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The main purpose of this paper is to present a proof of [Corollary 11.3, P1], which
is stated in the following theorem.

Theorem 1 In dimension 2 round spheres are the only orientable κ-solutions. Conse-
quently, round projective planes are the only nonorientable 2-dimensional κ-solutions.

This result plays an important role in analysing structures of 3-dimensional κ-
solutions and hence blow-up singularities of the Ricci flow in dimension 3, as presented
in [P1] and [P2]. Namely, splitting occurs in various arguments in [P1] and [P2]
regarding 3-dimensional κ-solutions, and hence 3-dimensional κ-solutions lead to 2-
dimensional κ-solutions. On the other hand, in dimension 3, rescaled limits of a
solution of the Ricci flow near a blow-up singularity are κ-solutions. In other words,
in dimension 3 blow-up singularities of the Ricci flow are modelled by κ-solutions.

The proof in [P1] of [Corrolary 11.3, P1] is incomplete. It refers to [H1] for the
statement “round sphere is the only non-flat oriented nonnegatively curved gradient
shrinking soliton in dimension two”. But [H1] discusses only the case of compact
surfaces.

This paper has been available at the author’s website (www.math.ucsb.edu/∼yer/
2dkappa.pdf) and through the website and notes of B. Kleiner and J. Lott on Perel-
man’s papers on the Ricci flow since early 2004. Our key obsevation was to employ
the arguments and techniques in Section 1 of [P2] to handle noncompact solitons.

We’ll follow the notations in [P1], [P2], [Y1] and [Y2]. In particular, the distance
function for a given metric g on a manifold will be denoted by dg. For a given family
of metrics g(t) on a manifold depending on a time parameter t, B(p, r, t) denotes the
closed geodesic ball of center p and radius r with respect to g(t), and d(·, ·, t) denotes
the distance function with respect to g(t). Similarly, d(q, A, t) denotes the distance

∗2000 Mathematics Subject Classification: 53C20, 53C21

1



from a point q to a set A with respect to g(t). The scalar curvature of g(t) at a point
p is denoted by R(p, t). Other curvature quantities are denoted in a similar way.

For the convenience of the reader we recall the concepts of κ-noncollapseness, κ-
solutions and asymptotical solitons due to Perelman [P1][P2].

Definition 1 Let (M, g) be a complete Riemannian manifold of dimension n ≥ 1.
Consider positive numbers κ and ρ. We say that (M, g) is κ-noncollapsed on the scale
ρ, provided that every geodesic ball of radius r < ρ in (M, g), on which |Rm| ≤ r−2

holds, has volume at least κrn.

Definition 2 A κ-solution (of the Ricci flow) is an ancient nonflat solution of the
Ricci flow with bounded nonnegative curvature operator which is κ-noncollapsed for
some κ > 0 on all scales. More precisely, a κ-solution is a smooth solution g = g(t) of
the Ricci flow for −∞ < t ≤ 0 on some manifold M such that for each t, the metric
g(t) is complete, nonflat, has bounded and nonnegative curvature operator, and is
κ-noncollapsed on all scales.

Round spheres give rise to obvious examples of κ-solutions. Consider the sphere
Sn, n ≥ 1. Let g0 denote a multiple of the standand round sphere metric gSn of
sectional curvature 1 on Sn. Then g(t) = (1− 2

n
R0t)g0, t ∈ (−∞, 0] is a κ-solution on

Sn. In dimension 2, we have κ = 8π(1 − cos 1√
2
). If M is a manifold diffeomorphic

to Sn, we can pull back g to M by a (time independent) diffeomorphism to obtain a
κ-solution on M . We call these κ-solutions round sphere κ-solutions or simply round
spheres. Let (M, g) be a 2-dimensional round sphere κ-solution. Its quotient by a
nontrivial isometric Z2 action is called a round projective plane.

By the uniqueness of the solution of the Ricci flow with a given initial value, a
smooth solution of the Ricci flow on a compact, simply connected manifold which has
positive constant sectional curvature extends to a round sphere κ-solution.

Definition 3 A shrinking Ricci soliton with time origin t0 ∈ R is a smooth family of
metrics g = g(t) on a manifold M for t ∈ (−∞, t0) which satisfies the shrinking Ricci
soliton equation

Ric+ LXg +
1

2(t− t0)
g = 0 (0.1)

for a smooth time-dependent vector field X. One easily verifies that a shrinking Ricci
soliton is a smooth solution of the Ricci flow.

A non-collapsing Ricci soliton with time origin t0 ∈ R is a shrinking Ricci solition
g = g(t) with time origin t0 such that for each t ∈ (−∞, t0), g(t) is complete, and
κ-noncollapsed on the scale ρ > 0 for some κ > 0 and ρ > 0 (which may depend on
t).
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A shrinking Ricci soliton g is called a gradient shrinking soliton, if X = ∇f for
a time-dependent smooth function f (∇ is associated with g(t) at time t). Such a
smooth function is called a potential function of g.

Let g be a shrinking Ricci soliton with time origin t0. Note that it can be turned
into a shrinking Ricci soliton with any given time origin by a time translation. We
can also rescale it by a constant factor λ > 0 to obtain another shrinking Ricci soliton.
On the other hand, integrating (0.1) we infer that for each given t′ < t0 and all t < t0
there holds

g(t) =
t0 − t
t0 − t′

φ(t)∗g(t′) (0.2)

for a smooth family of diffeomorphisms φ(t) with φ(t′) = id, see [Lemma 4.7, Y1] for
the simple proof.

For each n ≥ 2, there is a noncollapsing shrinking Ricci soliton g∗ with time ori-
gin 0 on Sn for n ≥ 2 which is given by g∗(t) = −2(n − 1)tgSn . It is a gradient
shrinking soliton whose potential functions are the constant functions. We can shift
its time origin, rescale it by a constant factor, and pull it back by a diffeomorphism
F : M → Sn. The shrinking Ricci solitons obtained this way are called round sphere
solitons.

Definition 4 Let (M, g) be a κ-solution. Consider t0 < 0 and a sequence of positive
numbers ak → ∞. By [Proposition 11.2, P1] and [Theorem 3.1, Y2], there is a se-
quence of points qk ∈M such that the pointed flows (M×(−∞, 0], 1

ak
g(ak(t0+ t)), qk)

subconverge smoothly to pointed solutions of the Ricci flow (M∞ × (−∞, 0), g∞, q∞)
which are noncollapsing gradient shrinking solitons. Such limit solitons are called
asymptotical solitions of g, or simply asymptotical solitons.

By Lemma 1 below, ∂R
∂t
≥ 0 holds true for κ-solutions (as observed by Perelman).

Hence it also holds true for asymptotical solitons.

Lemma 1 Let g be a smooth solution of the Ricci flow on M× (−Λ, 0) for a manifold
M and some Λ > 0. Assume that for each t ∈ (−Λ, 0), g(t) is complete and has
bounded and nonnegative curvature operator. Then ∂R

∂t
≥ 0 everywhere.

Proof. The trace form of Hamilton’s differential Harnack inequality says

∂R

∂t
+
R

t
+ 2∇R ·X + 2Ric(X,X) ≥ 0 (0.3)

for arbitary smooth vector fields X. Taking X = 0 we then deduce ∂R
∂t
≥ −R

t
≥ 0.
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By a round sphere metric on a manifold M diffeomorphic to Sn we mean λF ∗gSn ,
where λ is a posiitve number and F is a smooth diffeomorphism from M onto Sn.

Lemma 2 Let M be diffeomorphic to S2 and g a shrinking Ricci soliton on M . Then
g is a round sphere soliton.

Proof. This is essentially equivalent to [Theorem 10.1, H1]. We present here a different
argument. By a time translation we may assume that the time origin of g is 0. Let
T (g)(τ) be the volume normaliztion of g which equals g(−1) at τ = 0. Namely
T (g)(τ) is a rescaling of g, has constant volume, and is a solution of the volume-
normalized Ricci flow with τ = τ(t) as the time variable. We have the formula
T (g)(τ) = λ(t)g(t) with λ(t) = exp(

∫ t
−1 r) and τ =

∫ t
−1 λ, where r(t) denotes the

average scalar curvature of g(t). By (0.2) we have

−1

t
g(t) = φ(t)∗g(−1). (0.4)

Hence −1
t
g(t) has constant volume and equals g(−1) at t = −1. It follows that

λ(t) = −1
t

and then τ = − ln |t|. Consequently, the t-interval (−∞, 0) is transformed
to the τ -interval (−∞,∞). Thus T (g) is a smooth solution of the volume normalized
Ricci flow on M × (−∞,∞). By the convergence theorem for the volume normalized
Ricci flow on S2 proved in [BSY], T (g)(τ) converges smoothly to a round sphere
metric as τ → ∞. It follows that −1

t
g(t) converges smoothly to a round sphere

metric as t→ 0. Letting t′ → 0 in (0.2) we then deduce that g(t) has constant scalar
curvature for each t, and hence g(t) is a round sphere metric for each t.

For each fixed t1 < 0, there is a round sphere soliton gt1 with time origin 0 such
that gt1(t1) = g(t1). By the uniqueness of the solution of the Ricci flow with a given
initial metric we then have gt1 = g on [t1, 0). For t2 < t1 we have gt2 = gt1 on [t1, 0).
Hence we have g = g−1 on (−∞, 0), i.e. g is a round sphere soliton.

We note that in [H1], [10.1, H1] is used for proving the convergence theorem for
the volume normalized Ricc flow on S2. In [BSY], this convergence theorem is proved
by a different argument without using [10.1, H1]. (In [H1], [10.1, H1] is proved by
using complex analysis.)

Lemma 3 Let g be a smooth solution of the Ricci flow on M × (a, b) for a 2-
dimensional manifold M and some time interval (a, b), such that for each t ∈ (a, b),
the metric g(t) is complete and has nonnegative scalar curvature. Let t0 ∈ (a, b).
Assume that g(t0) is κ-noncollapsed on the scale ρ for some κ > 0 and ρ > 0. Then
g(t0) has bounded scalar curvature.

Proof. Assume that g(t0) has unbounded scalar curvature. Choose a sequence of
points pk ∈ M such that R(pk, t0) > 0 for each k and R(pk, t0) → ∞. Choose
qk ∈ B(pk, 1, t0) such that the function d(·, ∂B(pk, 1, t0), t0)

2R(·, t0) on B(pk, 1, t0)
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achieves its maximum at qk. We set rk = d(qk, ∂B(pk, 1, t0), t0)/2. For q ∈ B(qk, rk, t0)
we have d(q, ∂B(pk, 1, t0), t0) ≥ rk and hence the maximum property of qk implies

r2kR(q, t0) ≤ d(q, ∂B(pk, 1, t0), t0)
2R(q, t0) ≤ 4r2kR(qk, t0). (0.5)

It follows that

R(q, t0) ≤ 4R(qk, t0) (0.6)

onB(qk, rk, t0). By the maximum property of qk we also infer r2kR(qk, t0) ≥ R(pk, t0)/4,
so rk > 0 for each k and r2kR(qk, t0) → ∞. On the other hand, it is obvious that
qk → ∞. We apply Splitting Lemma in Appendix with λk = R(qk, t0) and C = 4.
Hence we obtain from (M,R(qk, t0)g(t0), qk) a smooth limit (g∞,M∞, q∞) which splits
off a line. Since M∞ is 2-dimensional, it follows that g∞ is flat. But the scalar curva-
ture of R(qk, t0)g(t0) at qk is 1, hence the scalar curvature of g∞ at q∞ is also 1. This
is a contradiction.

Theorem 2 The only orientable 2-dimensional noncollapsing Ricci solitons with non-
negative scalar curvature are round sphere solitons. Consequently, the only non-
orientable 2-dimensional noncollapsing Ricci solitons with nonnegative scalar curva-
ture are nontrivial isometric Z2 quotients of round sphere solitons.

Proof. Let g be an orientable monotone noncollapsing Ricci soliton on a 2-dimensional
manifold M . We may assume that its time origin is 0. By Lemma 3, g has bounded
scalar curvature for each t < 0. We also observe that R is everywhere positive.
Indeed, if R is zero at some point q and some time t, then the strong maximum
principle (applied to the evolution equation of R) implies that R is everywhere zero
for all later times, which contradicts the nonflatness of g.

We claim that M is compact. To prove the claim, fix a point p0 ∈ M . Following
[(1.2), P2] we have, as a consequence of (0.1) the following equation

dR = 2Ric(∇f, ·) = Rg(∇f, ·) = Rdf. (0.7)

Let d(·, ·, t) denote the distance at time t. Let θ(q, t, γ) denote the (smaller) angle
between∇f(q, t) and γ′(l), where l = d(p0, q, t) and γ is a unit speed shortest geodesic
with respect to g(t) such that γ(0) = p0 and γ(l) = q. This angle is defined to be 2π
if ∇f(q, t) = 0. By the arguments in the proof of [Lemma 1.2, P2] in [P2], there is a
positive number A0 such that

θ(q,−1, γ) ≤ π

4
(0.8)

whenever d(p0, q,−1) ≥ A0.
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Let γ be a shortest geodesic from p0 to a point q with d(p0, q,−1) > A0. We have
by (0.7) and (0.8)

d

dt
R(γ(t),−1) = ∇R · γ′(t) = R∇f · γ′(t) > 0, (0.9)

as long as t ≥ A. Thus R(γ(t),−1) increases along the portion of γ which lies outside
of the geodesic ball B(p0, A0,−1). Consequently, we obtain the following estimate

R(q,−1) ≥ αA0 (0.10)

for all q ∈ M , where αA0 = min{R(q,−1) : q ∈ B(p0, A0,−1)}. Since R > 0
everywhere, αA is positive. By Bonnet theorem, M must be compact.

Now we apply Gauss-Bonnet theorem to infer that M is diffeomorphic to S2. Then
we apply Lemma 2 to conclude that (M, g) is a round sphere soliton.

Proof of Theorem 1
Let (M, g∗) be an orientable 2-dimensional κ-solution. Consider an arbitary

asymptotic soliton (M∞, g∞, q∞) of g∗ (as given by [Proposition 11.2, P1] and [Theo-
rem 3.1, Y2]). By Theorem 2, (M∞, g∞) is a round sphere soliton. Consequently, M
is diffeomorphic to S2. Moreover, modulo smooth diffeomorphisms of M , the metrics
1
−tg
∗(t) converge smoothly on M to metrics of positive constant scalar curvature as

t→ −∞.
Consider the volume normalization g of g∗, i.e. g(τ) = T (g∗)(τ), τ ∈ (Λ1,Λ2],

where Λ1 = limt→−∞ τ(t) and Λ2 = τ(0), cf. the proof of Lemma 1. Then, modulo
smooth diffeomorphisms of M , g(τ) converges to metrics of positive constant scalar
curvature as τ → Λ1. Following [H1], let f be the solution of ∆f = R− r with mean
value zero, and set H = ∇2f − 1

2
∆fg (Hij is the Mij in [H1]). By [(9.1), H1] we have

∂|H|2

∂τ
= ∆|H|2 − 2|∇H|2 − 2R|H|2. (0.11)

Hence the maximum principle implies that max |H|2 is nonincreasing. Since g con-
verges modulo smooth diffeomorphisms of M to metrics of positive constant scalar
curvature as τ → Λ1, we have H → 0 as τ → Λ1, whence H ≡ 0. Now, pulling back
g by a family of diffeomorphisms φ(t) generated by ∇f with φ(−1) = id, we obtain
ĝ which satisfies

∂ĝ

∂τ
= 2H = 0. (0.12)

Thus ĝ is independent of time. Since its scalar curvature approaches a positive con-
stant as τ → Λ1, we infer that ĝ has positive constant scalar curvature. It follows
that g and hence g∗ has positive constant scalar curvature. We conclude that g∗ is
a round sphere κ-solution. Note that we have f ≡ 0 because g has constant scalar
curvature. Consequently, g = ĝ. We deduce that g∗(t) = λ(t)ĝ for positive scalars
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λ(t). This immediately yields g∗(t) = (1 − 2
n
R0t)g

∗(0), where R0 denotes the scalar
curvature of g∗(0).

Appendix

We present here a splitting lemma for the Ricci flow.

Splitting Lemma Let g = g(t) be a smooth solution of the Ricci flow on M × (a, b)
for some manifold M of dimension n ≥ 2 and some time interval (a, b), such that for
each t, the metric g(t) is complete and has nonnegative sectional curvature. Assume
that the scalar curvature R satisfies ∂R

∂t
≥ 0 everywhere, i.e. it is nondecreasing.

Consider t0 ∈ (a, b). Assume that the metric g(t0) is κ-noncollapsed on the scale ρ
for some κ > 0 and ρ > 0.

Consider a sequence of points qk ∈ M and two sequences of positive numbers λk
and rk, such that qk → ∞, λk ≥ δ for some δ > 0, and

√
λkrk → ∞. Moreover,

assume that there is a positive constant C such that R(q, t0) ≤ Cλk for all k and all
q ∈ B(qk, rk, t0). Then the rescaled pointed Riemannian manifolds (M,λkg(t0), qk)
subconverge smoothly to a smooth pointed Riemannian manifold (M∞, g∞, q∞), which
splits off a line, i.e. M∞ = M∞,1 ×R for some M∞,1 and g∞ is a product metric.

Proof. For a fixed k, we consider the rescaled flow gk(t) = λkg(t0 + t
λk

), t ∈ (λk(a −
t0), 0]. In the following arguments, the geodesic balls B(q, r, t) and the distance
function d(·, ·, t) will be with respect to gk. We observe that gk(0) = λkg(t0) is κ-
noncollpased on the scale δρ. Furthermore, we have for gk the scalar curvature bound
R ≤ C on B(qk,

√
λkrk, 0)× {0}. The nondecreasing property of R then implies the

same scalar curvature bound for gk on B(qk,
√
λkrk, 0) × (λk(a − t0, 0]. Since the

sectional curvatures are nonnegative, we deduce for gk

|Rm| ≤ c(n)C (0.13)

on B(qk,
√
λkrk, 0)×(−λk(t0−a), 0], where c(n) is a positive constant depending only

on n.
Next we set I = {t ∈ (−λk(t0 − a), 0] : B(qk,

√
λkrk/3, t) ⊂ B(qk,

√
λkrk, 0)}.

Obviously, I is closed in (−λk(t0 − a), 0] and 0 ∈ I. Consider t ∈ I. By (0.13), we
have |Rm| ≤ c(n)C on B(qk,

√
λkrk/3, t)× (−λk(t0−a), 0]. Employing the Ricci flow

equation we then deduce

d(q, qk, 0) ≤
√
λkrk
3

e−c1(n)Ct (0.14)

for all q ∈ B(qk,
√
λkrk/3, t), where c1(n) is a positive constant depending only on n.

7



It follows that B(qk,
√
λkrk/3, t) ⊂ B(qk,

√
λkrk/2, 0), as long as t ≥ −ε0, where

ε0 = min{
ln 3

2

c1(n)C
, δ(t0 − a)}. (0.15)

Consequently, I ∩ [−ε0, 0] is open in [−ε0, 0]. We conclude that [−ε0, 0] ⊂ I. Hence
we have the estimate |Rm| ≤ c(n)C on B(qk,

√
λkrk/3,−ε0)× [−ε0, 0]. By Shi’s local

derivative estimates [S] (see also [H2]), we then deduce for all l ≥ 0

|∇lRm| ≤ C(l, n) (0.16)

on B(qk,
√
λkrk/3,−ε0) × [−ε0/2, 0], where C(l, n) is a positive constant depending

only on l and n.
Since

√
λkrk/3→∞, the estimates (0.16) coupled with the κ-noncollapsing prop-

erty of gk(0) lead to the claimed smooth subconvergence.
It remains to prove that (M∞, g∞) splits off a line. We follow the arguments pre-

sented in [Appendix G, KL].

Claim (M∞, g∞) contains a line passing through q∞.

To prove the claim, we choose an arbitary p ∈ M and set ρk = d(p, qk, t0)/2 and
g∗k = ρ−2k g(t0). The pointed spaces (M, g∗k, p) converge in Gromov-Hausdorff distance
to the asymptotical cone C of (M, g(t0)), see [pp.58-59, BGS]. Hence we can find for
each k points q̂k, x̂k and ŷk lying on a ray in C such that

d(x̂k, ŷk) = 2, d(x̂k, q̂k) = 1, d(q̂k, ŷk) = 1, (0.17)

and corresponding points xk, yk ∈M such that

dg∗
k
(xk, yk)− d(x̂k, ŷk)→ 0, dg∗

k
(xk, qk)− d(x̂k, q̂k)→ 0,

dg∗
k
(qk, yk)− d(q̂k, ŷk)→ 0 (0.18)

as k →∞. It follows that ˜6 xkqkyk → π, where ˜6 xkqkyk denotes the comparison angle
at qk of the triple xkqkyk in (M, g∗k), i.e. the angle at q∗k of a comparison Euclidean
triangle x∗kq

∗
ky
∗
k. Let qkxk denote a shortest geodesic in (M, g∗k) from qk to xk and

qkyk a shortest geodesic in (M, g∗k) from qk to yk. By the monotonicity of comparison
angles [4.3, BBI] we infer that

˜6 x′kqky
′
k → π (0.19)

uniformly for all x′k ∈ qkxk and y′k ∈ qkyk.
Now observe that gk(0) = λkρ

2
kg
∗
k. So qkxk and qkyk are also shortest geodesics

in (M, gk(0)). Since λk ≥ δ and qk → ∞, we have
√
λkρk → ∞. Hence (0.17) and

(0.18) imply that dgk(0)(qk, xk)→∞ and dgk(0)(qk, yk)→∞. It follows that qkxk and
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qkyk converge to two rays γ+ and γ− in (M∞, g∞) eminating from q∞. (We pass to a
suitable subsequence here.) By (0.19), we have ˜6 xq∞y = π in (M∞, g∞) and hence

dg∞(x, y) = dg∞(x, q∞) + dg∞(q∞, y) (0.20)

for all x on γ+ and all y on γ−. Consequently, joining γ+ and γ− yields a line in
(M∞, g∞).

Since the limit g∞ has nonnegative sectional curvature, Toponogov splitting the-
orem implies that (M∞, g∞) splits off a line.
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