fix a quadratic Lie algebra (d, 〈 , 〉) and a connected Lie group D

with Lie algebra d. For a subspace V of d we set

(2.1) V ⊥ = {x ∈ d | 〈x, y〉 = 0,∀y ∈ V }.

2.1. Lagrangian splittings. A coisotropic (resp. Lagrangian, isotropic) subalge-

bra of d (with respect to 〈 , 〉) is by definition a Lie subalgebra q of d such that

q⊥ ⊂ q (resp. q⊥ = q, q ⊂ q⊥).

Definition 2.1. A Lagrangian splitting of d is a vector space direct sum decompo-

sition d = u + u′, where u and u′ are both Lagrangian subalgebras of d. The triple

(d, u, u′) is also called a Manin triple [11].

Given a Lagrangian splitting d = u + u′, for a subspace W ⊂ u set

(2.2) W 0 = {ξ ∈ u′ | 〈ξ, x〉 = 0,∀x ∈ W} = W⊥ ∩ u′.

We now recall how Lagrangian splittings give rise to Poisson Lie groups. Recall

that a Poisson Lie group is a pair (G,π), where G is a Lie group and π is a Poisson

structure on G such that the group multiplication G × G → G is a Poisson map.

When a subgroup H of G is also a Poisson submanifold with respect to π, (H,π) is

itself a Poisson Lie group and is called a Poisson Lie subgroup of (G,π). If (G,π)

is a Poisson Lie group, then π(e) = 0, where e ∈ G is the identity element. Let g

be the Lie algebra of G, and let deπ : g → ∧2g be the linearization of π at e defined

by

(deπ)(x) = (Lexπ)(e),

where for x ∈ g, x̃ is any local vector fields with x̃(e) = x and Lx̃π is the Lie

derivative of π at e. Then (g, deπ) is a Lie bialgebra [11] called the tangential Lie

bialgebra of (G,π).

Assume that d = u + u′ is a Lagrangian splitting. The bilinear form 〈 , 〉 induces

a non-degenerate pairing between u and u′. Define

δu : u −→ ∧2u : 〈δu(x), y ∧ z〉 = 〈x, [y, z]〉, x ∈ u, y, z ∈ u′,(2.3)

δu′ : u′ −→ ∧2u′ : 〈δu′(x), y ∧ z〉 = 〈x, [y, z]〉, x ∈ u′, y, z ∈ u.(2.4)
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Then (u, δu) and (u′, δu′) are Lie bialgebras [11]. Associated to the splitting d = u+u′

we also have the r-matrix

(2.5) Ru,u′ =
1

2

n∑

j=1

ξj ∧ xj ∈ ∧2d,

where {x1, x2, · · · , xn} and {ξ1, ξ2, · · · , ξn} are bases of u and u′ respectively such

that 〈xi, ξj〉 = δij for 1 ≤ i, j ≤ n. It is easy to see that Ru,u′ is independent of the

choice of the bases. Moreover, the Schouten bracket [Ru,u′ , Ru,u′] ∈ ∧3d is given by

(2.6) 〈[Ru,u′ , Ru,u′], a ∧ b ∧ c〉 = 2〈a, [b, c]〉, a, b, c ∈ d.

Recall that D is a connected Lie group with Lie algebra d. Denote by U and U ′

the connected subgroups of D with Lie algebras u and u′, respectively. Let Rl
u,u′

and Rr
u,u′ be the left and the right invariant bi-vector fields on D with values Ru,u′

at the identity element. Set

(2.7) πD
u,u′ := Rr

u,u′ − Rl
u,u′.

The following fact can be found in [6, 11].

Proposition 2.2. The bivector field πD
u,u′ is a Poisson structure on D and (D,πD

u,u′)

is a Poisson Lie group. Both U and U ′ are Poisson Lie subgroups of (D,πD
u,u′). Let

(2.8) πU = πD
u,u′|U , πU ′ = −πD

u,u′|U ′ .

Then the tangential Lie bialgebras of the Poisson Lie groups (U, πU ) and (U ′, πU ′)

are respectively (u, δu) and (u′, δu′).

2.2. The Poisson spaces D/Q. Assume that Q is a closed subgroup of D whose

Lie algebra q is a coisotropic subalgebra of (d, 〈 , 〉). For an integer k ≥ 1, let

χk(D/Q) be the space of k-vector fields on D/Q. Then the left action of D on

D/Q gives rise to the Lie algebra anti-homomorphism

κ : d −→ χ1(D/Q)

whose multi-linear extension ∧kd → χk(D/Q) will be denoted by the same letter.

Given a Lagrangian splitting d = u + u′, define the bivector field Πu,u′ on D/Q

by

(2.9) Πu,u′ := κ(Ru,u′),

recall (2.5). The following theorem is the main result for this subsection.

Theorem 2.3. For every Lagrangian splitting d = u+u′ and every closed subgroup

Q of D whose Lie algebra q is coisotropic in d,

1) Πu,u′ is a Poisson bi-vector field on D/Q;

2) all U and U ′-orbits in D/Q are complete Poisson submanifolds of (D/Q,Πu,u′).
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Proof. 1) The Lie algebra of the stabilizer subgroup of each point of D/Q is a

coisotropic subalgebra of d. To prove that Πu,u′ is Poisson, it suffices to show that

[Ru,u′ , Ru,u′] ∈ q ∧ d ∧ d

for each coisotropic subalgebra q of d. This is equivalent to

〈[Ru,u′ , Ru,u′ ], a ∧ b ∧ c〉 = 0, ∀a, b, c ∈ q⊥

which follows from (2.6) because q⊥ is an isotropic subalgebra of d.

Denote by κq : d → d/q the canonical projection and its induced map ∧2d →

∧2(d/q). Part 2) of Theorem 2.3 now follows from Lemma 2.4 below.

Q.E.D.

Lemma 2.4. For every coisotropic subalgebra q of d, one has

κq(Ru,u′) ∈
(
κq(∧

2u)
)
∩
(
κq(∧

2u′)
)
.

Proof. It is sufficient to show that κq(Ru,u′) ∈ κq(∧
2u). Let {x1, x2, · · · , xl} be

a basis for u ∩ q. Extend it to a basis {x1, x2, · · · , xl, xl+1, · · · , xn} of u. Let

{ξ1, · · · , ξn} be the dual basis of u′ with respect to 〈 , 〉. It is easy to see that

(u ∩ q)0 = Span{ξl+1, ξl+1, · · · , ξn} = pu′(q
⊥), recall (2.2), where pu′ : d → u′ is the

projection along u. Choose yj ∈ u such that yj + ξj ∈ q⊥ for l + 1 ≤ j ≤ n and

write

Ru,u′ =
1

2

l∑

j=1

ξj ∧ xj +
1

2

n∑

j=l+1

(yj + ξj) ∧ xj −
1

2

n∑

j=l+1

yj ∧ xj .

Since κq(xj) = 0 for 1 ≤ j ≤ l and κq(yj + ξj) = 0 for l + 1 ≤ j ≤ n, we have

(2.10) κq(Ru,u′) = −
1

2

n∑

j=l+1

κq(yj) ∧ κq(xj) ∈ κq(∧
2u).

Q.E.D.

In the setting of Theorem 2.3, the action map

(D,πD
u,u′) × (D/Q, Πu,u′) −→ (D/Q, Πu,u′)

is easily seen to be Poisson. Thus (D/Q,Πu,u′) is a Poisson homogeneous space [5]

of (D,πD
u,u′). By part 2) of Theorem 2.3, each U and U ′-orbit in D/Q is a Poisson

homogeneous space of (U, πU ) and (U ′,−πU ′), respectively.

2.3. Rank of the Poisson structure Πu,u′ on D/Q. For d ∈ D set d = dQ ∈

D/Q. Consider the U -orbit U·d through d. Since (U·d,Πu,u′) is a Poisson homoge-

neous space of (U, πU ), there is a Lagrangian subalgebra ld of d, called the Drinfeld

Lagrangian subalgebra associated to U·d at d. It is defined as follows: identify

Td(U·d) ∼= u/(u ∩ Addq) and regard Πu,u′(d) as an element in ∧2 (u/(u ∩ Addq)).

For ξ ∈ (u ∩ Addq)
0, recall (2.2), let ιξΠu,u′(d) ∈ u/(u ∩ Addq) be such that
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〈ιξΠu,u′(d), η〉 = Πu,u′(d)(ξ, η) for all η ∈ (u ∩ Addq)
0. Then ld ⊂ d is given

by

ld = {x + ξ | x ∈ u, ξ ∈ (u ∩ Addq)
0, ιξΠu,u′(d) = x + u ∩ Addq}.

If RankΠu,u′
(d) denotes the rank of Πu,u′ at d, it is easy to see from the definition

of ld that

(2.11) RankΠu,u′
(d) = dim(U·d) − dim(u′ ∩ ld).

Proposition 2.5. For any d ∈ D, the Drinfeld Lagrangian subalgebra ld is

(2.12) ld = Addq
⊥ + u ∩ Addq.

Proof. Since the stabilizer subalgebra of d at d is Addq, it is enough to prove that

le = q⊥ + u ∩ q, where e is the identity element of D. Note that since q⊥ ⊂ q,

(q⊥ + u ∩ q)⊥ = q ∩ (u ∩ q)⊥ = q ∩ (u + q⊥) = u ∩ q + q⊥.

Thus q⊥ + u ∩ q is a Lagrangian subspace of d. Since le is Lagrangian in d and

u ∩ q ⊂ le, it is sufficient to show that q⊥ ⊂ le.

For 1 ≤ i ≤ n and l + 1 ≤ j ≤ n, let xi ∈ u, ξi ∈ u′ and yj ∈ u be as in the proof

of Lemma 2.4. If y + ξ ∈ q⊥, for some y ∈ u, ξ ∈ u′, then ξ =
∑n

j=l+1 λjξj . Thus

y + ξ−
∑n

j=l+1 λj(yj + ξj) ∈ u∩ q⊥ ⊂ l. The proposition will now follow if we show

that yj + ξj ∈ le for every l + 1 ≤ j ≤ n. We know from (2.10) that

Πu,u′(e) = −
1

2

n∑

j=l+1

(yj + u ∩ q) ∧ (xj + u ∩ q) ∈ ∧2(u/(u ∩ q)) ∼= ∧2TeD/Q.

Thus for each l + 1 ≤ j ≤ n,

ιξj
Πu,u′(e) =

1

2
yj −

1

2

n∑

k=l+1

〈ξj, yk〉xk + u ∩ q.

Since 0 = 〈yj + ξj, yk + ξk〉 = 〈ξj, yk〉+ 〈ξk, yj〉 for l+1 ≤ k ≤ n and since xj ∈ u∩ q

for 1 ≤ j ≤ l, we have

ιξj
Πu,u′(e) =

1

2
yj +

1

2

n∑

k=l+1

〈ξk, yj〉xk + u ∩ q =
1

2
yj +

1

2

n∑

k=1

〈ξk, yj〉xk + u ∩ q

=
1

2
yj +

1

2
yj + u ∩ q = yj + u ∩ q,

we see that yj + ξj ∈ le.

Q.E.D.

Since u + u′ = d, U -orbits and U ′-orbits in D/Q intersect transversally. By

Theorem 2.3, any such non-empty intersection is a Poisson submanifold of Πu,u′ .

The following corollary gives the corank of Πu,u′ in U·d ∩U ′
·d at d for every d ∈ D.
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Corollary 2.6. For any d ∈ D,

RankΠu,u′
(d) = dim(U·d ∩ U ′

·d) + dim(D/Q) − dim(U ′
·d) − dim(u′ ∩ ld),

where ld is the Drinfeld Lagrangian subalgebra given in (2.12).

Proof. The statement follows immediately from (2.11) and the fact that

dim(U·d) + dim(U ′
· d) − dim(D/Q) = dim(U·d ∩ U ′

· d).

Q.E.D.

2.4. First main theorem. Recall that a manifold with a Poisson structure of

constant rank is called a regular Poisson manifold.

Theorem 2.7. If q is a coisotropic subalgebra of d such that [q, q] ⊂ q⊥, then for

any closed subgroup Q of D with Lie algebra q and for any Lagrangian splitting

d = u + u′ of d, the intersection of any U -orbit with any U ′-orbit in D/Q is a

regular Poisson submanifold for the Poisson structure Πu,u′.

Proof. Let again e be the identity in D. Since [Addq,Addq] ⊂ (Addq)
⊥ for any

d ∈ D, it suffices to show that U·e∩U ′
· e is a regular Poisson manifold of Πu,u′. Let

a ∈ U and a′ ∈ U ′ be such that a = a′ ∈ U·e ∩ U ′
· e. Then there exists b ∈ Q such

that a = a′b. Thus

dim(u′ ∩ la) = dim(u′ ∩ Ada(q
⊥ + u ∩ q)) = dim(u′ ∩ Ada′b(q

⊥ + u ∩ q))

= dim(u′ ∩ Adb(q
⊥ + u ∩ q)).

Since [q, q] ⊂ q⊥, we have [q, q⊥+u∩q] ⊂ [q, q] ⊂ q⊥ ⊂ q⊥+u∩q. Thus Q normalizes

q⊥ + u∩ q, and Adb(q
⊥ + u ∩ q) = q⊥ + u ∩ q. Hence dim(u′ ∩ la) = dim(u′ ∩ le). It

follows from Corollary 2.6 that the rank of Πu,u′ at a is the same as that at e.

Q.E.D.

Remark 2.8. Note that if q ⊂ d is a coisotropic subalgebra such that n(q) = q,

where n(q) is the normalizer of q in d, then [q, q] ⊃ q⊥. Indeed, if x ∈ [q, q]⊥,

then 〈x, [q, q]〉 = 0 which implies that 〈[x, q], q〉 = 0, so [x, q] ⊂ q⊥ ⊂ q. Thus

x ∈ n(q) = q. This shows that [q, q]⊥ ⊂ q, so [q, q] ⊃ q⊥. We thus conclude that if

q is coisotropic such that n(q) = q and [q, q] ⊂ q⊥, then [q, q] = q⊥. This remark

will be used in §3.2.

Corollary 2.9. Let L be a closed subgroup of D whose Lie algebra l ⊂ d is La-

grangian. Then for any Lagrangian splitting d = u+u′, symplectic leaves of Πu,u′ in

D/L are precisely the connected components of the intersections of U and U ′-orbits

in D/L.
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Proof. Again it is enough to prove that U·e ∩ U ′
· e is symplectic. By Corollary 2.6

and Theorem 2.7, the corank of Πu,u′ in U·e ∩ U ′
· e is equal to

dim(U ′
· e) + dim(u′ ∩ l) − dim(D/L) = 0.

Q.E.D.

Remark 2.10. Corollary 2.9 describes the symplectic leaves for a large class of

Poisson homogeneous spaces. Indeed, by [5], every Poisson homogeneous space of

(U, πU ) is of the form U/H, where H is a subgroup of U whose Lie algebra is u∩l for

a Lagrangian subalgebra l of d. In the case when H = U ∩ L, where L is a closed

subgroup of D with Lie algebra l, we can embed U/H into D/L as the U -orbit

through e. This embedding is also Poisson. Thus the symplectic leaves of U/H are

the connected components of the intersections of U/H with the U ′-orbits in D/L.

We conclude this subsection with an example showing that the statement of

Theorem 2.7 is incorrect if the condition q⊥ ⊂ [q, q] is dropped.

Example 2.11. Let G a connected complex simple Lie group with a pair of opposite

Borel subgroups B and B−. Set g = Lie G, T = B ∩ B−, and h = Lie T . Then

d = g ⊕ h is a quadratic Lie algebra with the bilinear form

〈(x1, x2), (y1, y2)〉 =� x1, y1 � − � x2, y2 �, x1, y1,∈ g, x2, y2 ∈ h

where � ., . � is a nondegenerate symmetric invariant bilinear form on g. Let

D = G × T . Given a parabolic subgroup P ⊃ B of G, the Lie algebra q of

Q = P × T is coisotropic but does not satisfy the condition q⊥ ⊂ [q, q]. The

following subalgebras provide a Lagrangian splitting of g ⊕ h:

u = {(x + h, h) | x ∈ n, h ∈ h}

u′ = {(x + h,−h) | x ∈ n−, h ∈ h}

where n and n− are the nilpotent radicals of LieB and Lie B−. Under the iden-

tification (G × T )/(P × T ) ∼= G/P the Poisson structure Πu,u′ corresponds to the

Poisson structure

π = κ
(∑

fα ∧ eα

)

where {eα} and {fα} are sets of dual root vectors of g and κ is denotes the extension

of the infinitesimal action of g on G/P . It was shown in [9] that the partition of

(G/P, π) by T -orbits of leaves (which is a partition by regular Poisson submanifolds)

coincides with Lusztig’s partition [16] of G/P . The strata of this partition are

(2.13) prP

(
Bw1.B ∩ B−w2.B

)
, w1 ∈ W,w2 ∈ W WP

max.
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Here prP : G/B → G/P denotes the standard projection, W the Weyl group of

(G,T ), and W WP
max the set of the maximal length representatives of cosets in W/WP

where WP is the parabolic subgroup of W corresponding to P .

Under the identification (G × T )/(P × T ) ∼= G/P the U and U ′-orbits on (G ×

T )/(P × T ) correspond respectively to the B and B− orbits on G/P . The coarser

partition of (2.13) by intersecting B and B−-orbits on (G/P, π) is no longer a

partition by regular Poisson submanifolds if P 6= B,G. This is easily seen by

applying Theorem 4.10 below and the Poisson embedding [9, (1.10)].

2.5. Intersections of N(u) and N(u′)-orbits. For a Lagrangian splitting d =

u+u′, let N(u) and N(u′) be the normalizer subgroups of u and u′ in D respectively.

Both N(u) and N(u′) are closed subgroups of D, and sometimes N(u) and N(u′)-

orbits in a space D/Q are easier to determine than the U and U ′-orbits. This is

the case for the examples considered in §4. In this subsection, we prove some facts

on N(u) and N(u′)-orbits.

It is clear from Theorem 2.3 that for any closed subgroup Q of D with coisotropic

Lie subalgebra q and for any Lagrangian splitting d = u + u′, all the N(u) and

N(u′)-orbits in D/Q are complete Poisson submanifolds with respect to the Poisson

structure Πu,u′, cf. Theorem 2.3. Recall the Poisson structure πD
u,u′ on D from (2.7).

Lemma 2.12. For any Lagrangian splitting d = u + u′, the Poisson structure πD
u,u′

on D vanishes at all points in N(u)∩N(u′). Consequently, for any closed subgroup

Q of D with coisotropic Lie subalgebra q, N(u)∩N(u′) leaves the Poisson structure

Πu,u′ on D/Q invariant.

Proof. Let d ∈ N(u) ∩ N(u′). If {x1, . . . , xn} and {ξ1, . . . , ξn} is a pair of dual

bases for u and u′ with respect to 〈 , 〉, then so are {Add(x1), . . . Add(xn)} and

{Add(ξ1), . . . ,Add(xn)}. Thus

πD
u,u′(d) = Ld(ru,u′) − Rd(ru,u′) = Rd

(
n∑

i=1

Add(ξi) ∧ Add(xi) −
n∑

i=1

ξi ∧ xi

)
= 0.

Since the (D,πD
u,u′)-action on (D/Q,Πu,u′) is Poisson, N(u) ∩ N(u′) leaves Πu,u′

invariant.

Q.E.D.

Next we generalize Theorem 2.7 to intersections of arbitrary N(u)-orbits and

N(u′)-orbits in D/Q. Its proof is similar to the one of Theorem 2.7 and is left to

the reader.

Proposition 2.13. If q is a coisotropic subalgebra of d such that [q, q] ⊂ q⊥,

then for any closed subgroup Q with Lie algebra q and for any Lagrangian splitting

d = u + u′ of d, the intersection of any N(u)-orbit with any N(u′)-orbit in D/Q is

a regular Poisson submanifold for the Poisson structure Πu,u′.
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Although Proposition 2.13 provides a stronger result than Theorem 2.7, it is apri-

ori possible that the geometry of the strata of the coarser partition from Proposition

2.13 is more complicated than that of the strata of the finer partition from Theorem

2.7. The next result, Proposition 2.15, shows that this is not the case. First we

prove an auxiliary lemma.

Lemma 2.14. Let d = u + u′ be any Lagrangian splitting of d. Assume that N(u)

is connected. Then N(u) = (U ′ ∩N(u))oU , where (U ′ ∩N(u))o denotes the identity

connected component of the group U ′ ∩ N(u). Moreover, N(u) is a Poisson Lie

subgroup of (D,π).

Proof. This is because (U ′∩N(u))oU is a connected subgroup of D with Lie algebra

u′ ∩ n(u) + u which is equal to n(u) because d = u + u′.

Q.E.D.

Proposition 2.15. Let d = u + u′ be any Lagrangian splitting of d, and assume

that N(u) and N(u′) are both connected. Let X be any Poisson space with a Pois-

son (D,π)-action. Let x ∈ X such that N(u)x ∩ N(u′)x 6= ∅. Then the group

N(u) ∩ N(u′) acts transitively on the set of intersections of U -orbits and U ′-orbits

in N(u)x ∩ N(u′)x.

Proof. Using Lemma 2.14 we obtain

N(u)x ∩ N(u′)x =
⋃

α∈(U ′∩N(u))o,β∈(U∩N(u′))o

(αUx) ∩ (U ′βx)

=
⋃

α∈(U ′∩N(u))o,β∈(U∩N(u′))o

α(Ux ∩ U ′βx)

=
⋃

α∈(U ′∩N(u))o,β∈(U∩N(u′))o

αβ(Ux ∩ U ′x).

Q.E.D.

We finish this section with a formula for the corank of Πu,u′ to be used in §4. As

before Q ⊂ D is assumed to be a closed subgroup with coisotropic Lie subalgebra

q. For any d ∈ D, let

CorankΠu,u′
(d) = dim(N(u)·d ∩ N(u′)′·d) − RankΠu,u′

(d)

be the corank of Πu,u′ in N(u)·d ∩ N(u′)·d at d ∈ D/Q.

Lemma 2.16. For any d ∈ D,

CorankΠu,u′
(d) = dim n(u′) − dim(D/Q) + dim n(u) − dim u

− dim(n(u) ∩ Addq) + dim(u ∩ Addq)

− dim(n(u′) ∩ Addq) + dim(u′ ∩ ld),

where ld = Addq
⊥ + u ∩ Addq is the Drinfeld Lagrangian subalgebra as in (2.12).
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Proof. Since N(u)·d and N(u′)·d intersect transversally,

dim(N(u)·d ∩ N(u′)′·d) = dim(N(u)·d) + dim(N(u′)·d) − dim(D/Q)

= dimn(u) − dim(n(u) ∩ Addq)

+ dimn(u′) − dim(n(u′) ∩ Addq) − dim(D/Q).

By (2.11), RankΠu,u′
(d) = dim u − dim(u ∩ Addq) − dim(u′ ∩ ld). The formula for

CorankΠu,u′
(d) in Lemma 2.16 thus follows.

Q.E.D.

3. The variety of Lagrangian subalgebras associated to a reductive

Lie algebra

3.1. General case. Let (d, 〈 , 〉) be a 2n-dimensional quadratic Lie algebra and let

D be a connected Lie group with Lie algebra d. We will denote by L(d) the variety

of all Lagrangian subalgebras of d. It is an algebraic subvariety of the Grassmannian

Gr(n, d) of n-dimensional subspaces of d. The group D acts on L(d) through the

adjoint action.

Fix a Lagrangian splitting d = u + u′, recall Ru,u′ ∈ ∧2d given by (2.5). Let

again κ : d → χ1(L(d)) be the Lie algebra anti-homomorphism from d to the Lie

algebra of vector fields on L(d), and define the bi-vector field Πu,u′ = κ(Ru,u′) on

L(d). For l ∈ L(d), let N(l) and n(l) be respectively the normalizer subgroup of l

in D and the normalizer subalgebra of l in d. Then the D-orbit in L(d) through l is

isomorphic to D/N(l). Clearly, n(l) is coisotropic in d because it contains l. Thus

it follows from Theorem 2.3 that Πu,u′ is a Poisson structure on L(d), see also [7].

The following proposition now follows immediately from Theorem 2.7.

Proposition 3.1. Assume that (d, 〈 , 〉) is an even dimensional quadratic Lie alge-

bra and D is a connected Lie group with Lie algebra d such that for every l ∈ L(d)

[n(l), n(l)] ⊂ (n(l))⊥.

Then for any Lagrangian splitting d = u + u′, the intersection of an N(u)-orbit

and an N(u′)-orbit in L(d) is a regular Poisson manifold for the Poisson structure

Πu,u′.

3.2. Second main theorem: the case of a reductive Lie algebra. When

(d, 〈 , 〉) is a reductive quadratic Lie algebra, we have the following second main

theorem of the paper.

Theorem 3.2. If D is a connected complex or real reductive Lie group and 〈 , 〉

is a nondegenerate invariant bilinear form on d = Lie D, then for any Lagrangian

splitting d = u + u′, the intersection of any N(u)-orbit and any N(u′)-orbit in L(d)

is a regular Poisson submanifold for the Poisson structure Πu,u′ on L(d).
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To prove Theorem 3.2 we need to check that in the setting of Theorem 3.2 the

condition of Proposition 3.1 is satisfied. In fact, we prove a stronger statement.

Proposition 3.3. If d is an even dimensional complex or real reductive Lie algebra

and 〈 , 〉 is a nondegenerate invariant symmetric bilinear form on d, then for all

Lagrangian subalgebras l of (d, 〈 , 〉), [n(l), n(l)] = (n(l))⊥.

The real case in Proposition 3.3 follows from the complex one. Indeed, let (d, 〈 , 〉)

be a quadratic real reductive Lie algebra. Then (dC, 〈 , 〉C) is a quadratic complex

reductive Lie algebra. Let l be a Lagrangian subalgebra of (d, 〈 , 〉), and let n(lC) be

the normalizer subalgebra of lC in dC. Then n(lC) = (n(l))
C
. Assume the validity

of Proposition 3.3 in the complex case. We get

[n(l), n(l)] = [n(lC), n(lC)] ∩ d = (n(lC))⊥ ∩ d

= ((n(l))
C
)⊥ ∩ d = (n(l))⊥

where (.)⊥ denotes orthogonal complements in d and dC. This proves the real case

in Proposition 3.3.

To obtain the complex case in Proposition 3.3 we need the following result of

Delorme [4].

Theorem 3.4. [Delorme] Assume that (d, 〈 , 〉) is an even dimensional reductive

quadratic Lie algebra. For each Lagrangian subalgebra l of (d, 〈 , 〉) the normalizer

of the nilpotent radical n of l is a parabolic subalgebra p of d. In addition, p has a

Levi subalgebra m whose derived subalgebra m̄ = [m,m] decomposes as m̄ = m1 ⊕m2

and for which there exists an isomorphism θ : m1 → m2. If z denotes the center of

m then

(3.1) m̄θ + n ⊂ l ⊂
(
m̄θ ⊕ z

)
+ n

where m̄θ = {x + θ(x) | x ∈ m1} ⊂ m1 ⊕ m2.

Proof of Proposition 3.3 in the complex case. Let l be a Lagrangian subalgebra of

(d, 〈 , 〉) as in Theorem 3.4.

First we claim that n(l) ⊂ p. Indeed, the normalizer of l lies inside the normalizer

of the nilpotent radical n of l which is p: if y ∈ n(l), then for small t, exp(t ady)

is an automorphism of l and thus of its nilpotent radical n. Taking derivative at

t = 0, we get that y normalizes n.

Next we will show that

(3.2) n(l) =
(
m̄θ ⊕ z

)
+ n.

The inclusion n(l) ⊃
(
m̄θ ⊕ z

)
+ n is clear from (3.1). Define the subspace

m̄− = {x − θ(x) | x ∈ m1} ⊂ m̄.
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Under the adjoint action of m̄θ we have the direct sum decomposition of m̄θ-modules

p = m̄θ ⊕ m̄− ⊕ z ⊕ n.

If n(l) 6=
(
m̄θ ⊕ z

)
+n, then there exists a nonzero Y = y−θ(y) ∈ m̄− which belongs

to n(l). Since m̄θ normalizes m̄− we get that adY (m̄θ) = 0 and thus ady(m1) = 0.

This is a contradiction since m1 is semisimple and y 6= 0. This completes the proof

of (3.2).

Repeating the proof with n(l) in the place of l, which also satisfies (3.1) as shown

above, we get that n(l) coincides with its normalizer.

Now (3.2) implies [n(l), n(l)] ⊂ m̄θ + n. Because l is a Lagrangian subalgebra of

(d, 〈 , 〉), it is clear that m̄θ + n ⊂ n(l)⊥. Thus, [n(l), n(l)] ⊂ n(l)⊥. By Remark 2.8,

[n(l), n(l)] = n(l)⊥.

Q.E.D.

4. Ranks of Poisson structures on the variety L(g ⊕ g)

4.1. The quadratic Lie algebra (g ⊕ g, 〈 , 〉). Assume that g is a complex semi-

simple Lie algebra and � , � is a fixed nondegenerate invariant symmetric bilinear

form whose restriction to a compact real form is negative definite. Let d = g ⊕ g

be the direct sum Lie algebra and let 〈 , 〉 be the bilinear form on d given by

(4.1) 〈(x1, x2), (y1, y2)〉 =� x1, y1 � − � x2, y2 �, x1, x2, y1, y2 ∈ g.

In this section, we will study in more detail the Poisson structure Πl1,l2 on L(g⊕ g)

defined by an arbitrary Lagrangian splitting g ⊕ g = l1 + l2.

A classification of Lagrangian subalgebras of g⊕g was first obtained by Karolin-

sky [10]. It also follows from the more general results of Delorme [4], where La-

grangian splittings of an arbitrary reductive quadratic Lie algebras were classified.

We will recall Delorme’s classification in §4.2. Let G be the adjoint group of g.

For l ∈ L(g ⊕ g) denote by N(l) the normalizer subgroup of l in G × G. Let

g ⊕ g = l1 + l2 be an arbitrary Lagrangian splitting. We know from Theorem 3.2

that the intersection of any N(l1)-orbit and any N(l2)-orbit in L(g⊕ g) is a regular

Poisson submanifold for the Poisson structure Πl1,l1 . Using results from [14], we

will describe the N(l1) and N(l2)-orbits in L(g ⊕ g) and will compute the rank of

Πl1,l2 at an arbitrary l ∈ L(g ⊕ g).

4.2. Lagrangian splittings of (g ⊕ g, 〈 , 〉). Fix a Cartan subalgebra h of g and

a choice ∆+ of positive roots in the set ∆ of all roots for (g, h). Let Γ be the set of

simple roots in ∆+. For each α ∈ ∆, let Hα ∈ h be such that � x,Hα �= α(x) for

all x ∈ h. We will also fix a root vector Eα for each α ∈ ∆ such that [Eα, E−α] = Hα.

Following [20, 8], we define a generalized Belavin–Drinfeld (gBD) triple to be a triple

(S, T, d), where S and T are subsets of Γ and d : S → T is a bijection such that

� Hdα,Hdβ �=� Hα,Hβ � for all α ∈ S.
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For a subset S of Γ, let ∆S be the set of roots in the linear span of S. Set

mS = h +
∑

α∈∆S

gα, nS =
∑

α∈∆+−∆S

gα, n−S =
∑

α∈∆+−∆S

g−α

and pS = mS + nS and p−S = mS + n−S . We further set m̄S = [mS,mS ] and

hS = h ∩ m̄S = SpanC{Hα : α ∈ ∆S}, zS = {x ∈ h | α(x) = 0, ∀α ∈ S}.

Then we have the decompositions h = zS + hS , mS = zS + m̄S and

pS = zS + m̄S + nS , p−S = zS + m̄S + n−S .

Recall that G is the adjoint group of g. The connected subgroups of G with Lie

algebras pS , p−S , mS, nS and n−S will be respectively denoted by PS , P−
S ,MS , NS and

N−
S . Correspondingly we have the Levi decompositions PS = MSNS , P−

S = MSN−
S .

Let ZS be the center of MS , and let χS : PS → MS/ZS be the natural projection

by first projecting to MS along NS and then to MS/ZS . We also denote by χS the

similar projection from P−
S to MS/ZS .

For a generalized Belavin–Drinfeld triple (S, T, d), let Lspace(zS⊕zT ) be the set of

all Lagrangian subspaces of zS ⊕ zT with respect to the (nondegenerate) restriction

of 〈 , 〉 to zS ⊕ zT . Let θd : m̄S → m̄T be the unique Lie algebra isomorphism

satisfying

θd(Hα) = Hdα, θd(Eα) = Edα, ∀α ∈ S.

For every V ∈ Lspace(zS ⊕ zT ), define

lS,T,d,V = V + {(x, θd(x)) | x ∈ m̄S} + (nS ⊕ nT ) ⊂ pS ⊕ pT ,(4.2)

l′S,T,d,V = V + {(x, θd(x)) | x ∈ m̄S} + (nS ⊕ n−T ) ⊂ pS ⊕ p−T ,(4.3)

l′′S,T,d,V = V + {(x, θd(x)) | x ∈ m̄S} + (n−S ⊕ nT ) ⊂ p−S ⊕ pT .(4.4)

It is easy to see that lS,T,d,V , l′S,T,d,V , and l′′S,T,d,V are all in L(g⊕g). The subalgebras

l′S,T,d,V and l′′S,T,d,V are of course conjugate to ones of the type lS,T,d,V . Indeed, let

W be the Weyl group of (g, h), and let w0 be the longest element in W . For A ⊂ Γ,

let WA be the subgroup of W generated by simple reflections with respect to roots

in A, and let xA = w0w0,A where w0,A denotes the longest element of WA. Then it

is easy to see that

l′S,T,d,V = Ad−1
(e,ẋT )lS,−w0(T ), xT d,Ad(e,ẋT )V

,(4.5)

l′′S,T,d,V = Ad−1
(ẋS ,e)l−w0(S),T, dx−1

S
,Ad(ẋS,e)V

,(4.6)

where ẋT and ẋS are representatives in G of xT and xS respectively.
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Denote also by θd the (unique) group isomorphism MS/ZS → MT /ZT induced

by θd : m̄S → m̄T . Corresponding to the subalgebras in (4.2)-(4.4), we have

RS,T,d = {(p1, p2) ∈ PS × PT | θd(χS(p1)) = χT (p2)} ⊂ PS × PT ,(4.7)

R′
S,T,d = {(p1, p2) ∈ PS × P−

T | θd(χS(p1)) = χT (p2)} ⊂ PS × P−
T ,(4.8)

R′′
S,T,d = {(p1, p2) ∈ P−

S × PT | θd(χS(p1)) = χT (p2)} ⊂ P−
S × PT .(4.9)

One knows that RS,T,d, R′
S,T,d, and R′′

S,T,d are all connected [8, Lemma 2.19]. Cor-

responding to (4.5) and (4.6), we have

R′
S,T,d = Ad−1

(e,ẋT )RS,−w0(T ), xT d,(4.10)

R′′
S,T,d = Ad−1

(ẋS ,e)R−w0(S),T, dx−1
S

.(4.11)

The Lie algebras of RS,T,d, R
′
S,T,d, and R′′

S,T,d will be denoted by rS,T,d, r
′
S,T,d, and

r′′S,T,d respectively.

Proposition 4.1. [8] Every (G×G)-orbit in L(g⊕g) passes through an lS,T,d,V for

a unique generalized Belavin–Drinfeld triple (S, T, d) and a unique V ∈ Lspace(zS ⊕

zT ). The normalizer subgroup of lS,T,d,V in G × G is RS,T,d.

Definition 4.2. For generalized Belavin-Drinfeld triples (Si, Ti, di), i = 1, 2, let

S
d−1
1 d2

2 = {α ∈ S2 | (d−1
1 d2)

nα is defined and is in S2 for n = 1, 2, · · · }.

A generalized Belavin–Drinfeld system is a pair of quadruples (S1, T1, d1, V1)

and (S2, T2, d2, V2), where for i = 1, 2, (Si, Ti, di) is a generalized Belavin–Drinfeld

triple and Vi ∈ Lspace(zSi
⊕ zTi

), such that

1) S
d−1
1 d2

2 = ∅;

2) h1 ∩ h2 = {0}, where hi = Vi + {(x, θd(x)) | x ∈ hSi
} ⊂ h ⊕ h for i = 1, 2.

Theorem 4.3. [4, Delorme] Every Lagrangian splitting of g⊕ g is conjugate by an

element in G × G to one of the form g ⊕ g = l1 + l2, where

(4.12) l1 = l′S1,T1,d1,V1
and l2 = l′′S2,T2,d2,V2

for a generalized Belavin–Drinfeld system (S1, T1, d1, V1) and (S2, T2, d2, V2).

Let g ⊕ g = l1 + l2 be a Lagrangian splitting with l1 and l2 given in (4.12). By

Theorem 3.2, any non-empty intersection of an N(l1) and an N(l2)-orbit in L(g⊕g)

is a regular Poisson subvariety for the Poisson structure Πl1,l2. Classification of

N(l1) and N(l2)-orbits will be given in § 4.3. We now prove that every non-

empty intersection of an N(l1)-orbit and an N(l2)-orbit in L(g ⊕ g) is smooth

and irreducible. Let H be the connected subgroup of G with Lie algebra h.

Proposition 4.4. For a Lagrangian splitting g ⊕ g = l1 + l2 with l1 and l2 given

by (4.12), N(l1)∩N(l2) is a subtorus of H ×H of dimension dim zS1 + dim zS2. In

particular, N(l1) ∩ N(l2) is connected.
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Proof. It follows from Proposition 4.1 that

(4.13) N(l1) = R′
S1,T1,d1

and N(l2) = R′′
S2,T2,d2

.

For notational simplicity, let x1 = xT1, x2 = xS2 . Then by (4.10) and (4.11),

N(l1) ∩ N(l2) =
(
Ad−1

(e,ẋ1)
RS1,−w0(T1), x1d1

)
∩
(
Ad−1

(ẋ2,e)R−w0(S2), T2, d2x−1
2

)
.

Since x−1
2 ∈ W−w0(S2) and x1 ∈ −w0(T1)W , we can use [14, Theorem 2.5] to deter-

mine N(l1)∩N(l2). Let N = N∅. Since S
d−1
1 d2

2 = ∅, we know from [14, Theorem 2.5]

that N(l1)∩N(l2) ⊂ B×B and N(l1)∩N(l2) = (N(l1)∩N(l2))
red(N(l1)∩N(l2))

uni,

where

(N(l1) ∩ N(l2))
red = N(l1) ∩ N(l2) ∩ (H × H),

(N(l1) ∩ N(l2))
uni = N(l1) ∩ N(l2) ∩ (N × N).

Moreover, [14, Theorem 2.5] also tells us that

(N(l1) ∩ N(l2))
uni ∼= (N ∩ Ad−1

ẋ2
(N−w0(S2))) × (N ∩ Ad−1

ẋ1
(N−w0(T1))).

It is easy to see that (N ∩ Ad−1
ẋ2

(N−w0(S2))) × (N ∩ Ad−1
ẋ1

(N−w0(T1))) is the trivial

group. Thus N(l1)∩N(l2) = N(l1)∩N(l2)∩(H×H) consists of all (h1, h2) ∈ H×H

such that {
Adẋ1θd1χS1(h1) = χ−w0(T1)(Adẋ1(h2),

θd2Adẋ−1
2

χ−w0(S2)(Adẋ2(h1)) = χT2(h2),

which are equivalent to

h
d−1
1 x−1

1 α

1 = h
x−1
1 α

2 , ∀α ∈ −w0(T1) and h
d−1
2 β

1 = hβ
2 , ∀β ∈ T2.

which are in turn equivalent to

(4.14) hα
1 = hd1α

2 , ∀α ∈ S1 and hβ
1 = hd2β

2 , ∀β ∈ S2.

Let Γ = {α1, α2, · · · , αr} be the set of simple roots. Since G is the adjoint group

of g, we can identify H × H with the torus (C×)2r by the map

H × H −→ (C×)2r : (h1, h2) 7−→ (hα1
1 , hα2

1 , · · · , hαr

1 , hα1
2 , hα2

2 , · · · , hαr

2 ).

The conditions in (4.14) imply that the coordinates hα
1 of h1 for α ∈ S1 ∪ S2 are

expressed in terms of coordinates of h2, and we have the extra conditions

(4.15) hd1α
2 = hd2α

2 , α ∈ S1 ∩ S2

for the coordinates of h2. To understand the conditions in (4.15), recall that

S
d−1
1 d2

2 = ∅. Thus for every α ∈ S1 ∩ S2, there is a unique integer n ≥ 1 and

unique elements α(0) = α, α(1), α(2), · · · , α(n−1) ∈ S1 ∩ S2 such that

d2α
(0) = d1α

(1), d2α
(1) = d1α

(2), · · · d2α
(n−2) = d1α

(n−1)
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and either d2α
(n−1) /∈ T1 or d2α

(n−1) = d1α
(n) for some α(n) ∈ S1 but α(n) /∈ S2.

Then the conditions in (4.15) are equivalent to

hd1α
2 = hd2α

2 = hd2α(1)

2 = · · · = hd2α(n−1)

2 .

Since d2α
(n−1) /∈ d1(S1 ∩ S2), we see that the conditions (4.15) express hd1α

2 for

every α ∈ S1 ∩ S2 in terms of hβ
2 for some β /∈ d1(S1 ∩ S2). We conclude that the

set of (h1, h2) ∈ H × H satisfying (4.14) is a subtorus of H × H with dimension

equal to

2 dim H − |S1 ∪ S2| − |S1 ∩ S2| = 2dim H − |S1| − |S2| = dim zS1 + dim zS2.

Q.E.D.

Corollary 4.5. For any Lagrangian splitting g ⊕ g = l1 + l2, all N(l1)-orbits and

N(l2)-orbits in L(g ⊕ g) intersect transversally, and every such non-empty inter-

section is smooth and irreducible.

Proof. . Clearly, n(l1) + n(l2) = g ⊕ g, where n(li) is the Lie algebra of N(li) for

i = 1, 2. Since N(l1)∩N(l2) is connected, Corollary 4.5 follows from [19, Corollary

1.5].

Q.E.D.

4.3. N(l1) and N(l2)-orbits in L(g⊕g). Assume that g⊕g = l1+l2 is a Lagrangian

splitting with l1 and l2 given in (4.12). We now use results in [14] to describe N(l1)

and N(l2)-orbits in L(g ⊕ g).

For A ⊂ Γ, let W A and AW be respectively the sets of minimal length represen-

tatives in the cosets in W/WA and WA\W . For each w ∈ W , we fix a representative

ẇ of w in G.

Proposition 4.6. 1) Every N(l1) = R′
S1,T1,d1

-orbit in L(g ⊕ g) is of the form

R′
S1,T1,d1

Ad(v̇1,v̇2m2)lS,T,d,V

for a unique generalized Belavin-Drinfeld triple (S, T, d), a unique V ∈ Lspace(zS ⊕

zT ), a unique (v1, v2) ∈ W S × T1W , and some m2 ∈ MT (v1,v2) with

T (v1, v2) = {α ∈ T | (v−1
2 d1v1d

−1)nα is defined and is in T for n = 1, 2, · · · };

2) Every N(l2) = R′′
S2,T2,d2

-orbit in L(g ⊕ g) is of the form

R′′
S2,T2,d2

Ad(ẇ1m1,ẇ2)lS,T,d,V

for a unique generalized Belavin-Drinfeld triple (S, T, d), a unique V ∈ Lspace(zS ⊕

zT ), a unique (w1, w2) ∈
S2W × W T , and some m1 ∈ MS(w1,w2) with

S(w1, w2) = {α ∈ S | (w−1
1 d−1

2 w2d)nα is defined and is in S for n = 1, 2, · · · }.
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Proof. In [14] we gave a description of the (RS1,T1,d1 , RS,T,d)-double cosets in G×G.

Using (4.10), [14, Theorem 2.2], and the fact that −w0(A)W = xA
AW , ∀A ⊂ Γ we

get 1).

Let σ : G × G → G × G : (g1, g2) → (g2, g1). Then using 1) and the facts that

R′′
S2,T2,d2

= σ
(
R′

T2,S2,d−1
2

)
and RS,T,d = σ(RT,S,d−1)

we get 2).

Q.E.D.

Let O1 be an N(l1) = R′
S1,T1,d1

-orbit and O2 an N(l2) = R′′
S2,T2,d2

-orbit in L(g⊕

g). By Proposition 4.6, we can assume that

O1 = R′
S1,T1,d1

Ad(v̇1,v̇2m2)lS,T,d,V ,(4.16)

O2 = R′′
S2,T2,d2

Ad(ẇ1m1,ẇ2)lS,T,d,V ,(4.17)

where (S, T, d, V ), v1, v2, w1, w2 and m1 and m2 are as in Proposition 4.6. Let

S1(v1, v2) = d−1
1 v2T (v1, v2) = v1d

−1T (v1, v2) ⊂ S1(4.18)

S2(w1, w2) = w1S(w1, w2) = d−1
2 w2dS(w1, w2) ⊂ S2.(4.19)

In other words, S1(v1, v2) is the largest subset of S1 that is invariant under the

partial map v1d
−1v−1

2 d1 : Γ → Γ, and S2(w1, w2) is the largest subset of S2 that is

invariant under the partial map w1d
−1w−1

2 d2 : Γ → Γ.

In order to compute the rank of Πl1,l2 at an l ∈ O1 ∩ O2 using Lemma 2.16, we

need to compute the dimensions of various intersections of subalgebras in n(l1), n(l2)

and n(l). Such intersections can be described using the following Proposition 4.8

which is derived from [14, Theorem 2.5].

Recall the for q ∈ g ⊕ g, q⊥ = {x ∈ g ⊕ g | 〈x, y〉 = 0 ∀y ∈ q}. Clearly

r⊥S,T,d = nS ⊕ nT + {(x, θd(x)) | x ∈ m̄S},

r
′,⊥
S1,T1,d1

= nS1 ⊕ n−T1
+ {(x, θd1(x)) | x ∈ m̄S1},

r
′′,⊥
S2,T2,d2

= n−S2
⊕ nT2 + {(x, θd2(x)) | x ∈ m̄S2}.

Notation 4.7. Let S (resp. S ′, S ′′) be the set of all subspaces of rS,T,d (resp.

r′S1,T1,d1
, r′′S2,T2,d2

) that contain r⊥S,T,d (resp. r
′,⊥
S1,T1,d1

, r
′′,⊥
S2,T2,d2

). For a ∈ S, let

Va = a ∩ (zS ⊕ zT ) and

X ′
a = Va + {(x, θd(x)) | x ∈ zd−1T (v1,v2) ∩ hS},

X ′′
a = Va + {(x, θd(x)) | x ∈ zS(w1,w2) ∩ hS}.

For a′ ∈ S ′ and a′′ ∈ S ′′, let

Va′ = a′ ∩ (zS1 ⊕ zT1) and Ya′ = Va′ + {(x, θd1(x)) | x ∈ zS1(v1,v2) ∩ hS1},

Va′′ = a′′ ∩ (zS2 ⊕ zT2) and Ya′′ = Va′′ + {(x, θd2(x)) | x ∈ zS2(w1,w2) ∩ hS2}.
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We also set

f1 = r
′,⊥
S1,T1,d1

∩ Ad(v̇1,v̇2m2)r
⊥
S,T,d ∩ (m̄S1(v1,v2) ⊕ m̄d1S1(v1,v2))(4.20)

Proposition 4.8. For any a′ ∈ S1 and a ∈ S, one has the direct sum

a′ ∩ Ad(v̇1,v̇2m2)a = (a′ ∩ Ad(v̇1,v̇2m2)a)
red + (a′ ∩ Ad(v̇1,v̇2m2)a)

nil,

where

(a′ ∩ Ad(v̇1,v̇2m2)a)
red = a′ ∩ Ad(v̇1,v̇2m2)a ∩ (mS1(v1,v2) ⊕ md1S1(v1,v2))

= Ya′ ∩ Ad(v̇1,v̇2)X
′
a + f1 (direct sum),

and (a′∩Ad(v̇1,v̇2m2)a)
nil = a′∩Ad(v̇1,v̇2m2)a∩(nS1(v1,v2)⊕n−

d1S1(v1,v2)) has dimension

equal to l(v2) + dim(n ∩ Adv̇1(nS)).

Proof. By using (4.5) and [14, Theorem 2.5], one can see that

a′ ∩ Ad(v̇1,v̇2m2)a ⊂ pS1(v1,v2) ⊕ p−
d1S1(v1,v2)

and that

a′ ∩ Ad(v̇1,v̇2m2)a = (a′ ∩ Ad(v̇1,v̇2m2)a)
red + (a′ ∩ Ad(v̇1,v̇2m2)a)

nil

= a′ ∩ Ad(v̇1,v̇2m2)a ∩ (mS1(v1,v2) ⊕ md1S1(v1,v2))

+ a′ ∩ Ad(v̇1,v̇2m2)a ∩ (nS1(v1,v2) ⊕ n−
d1S1(v1,v2)).

The dimension formula for (a′ ∩ Ad(v̇1,v̇2m2)a)
nil also follows from [14, Theorem

2.5]. It now remains to show that (a′ ∩ Ad(v̇1,v̇2m2)a)
red = Ya′ ∩ Ad(v̇1,v̇2)X

′
a + f1

as a direct sum. Clearly, Ya′ ∩ Ad(v̇1,v̇2)X
′
a + f1 is a direct sum and is contained in

(a′ ∩ Ad(v̇1,v̇2m2)a)
red.

Suppose that (x, y) ∈ (a′ ∩ Ad(v̇1,v̇2m2)a)
red. Write x = x1 + x2 and y = y1 + y2,

where x1 ∈ zS1(v1,v2), x2 ∈ m̄S1(v1,v2), y1 ∈ zd1S1(v1,v2) and y1 ∈ m̄d1S1(v1,v2). Then

it follows from (x, y) ∈ a′ ⊂ r′S1,T1,d1
that θd1χS1(x1) + θd1(x2) = χT1(y1) + y2. It

follows from the direct sum decomposition zd1S1(v1,v2) = zT1 + zd1S1(v1,v2) ∩ hT1 that

χT1(y1) ∈ zS1(v1,v2) ∩ hT1 . Similarly, χS1(x1) ∈ zS1(v1,v2) ∩ hS1 . Thus θd1χS1(x1) =

χT1(y1) and θd1(x2) = y2. Hence (x2, y2) ∈ r
′,⊥
S1,T1,d1

⊂ a′, and therefore (x1, y1) ∈

(zS1(v1,v2) ⊕ zd1S1(v1,v2)) ∩ a′ = Ya′ . Similarly, one shows that (x1, y1) ∈ Ad(v̇1,v̇2)X
′
a

and (x2, y2) ∈ Ad(v̇1,v̇2m2)r
⊥
S,T,d. Thus (x1, y1) ∈ Ya′ ∩ Ad(v̇1,v̇2)X

′
a and (x2, y2) ∈ f1.

Q.E.D.
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Corollary 4.9. For any a, b ∈ S, a′, b′ ∈ S ′, and a′′, b′′ ∈ S ′′,

dim(a′ ∩ Ad(v̇1,v̇2m2)a) − dim(b′ ∩ Ad(v̇1,v̇2m2)b)(4.21)

= dim(Ya′ ∩ Ad(v̇1,v̇2)X
′
a) − dim(Yb′ ∩ Ad(v̇1,v̇2)X

′
b);

dim(a′′ ∩ Ad(ẇ1m1,ẇ2)a) − dim(b′′ ∩ Ad(ẇ1m1,ẇ2)b)(4.22)

= dim(Ya′′ ∩ Ad(ẇ1,ẇ2)X
′′
a) − dim(Yb′′ ∩ Ad(ẇ1,ẇ2)X

′′
b).

Proof. Let f1 be as in(4.20). We know from Proposition 4.8 that

(a′ ∩ Ad(v̇1,v̇2m2)a)
red = Ya′ ∩ Ad(v̇1,v̇2)X

′
a + f1

is a direct sum. Replacing a′ by b′ and a by b, we thus get

dim(a′ ∩ Ad(v̇1,v̇2m2)a) − dim(b′ ∩ Ad(v̇1,v̇2m2)b)

= dim(a′ ∩ Ad(v̇1,v̇2m2)a)
red − dim(b′ ∩ Ad(v̇1,v̇2m2)b)red

= dim(Ya′ ∩ Ad(v̇1,v̇2)X
′
a) − dim(Yb′ ∩ Ad(v̇1,v̇2)X

′
b).

(4.22) is proved by using (4.21) and the map σ : g ⊕ g → g ⊕ g : (x, y) 7→ (y, x).

Q.E.D.

4.4. The rank of the Poisson structure Πl1,l2 on L(g ⊕ g).

Theorem 4.10. Let g ⊕ g = l1 + l2 be a Lagrangian splitting as in (4.12) and let

O1 and O2 be respectively an N(l1) and an N(l2)-orbit in L(g⊕ g) as in (4.16) and

(4.17). Then the corank of Πl1,l2 in O1 ∩ O2 is equal to

dim zS1 + dim zS2 + dim zS − dim(Y1 ∩ Ad(v̇1,v̇2)X1) + dim(Z1 ∩ Ad(v̇1,v̇2)X1)

− dim(Y2 ∩ Ad(ẇ1,ẇ2)X2) + dim(Z2 ∩ Ad(ẇ1,ẇ2)X̃),

where

X1 = (zd−1T (v1,v2) ⊕ zT (v1,v2)) ∩ rS,T,d

= zS ⊕ zT +{(x, θd(x)) | x ∈ zd−1T (v1,v2) ∩ hS}

X2 = (zS(w1,w2) ⊕ zdS(w1,w2)) ∩ rS,T,d

= zS ⊕ zT +{(x, θd(x)) | x ∈ zS(w1,w2) ∩ hS}

Y1 = (zS1(v1,v2) ⊕ zd1S1(v1,v2)) ∩ r′S1,T1,d1

= zS1 ⊕ zT1 + {(x, θd1(x)) | x ∈ zS1(v1,v2) ∩ hS1}

Y2 = (zS2(w1,w2) ⊕ zd2S2(w1,w2)) ∩ r′′S2,T2,d2

= zS2 ⊕ zT2 + {(x, θd2(x)) | x ∈ zS2(w1,w2) ∩ hS2}

Z1 = (zS1(v1,v2) ⊕ zd1S1(v1,v2)) ∩ l′S1,T1,d1,V1

= V1 + {(x, θd1(x)) | x ∈ zS1(v1,v2) ∩ hS1}

Z2 = (zS2(w1,w2) ⊕ zd2S2(w1,w2)) ∩ l′′S2,T2,d2,V2

= V2 + {(x, θd2(x)) | x ∈ zS2(w1,w2) ∩ hS2},



REGULAR PARTITIONS OF POISSON MANIFOLDS 21

and X̃ = p(X1∩Ad−1
(v̇1,v̇2)Z1)+{(x, θd(x)) | x ∈ zS(w1,w2)∩hS} with p : h⊕h → zS⊕zT

being the projection along hS ⊕ hT .

Proof. Let l ∈ O1 ∩ O2 be given by

(4.23) l = Ad(r′1,r′2)(v̇1,v̇2m2)lS,T,d,V = Ad(r′′1 ,r′′2 )(ẇ1m1,ẇ2)lS,T,d,V ,

where (r′1, r
′
2) ∈ N(l1) = R′

S1,T1,d1
, and (r′′1 , r′′2) ∈ N(l2) = R′′

S2,T2,d2
. The formula

for the corank of Πl1,l2 at l ∈ O1 ∩O2 involves the Drinfeld subalgebra T (l) of g⊕ g

defined by T (l) = n(l)⊥ + l1 ∩ n(l), cf. Proposition 2.5, where again n(l) is the

normalizer subalgebra of l in g ⊕ g. We first compute T (l). Since

Ad(r′1,r′2)(v̇1,v̇2m2)r
⊥
S,T,d = n(l)⊥ ⊂ T (l) ⊂ n(l) = Ad(r′1,r′2)(v̇1,v̇2m2)rS,T,d,

we know that T (l) = Ad(r′1,r′2)(v̇1,v̇2m2)lS,T,d,eV
for some Ṽ ∈ L(zS ⊕ zT ). On the

other hand,

T (l) = Ad(r′1,r′2)(v̇1,v̇2m2)

(
r⊥S,T,d + rS,T,d ∩ Ad−1

(v̇1,v̇2m2)l1

)
.

Thus l
S,T,d,eV

= r⊥S,T,d + rS,T,d ∩Ad−1
(v̇1,v̇2m2)l1 = X1 ∩ Ad−1

(v̇1,v̇2)
Z1 + r⊥S,T,d, where the

second identity comes from Proposition 4.8. Hence

Ṽ = p(X1 ∩ Ad−1
(v̇1,v̇2)Z1).

Now by Lemma 2.16, the corank of Πl1,l2 in O1 ∩O2 at the Lagrangian subalgebra

l given by (4.23) is

CorankΠl1,l2
(l) = dim zS1 + dim zS2 + dim zS

− dim(r′S1,T1,d1
∩ Ad(v̇1,v̇2m2)rS,T,d) + dim(l′S1,T1,d1,V1

∩ Ad(v̇1,v̇2m2)rS,T,d)

− dim(r′′S2,T2,d2
∩ Ad(ẇ1m1,ẇ2)rS,T,d) + dim(l′′S2,T2,d2

∩ Ad(ẇ1m1,ẇ2)lS,T,d,eV
).

Applying Corollary 4.9, we get the desired formula for the corank of Πl1,l2 in O1∩O2.

This completes the proof of Theorem 4.10.

Q.E.D.

Example 4.11. Let gdiag = {(x, x) | x ∈ g}. A Lagrangian splitting of the form

g ⊕ g = gdiag + l, where l ∈ L(g ⊕ g), is called a Belavin-Drinfeld splitting. Let

Gdiag = {(g, g) | g ∈ G}. It is shown in [1] (see also [8, Corollary 3.18]) that every

Belavin-Drinfeld splitting of g⊕ g is conjugate by an element in Gdiag to a splitting

of the form

(4.24) g ⊕ g = gdiag + l′′S2,T2,d2,V2
,

where (S2, T2, d2) is a Belavin-Drinfeld triple in the sense that

Sd2
2 = {α ∈ S2 | dn

2α is defined and is in S2 for n = 1, 2, · · · } = ∅,

and V2 ∈ Lspace(zS2 ⊕ zT2) is such that hdiag ∩ (V2 + {(x, θd2(x)) | x ∈ hS2} = 0.

In other words, (4.24) is the special case of the splitting in (4.12) with l1 = gdiag.
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Keeping the notation as in Theorem 4.10, we have v2 = 1, and the corank of Πl1,l2

in O1 ∩ O2 in this special case simplifies to

dim zS2 + dim zS − dim(Y2 ∩ Ad(ẇ1,ẇ2)X2) + dim(Z2 ∩ Ad(ẇ1,ẇ2)X̃).

When l′′S2,T2,d2,V2
= l0 := n− ⊕ n + h−diag, where n and n− are respectively the

span by positive and negative root vectors and h−diag = {(x,−x) | x ∈ h}, the

splitting g ⊕ g = gdiag + l0 is called the standard splitting of g ⊕ g [8]. In this case,

N(l0) = B− × B, where B− = P−

∅
and B = P∅ are two opposite Borel subgroups,

and in the notation of Theorem 4.10, w1 ∈ W and w2 ∈ W T . The corank of Πl1,l2

in O1∩O2 in this special case further simplifies to dim(h−diag ∩Ad(ẇ1,ẇ2)X̃), where

X̃ = {(Ad−1
v̇1

x, x) | x ∈ zT (v1), θdχS(Ad−1
v̇1

x) = χT (x)} + {(y, θd(y)) | y ∈ hS}.

This formula has been obtained in [8].

4.5. The wonderful compactification of G. Recall [3] that the wonderful com-

pactification G of G is the closure of the Lagrangian subalgebra gdiag inside L(g⊕g).

Let g ⊕ g = l1 + l2 be a Lagrangian splitting with l1 and l2 given by (4.12). Then

G is a Poisson submanifold of L(g ⊕ g) with respect to the Poisson structure Πl1,l2

because it is (G × G)-stable. In [15] we studied in detail the geometry of a parti-

tion Pi, i = 1, 2, of G into finitely many smooth irreducible locally closed N(li)-

stable subsets obtained by keeping only the Weyl group elements in Proposition

4.6. When l1 = gdiag, the subsets in P1 are the Gdiag-stable pieces introduced by

Lusztig [17, 18]. Each subset in P1 and P2 is a Poisson submanifolds of (G,Πl1,l2).

Theorem 4.10 shows that the corank of Πl1,l2 at an l ∈ G in (N(L1)·l) ∩ (N(l2)·l)

depends only on which N(l1) and N(l2)-stable pieces l is in.
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