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The main purpose of this paper is to present a proof of [Corollary 11.3, P1], which
is stated in the following theorem.

Theorem 1 In dimension 2 round spheres are the only orientable k-solutions. Conse-
quently, round projective planes are the only nonorientable 2-dimensional k-solutions.

This result plays an important role in analysing structures of 3-dimensional k-
solutions and hence blow-up singularities of the Ricci flow in dimension 3, as presented
in [P1] and [P2]. Namely, splitting occurs in various arguments in [P1] and [P2]
regarding 3-dimensional k-solutions, and hence 3-dimensional x-solutions lead to 2-
dimensional x-solutions. On the other hand, in dimension 3, rescaled limits of a
solution of the Ricci flow near a blow-up singularity are x-solutions. In other words,
in dimension 3 blow-up singularities of the Ricci flow are modelled by x-solutions.

The proof in [P1] of [Corrolary 11.3, P1] is incomplete. It refers to [H1] for the
statement “round sphere is the only non-flat oriented nonnegatively curved gradient
shrinking soliton in dimension two”. But [H1] discusses only the case of compact
surfaces.

This paper has been available at the author’s website (www.math.ucsb.edu/~yer/
2dkappa.pdf) and through the website and notes of B. Kleiner and J. Lott on Perel-
man’s papers on the Ricci flow since early 2004. Our key obsevation was to employ
the arguments and techniques in Section 1 of [P2] to handle noncompact solitons.

We'll follow the notations in [P1], [P2], [Y1] and [Y2]. In particular, the distance
function for a given metric g on a manifold will be denoted by d,. For a given family
of metrics ¢(t) on a manifold depending on a time parameter ¢, B(p,r,t) denotes the
closed geodesic ball of center p and radius r with respect to g(t), and d(-, -, t) denotes
the distance function with respect to g(t). Similarly, d(q, A,t) denotes the distance
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from a point ¢ to a set A with respect to g(t). The scalar curvature of g(t) at a point
p is denoted by R(p,t). Other curvature quantities are denoted in a similar way.

For the convenience of the reader we recall the concepts of k-noncollapseness, k-
solutions and asymptotical solitons due to Perelman [P1][P2].

Definition 1 Let (M, g) be a complete Riemannian manifold of dimension n > 1.
Consider positive numbers x and p. We say that (M, g) is k-noncollapsed on the scale
p, provided that every geodesic ball of radius r < p in (M, g), on which |[Rm| < r2
holds, has volume at least xkr™.

Definition 2 A k-solution (of the Ricci flow) is an ancient nonflat solution of the
Ricci flow with bounded nonnegative curvature operator which is xk-noncollapsed for
some k > 0 on all scales. More precisely, a k-solution is a smooth solution g = ¢(t) of
the Ricci flow for —oo <t < 0 on some manifold M such that for each ¢, the metric
g(t) is complete, nonflat, has bounded and nonnegative curvature operator, and is
r-noncollapsed on all scales.

Round spheres give rise to obvious examples of x-solutions. Consider the sphere
S" n > 1. Let gy denote a multiple of the standand round sphere metric ggn of
sectional curvature 1 on S™. Then g(t) = (1 — 2Rgt)go,t € (—00, 0] is a k-solution on
S™. In dimension 2, we have x = 8m(1 — cos %) If M is a manifold diffeomorphic
to S™, we can pull back g to M by a (time independent) diffeomorphism to obtain a
r-solution on M. We call these k-solutions round sphere k-solutions or simply round
spheres. Let (M, g) be a 2-dimensional round sphere k-solution. Its quotient by a
nontrivial isometric Z, action is called a round projective plane.

By the uniqueness of the solution of the Ricci flow with a given initial value, a
smooth solution of the Ricci flow on a compact, simply connected manifold which has
positive constant sectional curvature extends to a round sphere r-solution.

Definition 3 A shrinking Ricci soliton with time origin ¢y € R is a smooth family of
metrics g = g(¢) on a manifold M for ¢ € (—o0,ty) which satisfies the shrinking Ricci
soliton equation

Ric+ Lyg+ g=0 (0.1)

1
2(t —to)
for a smooth time-dependent vector field X. One easily verifies that a shrinking Ricci
soliton is a smooth solution of the Ricci flow.

A non-collapsing Ricci soliton with time origin ¢y € R is a shrinking Ricci solition
g = g(t) with time origin ¢y such that for each t € (—o0,1ty), g(t) is complete, and
r-noncollapsed on the scale p > 0 for some £ > 0 and p > 0 (which may depend on

).



A shrinking Ricci soliton g is called a gradient shrinking soliton, if X = V[ for
a time-dependent smooth function f (V is associated with g(¢) at time ¢). Such a
smooth function is called a potential function of g.

Let g be a shrinking Ricci soliton with time origin ¢3. Note that it can be turned
into a shrinking Ricci soliton with any given time origin by a time translation. We
can also rescale it by a constant factor A > 0 to obtain another shrinking Ricci soliton.
On the other hand, integrating (0.1) we infer that for each given ¢’ < ty and all ¢t < ¢,
there holds

to —t
1) =
g9(t) P—T

o(t)"g(t') (0.2)

for a smooth family of diffeomorphisms ¢(t) with ¢(t') = id, see [Lemma 4.7, Y1]| for
the simple proof.

For each n > 2, there is a noncollapsing shrinking Ricci soliton g, with time ori-
gin 0 on S™ for n > 2 which is given by ¢.(t) = —2(n — 1)tgs~. It is a gradient
shrinking soliton whose potential functions are the constant functions. We can shift
its time origin, rescale it by a constant factor, and pull it back by a diffeomorphism
F : M — S™. The shrinking Ricci solitons obtained this way are called round sphere
solitons.

Definition 4 Let (M, g) be a k-solution. Consider ty < 0 and a sequence of positive
numbers a; — oo. By [Proposition 11.2, P1] and [Theorem 3.1, Y2], there is a se-
quence of points g, € M such that the pointed flows (M x (—o0, 0], ég(ak(toﬂ)), qr)
subconverge smoothly to pointed solutions of the Ricci flow (My, X (—00,0), oo, Goo)
which are noncollapsing gradient shrinking solitons. Such limit solitons are called
asymptotical solitions of g, or simply asymptotical solitons.

By Lemma 1 below, 2% > 0 holds true for x-solutions (as observed by Perelman).
Hence it also holds true for asymptotical solitons.

Lemma 1 Let g be a smooth solution of the Ricci flow on M x (—A,0) for a manifold
M and some A > 0. Assume that for each t € (—A,0), g(t) is complete and has
bounded and nonnegative curvature operator. Then %—If > 0 everywhere.

Proof. The trace form of Hamilton’s differential Harnack inequality says

OR R
o T T2VRX 4 2Ric(X, X) > 0 (0.3)

for arbitary smooth vector fields X. Taking X = 0 we then deduce % > —% >0. 1



By a round sphere metric on a manifold M diffeomorphic to S™ we mean A\F*ggn,
where A is a posiitve number and F' is a smooth diffeomorphism from M onto S™.

Lemma 2 Let M be diffeomorphic to S* and g a shrinking Ricci soliton on M. Then
g is a round sphere soliton.

Proof. This is essentially equivalent to [Theorem 10.1, H1]. We present here a different
argument. By a time translation we may assume that the time origin of g is 0. Let
T (g)(7) be the volume normaliztion of g which equals g(—1) at 7 = 0. Namely
T (g)(7) is a rescaling of g, has constant volume, and is a solution of the volume-
normalized Ricci flow with 7 = 7(¢) as the time variable. We have the formula
T(9)(T) = At)g(t) with A(t) = exp(J*,r) and 7 = [*, X, where r(t) denotes the
average scalar curvature of g(¢). By (0.2) we have

1 *
—59(t) = o(t)"g(=1). (0.4)
Hence —1g(t) has constant volume and equals g(—1) at ¢ = —1. It follows that
A(t) = —1 and then 7 = —In|¢|. Consequently, the t-interval (—o0,0) is transformed

to the 7-interval (—oo,00). Thus 7 (g) is a smooth solution of the volume normalized
Ricci flow on M x (—o0,00). By the convergence theorem for the volume normalized
Ricci flow on S? proved in [BSY], T (g)(7) converges smoothly to a round sphere
metric as 7 — oo. It follows that —%g(t) converges smoothly to a round sphere
metric as t — 0. Letting ' — 0 in (0.2) we then deduce that g(¢) has constant scalar
curvature for each ¢, and hence ¢(t) is a round sphere metric for each t.

For each fixed t; < 0, there is a round sphere soliton g;, with time origin 0 such
that g¢, (t1) = g(t1). By the uniqueness of the solution of the Ricci flow with a given
initial metric we then have g;, = g on [t1,0). For ¢ty < t; we have g1, = g4, on [t1,0).
Hence we have g = ¢g_; on (—00,0), i.e. g is a round sphere soliton.

We note that in [H1], [10.1, H1] is used for proving the convergence theorem for
the volume normalized Ricc flow on S%. In [BSY], this convergence theorem is proved
by a different argument without using [10.1, H1]. (In [H1], [10.1, H1] is proved by
using complex analysis.) |

Lemma 3 Let g be a smooth solution of the Ricci flow on M x (a,b) for a 2-
dimensional manifold M and some time interval (a,b), such that for each t € (a,b),
the metric g(t) is complete and has nonnegative scalar curvature. Let ty € (a,b).
Assume that g(ty) is k-noncollapsed on the scale p for some k >0 and p > 0. Then
g(to) has bounded scalar curvature.

Proof. Assume that ¢(tg) has unbounded scalar curvature. Choose a sequence of
points pp € M such that R(pg,to) > 0 for each k and R(pg,t9) — oo. Choose
qr € B(pk,1,ty) such that the function d(-,0B(py, 1,t0),t0)>R(-,ts) on B(pg,1,to)
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achieves its maximum at g. We set ry = d(qx, 0B(p, 1,t0),t0)/2. For ¢ € B(qg, 7k, to)
we have d(q, 0B(p, 1,t0),to) > 1, and hence the maximum property of g, implies

TzR(Q7 tO) < d(q7 8B(pk7 17 t0)7 t0)2R(q7 tO) < 47’ZR(Qk; tO) (05)
It follows that
R(q,t0) < 4R(qx, to) (0.6)

on B(qg, 7, to). By the maximum property of g;, we also infer r2 R(qy, to) > R(pr, to)/4,
so r, > 0 for each k and 73 R(gx,to) — oo. On the other hand, it is obvious that
qr — 00. We apply Splitting Lemma in Appendix with A\, = R(qx,to) and C' = 4.
Hence we obtain from (M, R(qx, t0)g(to), qx) a smooth limit (geo, Moo, ¢so) Which splits
off a line. Since M, is 2-dimensional, it follows that g., is flat. But the scalar curva-
ture of R(qx,t0)g(to) at gx is 1, hence the scalar curvature of g, at g is also 1. This
is a contradiction. [

Theorem 2 The only orientable 2-dimensional noncollapsing Ricct solitons with non-
negative scalar curvature are round sphere solitons. Consequently, the only non-
orientable 2-dimensional noncollapsing Ricci solitons with nonnegative scalar curva-
ture are nontrivial isometric Zo quotients of round sphere solitons.

Proof. Let g be an orientable monotone noncollapsing Ricci soliton on a 2-dimensional
manifold M. We may assume that its time origin is 0. By Lemma 3, g has bounded
scalar curvature for each ¢t < 0. We also observe that R is everywhere positive.
Indeed, if R is zero at some point ¢ and some time ¢, then the strong maximum
principle (applied to the evolution equation of R) implies that R is everywhere zero
for all later times, which contradicts the nonflatness of g.

We claim that M is compact. To prove the claim, fix a point py € M. Following
[(1.2), P2] we have, as a consequence of (0.1) the following equation

dR = 2Ric(Vf,-) = Rg(Vf,-) = Rdf. (0.7)

Let d(-,-,t) denote the distance at time ¢t. Let 6(q,t,~v) denote the (smaller) angle
between V f(q,t) and v/(1), where [ = d(po, q,t) and - is a unit speed shortest geodesic
with respect to g(t) such that v(0) = py and y(I) = ¢. This angle is defined to be 27
if Vf(g,t) = 0. By the arguments in the proof of [Lemma 1.2, P2] in [P2], there is a
positive number Ag such that

N

whenever d(po,q, —1) > Ay.



Let v be a shortest geodesic from py to a point ¢ with d(pg, ¢, —1) > Ag. We have
by (0.7) and (0.8)
d
S RO 1), ~1) = VR-~/(1) = RV /(1) > 0, (0.9)
as long as t > A. Thus R(vy(t), —1) increases along the portion of v which lies outside
of the geodesic ball B(pg, Ag, —1). Consequently, we obtain the following estimate

R(q,—1) > ay, (0.10)

for all ¢ € M, where ay, = min{R(¢,—1) : ¢ € B(po, Ao,—1)}. Since R > 0
everywhere, a4 is positive. By Bonnet theorem, M must be compact.

Now we apply Gauss-Bonnet theorem to infer that M is diffeomorphic to S2. Then
we apply Lemma 2 to conclude that (M, g) is a round sphere soliton. [

Proof of Theorem 1

Let (M,g*) be an orientable 2-dimensional k-solution. Consider an arbitary
asymptotic soliton (M, goo, 4oo) Of g* (as given by [Proposition 11.2, P1] and [Theo-
rem 3.1, Y2]). By Theorem 2, (M., goo) is a round sphere soliton. Consequently, M
is diffeomorphic to S?. Moreover, modulo smooth diffeomorphisms of M, the metrics
_%g*(t) converge smoothly on M to metrics of positive constant scalar curvature as
t — —00.

Consider the volume normalization g of g%, i.e. g(7) = T(9*)(7),7 € (A1, Ao,
where Ay = lim;_, o, 7(¢t) and Ay = 7(0), cf. the proof of Lemma 1. Then, modulo
smooth diffeomorphisms of M, g(7) converges to metrics of positive constant scalar
curvature as 7 — A;. Following [H1], let f be the solution of Af = R — r with mean
value zero, and set H = V2f — LA fg (H;; is the M;; in [H1]). By [(9.1), H1] we have

O|H|?
or

= A|H|? —2|VH|? — 2R|H|*. (0.11)

Hence the maximum principle implies that max |H|? is nonincreasing. Since g con-
verges modulo smooth diffeomorphisms of M to metrics of positive constant scalar
curvature as 7 — Ay, we have H — 0 as 7 — Ay, whence H = 0. Now, pulling back
g by a family of diffeomorphisms ¢(t) generated by Vf with ¢(—1) = id, we obtain
g which satisfies
99 _ 2H =0 (0.12)
or - '

Thus ¢ is independent of time. Since its scalar curvature approaches a positive con-
stant as 7 — Ay, we infer that § has positive constant scalar curvature. It follows
that ¢ and hence g* has positive constant scalar curvature. We conclude that g* is
a round sphere r-solution. Note that we have f = 0 because g has constant scalar
curvature. Consequently, g = g. We deduce that ¢g*(t) = A(t)g for positive scalars
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A(t). This immediately yields g*(f) = (1 — 2Rot)g*(0), where Ry denotes the scalar
curvature of g*(0). |

Appendix
We present here a splitting lemma for the Ricci flow.

Splitting Lemma Let g = g(t) be a smooth solution of the Ricci flow on M x (a,b)
for some manifold M of dimension n > 2 and some time interval (a,b), such that for
each t, the metric g(t) is complete and has nonnegative sectional curvature. Assume
that the scalar curvature R satisfies %—If > 0 everywhere, i.e. it is nondecreasing.
Consider ty € (a,b). Assume that the metric g(ty) is k-noncollapsed on the scale p
for some k > 0 and p > 0.

Consider a sequence of points q. € M and two sequences of positive numbers Ay
and ry,, such that g — 00, A\, > 6 for some § > 0, and \/A\yri, — 00. Moreover,
assume that there is a positive constant C' such that R(q,to) < CAg for all k and all
q € B(qg,7x,to). Then the rescaled pointed Riemannian manifolds (M, \yg(to), qx)
subconverge smoothly to a smooth pointed Riemannian manifold (M, goo, Goo), Which

splits off a line, i.e. My = My 1 X R for some My, 1 and g is a product metric.

Proof. For a fixed k, we consider the rescaled flow gi(t) = A\pg(to + A—tk),t € (M(a—
to),0]. In the following arguments, the geodesic balls B(q,r,t) and the distance
function d(-,-,t) will be with respect to gi. We observe that g,(0) = Agg(to) is k-
noncollpased on the scale §p. Furthermore, we have for g, the scalar curvature bound
R < C on B(qu, VArTk,0) x {0}. The nondecreasing property of R then implies the
same scalar curvature bound for g; on B(qx, v Axrk,0) X (Ax(a — t,0]. Since the
sectional curvatures are nonnegative, we deduce for g

|[Rm| < ¢(n)C (0.13)

on B(qk, vV ATk, 0) X (= (to —a), 0], where ¢(n) is a positive constant depending only
on n.

Next we set I = {t € (=M(to — a),0] : B(qe, vV \erk/3,t) C B(qr, vV 7k, 0)}.
Obviously, I is closed in (—Ax(tg — a),0] and 0 € I. Consider t € I. By (0.13), we
have |[Rm| < ¢(n)C on B(qr, vV krr/3,t) X (=A\i(to — a),0]. Employing the Ricci flow
equation we then deduce

\4 )\ka e cl (n)Ct

(0.14)
for all ¢ € B(qx, vV \k7k/3,t), where ¢1(n) is a positive constant depending only on n.
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It follows that B(qk, vV Akrk/3,t) C B(qk, vV \erx/2,0), as long as t > —e¢q, where

€0 = min{

250t — a)}. (0.15)

ln%
ci(n)

Consequently, I N [—ep, 0] is open in [—ep, 0]. We conclude that [—¢, 0] C I. Hence
we have the estimate |Rm| < ¢(n)C on B(qx, vV Axr1/3, —€o) X [—€0,0]. By Shi’s local
derivative estimates [S] (see also [H2]), we then deduce for all [ > 0

|V!Rm| < C(1,n) (0.16)

on B(q, vV Aers/3, —¢€0) X [—€0/2,0], where C(l,n) is a positive constant depending
only on [ and n.

Since v/ A\x7k/3 — 00, the estimates (0.16) coupled with the k-noncollapsing prop-
erty of gx(0) lead to the claimed smooth subconvergence.

It remains to prove that (M., g ) splits off a line. We follow the arguments pre-
sented in [Appendix G, KLJ.

Claim (M, gs) contains a line passing through ¢so.

To prove the claim, we choose an arbitary p € M and set pr, = d(p, qx,%0)/2 and
gi = pir2g(to). The pointed spaces (M, g}, p) converge in Gromov-Hausdorff distance
to the asymptotical cone C of (M, g(to)), see [pp.58-59, BGS|. Hence we can find for
each k points ¢, Zx and g lying on a ray in C such that

and corresponding points xy, yx € M such that

dg (Tr, yr) — d(Zk, Gx) — 0, dge (1, gx) — d(@x;, Gr) — 0,
dg; (qr; yi) — d(Grs Gr) — 0 (0.18)

as k — oo. It follows that /x,qpys — 7, where Zz,qrys denotes the comparison angle
at g of the triple zxqryx in (M, g5), i.e. the angle at ¢; of a comparison Euclidean
triangle xjqiyi. Let gxZr denote a shortest geodesic in (M, g;) from g to z) and
QxUr a shortest geodesic in (M, gi) from g to yx. By the monotonicity of comparison
angles [4.3, BBI] we infer that

[T qrye — T (0.19)

uniformly for all z}, € Gxzy and v}, € GrUk-

Now observe that gx(0) = A\xp2g;i. So @nTr and @uyy are also shortest geodesics
in (M, g,(0)). Since A\, > § and ¢, — oo, we have v/ Agpr — oo. Hence (0.17) and
(0.18) imply that dg, (0)(qr, xx) — 00 and dg, o) (qr, yx) — 00. It follows that gz and
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Jryx converge to two rays 4 and v_ in (My, go) eminating from ¢.,. (We pass to a
suitable subsequence here.) By (0.19), we have /¢y = 7 in (Mx, goo) and hence

dyoo (2,Y) = dgoo (¥, o) + dgo (40, Y) (0.20)

for all x on v, and all y on v_. Consequently, joining v, and v_ yields a line in
(Mo, goo)-

Since the limit g, has nonnegative sectional curvature, Toponogov splitting the-
orem implies that (M., goo) splits off a line. [
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